Academic literature on the topic 'Graphs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graphs"
Hamidi, M. "Zero Divisor Graphs Based on General Hyperrings." Journal of Algebraic Hyperstructures and Logical Algebras 4, no. 2 (2023): 131–49. http://dx.doi.org/10.61838/kman.jahla.4.2.9.
Full textFÜRER, MARTIN, and SHIVA PRASAD KASIVISWANATHAN. "Approximately Counting Embeddings into Random Graphs." Combinatorics, Probability and Computing 23, no. 6 (July 9, 2014): 1028–56. http://dx.doi.org/10.1017/s0963548314000339.
Full textShukur, Ali A., Akbar Jahanbani, and Haider Shelash. "The Behavior of Weighted Graph’s Orbit and Its Energy." Mathematical Problems in Engineering 2021 (May 17, 2021): 1–6. http://dx.doi.org/10.1155/2021/9933072.
Full textLakshmanan S., Aparna, S. B. Rao, and A. Vijayakumar. "Gallai and anti-Gallai graphs of a graph." Mathematica Bohemica 132, no. 1 (2007): 43–54. http://dx.doi.org/10.21136/mb.2007.133996.
Full textKaviya, S., G. Mahadevan, and C. Sivagnanam. "Generalizing TCCD-Number For Power Graph Of Some Graphs." Indian Journal Of Science And Technology 17, SPI1 (April 25, 2024): 115–23. http://dx.doi.org/10.17485/ijst/v17sp1.243.
Full textSrinivasan, Sakunthala, and Vimala Shanmugavel. "Comparative Study on Different Types of Energies." Indian Journal Of Science And Technology 17, no. 28 (July 31, 2024): 2954–59. http://dx.doi.org/10.17485/ijst/v17i28.1447.
Full textM, Simaringa, and Santhoshkumar K. "Prime Graphs of Some Graphs." Journal of Advanced Research in Dynamical and Control Systems 12, no. 8 (August 19, 2020): 51–55. http://dx.doi.org/10.5373/jardcs/v12i8/20202445.
Full textZhang, Xiaoling, and Chengyuan Song. "The Distance Matrices of Some Graphs Related to Wheel Graphs." Journal of Applied Mathematics 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/707954.
Full textRashed, Payman A. "The Nullity of Identifying Path Graph with Some Special Graphs." Journal of Zankoy Sulaimani - Part A 19, no. 2 (November 20, 2016): 185–94. http://dx.doi.org/10.17656/jzs.10622.
Full textZelinka, Bohdan. "Small directed graphs as neighbourhood graphs." Czechoslovak Mathematical Journal 38, no. 2 (1988): 269–73. http://dx.doi.org/10.21136/cmj.1988.102221.
Full textDissertations / Theses on the topic "Graphs"
Hearon, Sean M. "PLANAR GRAPHS, BIPLANAR GRAPHS AND GRAPH THICKNESS." CSUSB ScholarWorks, 2016. https://scholarworks.lib.csusb.edu/etd/427.
Full textDuffy, Christopher. "Homomorphisms of (j, k)-mixed graphs." Thesis, Bordeaux, 2015. http://hdl.handle.net/1828/6601.
Full textGraduate
Yang, Weihua. "Supereulerian graphs, Hamiltonicity of graphes and several extremal problems in graphs." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00877793.
Full textBadaoui, Mohamad. "G-graphs and Expander graphs." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC207/document.
Full textApplying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graphs that have strongconnectivity properties. Expanders constructions have found extensive applications in bothpure and applied mathematics. Although expanders exist in great abundance, yet their explicitconstructions, which are very desirable for applications, are in general a hard task. Mostconstructions use deep algebraic and combinatorial approaches. Following the huge amountof research published in this direction, mainly through Cayley graphs and the Zig-Zagproduct, we choose to investigate this problem from a new perspective; namely by usingG-graphs theory and spectral hypergraph theory as well as some other techniques. G-graphsare like Cayley graphs defined from groups, but they correspond to an alternative construction.The reason that stands behind our choice is first a notable identifiable link between thesetwo classes of graphs that we prove. This relation is employed significantly to get many newresults. Another reason is the general form of G-graphs, that gives us the intuition that theymust have in many cases such as the relatively high connectivity property.The adopted methodology in this thesis leads to the identification of various approaches forconstructing an infinite family of expander graphs. The effectiveness of our techniques isillustrated by presenting new infinite expander families of Cayley and G-graphs on certaingroups. Also, since expanders stand in no single stem of graph theory, this brings us toinvestigate several closely related threads from a new angle. For instance, we obtain newresults concerning the computation of spectra of certain Cayley and G-graphs, and theconstruction of several new infinite classes of integral and Hamiltonian Cayley graphs
Ramos, Garrido Lander. "Graph enumeration and random graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405943.
