Academic literature on the topic 'Graphitic Carbon Nitrides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphitic Carbon Nitrides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graphitic Carbon Nitrides"
Idris, Azeez O., Ekemena O. Oseghe, Titus A. M. Msagati, Alex T. Kuvarega, Usisipho Feleni, and Bhekie Mamba. "Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing." Sensors 20, no. 20 (October 10, 2020): 5743