Full textEn aquesta tesi utilitzem l'analítica combinatòria per treballar amb dos problemes relacionats: enumeració de grafs i grafs aleatoris de classes de grafs amb restriccions. En particular ens interessa esbossar un dibuix general de determinades famílies de grafs determinant, en primer lloc, quants grafs hi ha de cada mida possible (enumeració de grafs), i, en segon lloc, quin és el comportament típic d'un element de mida fixa triat a l'atzar uniformement, quan aquesta mida tendeix a infinit (grafs aleatoris). Els problemes en què treballem tracten amb grafs que satisfan condicions globals, com ara ésser planars, o bé tenir restriccions en el grau dels vèrtexs. En el Capítol 2 analitzem grafs planar aleatoris amb grau mínim dos i tres. Mitjançant tècniques de combinatòria analítica i els conceptes de nucli i kernel d'un graf, obtenim estimacions asimptòtiques precises i analitzem paràmetres rellevants de grafs aleatoris, com ara el nombre d'arestes o la mida del nucli, on obtenim lleis límit gaussianes. També treballem amb un paràmetre que suposa un repte més important: el paràmetre extremal que es correspon amb la mida de l'arbre més gran que penja del nucli. En aquest cas obtenim una estimació logarítmica per al seu valor esperat, juntament amb un resultat sobre la seva concentració. En el Capítol 3 estudiem el nombre de subgrafs isomorfs a un graf fix en classes de grafs subcrítiques. Quan el graf fix és biconnex, obtenim lleis límit gaussianes amb esperança i variància lineals. L'eina principal és l'anàlisi de sistemes infinits d'equacions donada per Drmota, Gittenberger i Morgenbesser, que utilitza la teoria d'operadors compactes. El càlcul de les constants exactes de la primera estimació dels moments en general es troba fora del nostre abast. Per a la classe de grafs sèrie-paral·lels podem calcular les constants en alguns casos particulars interessants. En el Capítol 4 enumerem grafs (arbitraris) el grau de cada vèrtex dels quals pertany a un subconjunt fix dels nombres naturals. En aquest cas les funcions generatrius associades són divergents i la nostra anàlisi utilitza l'anomenat model de configuració. El nostre resultat consisteix a obtenir estimacions asimptòtiques precises per al nombre de grafs amb un nombre de vèrtexs i arestes donat, amb la restricció dels graus. Aquest resultat generalitza àmpliament casos particulars existents, com ara grafs d-regulars, o grafs amb grau mínim com a mínim d.
Khouzam, Nelly. "A new class of brittle graphs /." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66048.
Full textMedrano, Archie T. "Super-Euclidean graphs and super-Heisenberg graphs : their spectral and graph-theoretic properties /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9901440.
Full textZuffi, Lorenzo. "Simplicial Complexes From Graphs Toward Graph Persistence." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13519/.
Full textDusart, Jérémie. "Graph searches with applications to cocomparability graphs." Paris 7, 2014. http://www.theses.fr/2014PA077048.
Full textA graph search is a mechanism for systematically visiting the vertices of a graph. It has been a fundamental technique in the design of graph algorithms since the eraarly days of computer science. Many of the early search methods were based on Breadth First Search (BFS) or Depth First Search (DFS) and resulted in efficient algorithms for practical problems such as the distance between two vertices, diameter, connectivity, network flows and the recognition of planar graphs. The purpose of this thesis is to studied the graph search. In this thesis, we present general result about graph search in cocomparability grapj, but also a new charactrization of cocomparability graph and apllications of graph search to solve the problem of transitive orientation, maximal chordal subgraph, clique perator and simplicial vertices. A simple and general framework is also presented to capture most of the well known graph search
Hoang, Chinh T. "Perfect graphs." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74011.
Full textBooks on the topic "Graphs"
Kyōto Daigaku. Sūri Kaiseki Kenkyūjo., ed. Graph equation for line graphs and m-step graphs. Kyoto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2007.
Find full textMikov, Aleksandr. Generalized graphs and grammars. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1013698.
Full textBader, Bonnie. Graphs. New York: Grosset & Dunlap, 2003.
Find full textHarling, Paul. Graphs. London: Ward Lock Educational, 1989.
Find full textAlaina, Maria. Graphs. Mankato, Minn: Capstone Press, 2012.
Find full textHarling, Paul. Graphs. London: Ward Lock Educational, 1988.
Find full textHarling, Paul. Graphs. London: Ward Lock Educational, 1989.
Find full textSmoothey, Marion. Graphs. New York: Marshall Cavendish, 1995.
Find full textHarling, Paul. Graphs. London: Ward Lock Educational, 1989.
Find full textHarling, Paul. Graphs. London: Ward Lock Educational, 1988.
Find full textBook chapters on the topic "Graphs"
Kimoto, Kazufumi. "Generalized Group–Subgroup Pair Graphs." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 169–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_14.
Full textBeneš, Nikola, Luboš Brim, Samuel Pastva, and David Šafránek. "Symbolic Coloured SCC Decomposition." In Tools and Algorithms for the Construction and Analysis of Systems, 64–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72013-1_4.
Full textKurasov, Pavel. "Standard Laplacians and Secular Polynomials." In Operator Theory: Advances and Applications, 123–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_6.
Full textPaul, Sudipta, Julián Salas, and Vicenç Torra. "Edge Local Differential Privacy for Dynamic Graphs." In Security and Privacy in Social Networks and Big Data, 224–38. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5177-2_13.
Full textScott, Jennifer, and Miroslav Tůma. "Sparse Matrices and Their Graphs." In Nečas Center Series, 19–30. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25820-6_2.
Full textAnderson, David F., T. Asir, Ayman Badawi, and T. Tamizh Chelvam. "Graphs from Total Graphs." In Graphs from Rings, 351–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88410-9_8.
Full textMathew, Sunil, John N. Mordeson, and M. Binu. "Graphs and Weighted Graphs." In Weighted and Fuzzy Graph Theory, 1–51. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39756-1_1.
Full textIvanov, O. A. "Graphs." In Easy as π?, 85–102. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0553-1_6.
Full textAldous, Joan M., and Robin J. Wilson. "Graphs." In Graphs and Applications, 25–60. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0467-4_2.
Full textAllison, Lloyd. "Graphs." In Coding Ockham's Razor, 113–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76433-7_11.
Full textConference papers on the topic "Graphs"
Klisura, Ðorže. "Embedding Non-planar Graphs: Storage and Representation." In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.13.
Full textVargas, Hernán, Carlos Buil-Aranda, Aidan Hogan, and Claudia López. "A User Interface for Exploring and Querying Knowledge Graphs (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/666.
Full textSinger, Uriel, Ido Guy, and Kira Radinsky. "Node Embedding over Temporal Graphs." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/640.
Full textBandeira, Bruno, Márcia R. Cerioli, and Petrucio Viana. "Recognizing which Cographs are Set Graphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/etc.2022.223265.
Full textDe Silva, K. H. C., and A. A. I. Perera. "Odd Prime Labeling of Snake Graphs." In SLIIT 2nd International Conference on Engineering and Technology. SLIIT, 2023. http://dx.doi.org/10.54389/lufm4069.
Full textZhang, Ziwei, Xin Wang, and Wenwu Zhu. "Automated Machine Learning on Graphs: A Survey." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/637.
Full textFaria, Luerbio, Mauro Nigro, and Diana Sasaki. "The line graphs of Möbius ladder graphs are Type 1." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/etc.2024.2421.
Full textCampos, Raphael R., Ricardo Ferreira, Julio C. Goldner Vendramini, Fábio Cerqueira, and Marcelo Lobato Martins. "Simulation of Scale Free Gene Regulatory Networks based on Threshold Functions on GPU." In Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação, 2011. http://dx.doi.org/10.5753/wscad.2011.17271.
Full textSalcedo, Audy, Jesús González, Amalio Sarco LIra, and Johnnalid González. "Statistical Literacy of Citizens: The Interpretation of Statistical Graphs." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t7a1.
Full textSantos, Tanilson D., Jayme Szwarcfiter, Uéverton S. Souza, and Claudson F. Bornstein. "On the Helly Property of Some Intersection Graphs." In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/ctd.2021.15752.
Full textReports on the topic "Graphs"
Powers, David. Eigenvectors of Graphs. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada203317.
Full textPowers, David L. Eigenvectors of Graphs. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170562.
Full textDangalchev, Chavdar. Closeness of Splitting Graphs. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.04.03.
Full textSanders, G., and R. Pearce. FINAL REPORT: Asynchronous Graphs. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573144.
Full textPinter, Michael R. Strongly Well-Covered Graphs. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada262214.
Full textPisan, Yusuf. Visual Reasoning with Graphs. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada466292.
Full textRodger, C. A., D. G. Hoffman, P. D. Johnson, and Jr. Connectivity and Colorings of Graphs. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400177.
Full textLevandoski, J., and G. Abdulla. Temporal Representation in Semantic Graphs. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/923616.
Full textBalakirsky, S., and H. Otthein. Planning with incrementally created graphs. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6895.
Full textPlummer, Michael D. Well-Covered Graphs: A Survey. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada247861.
Full text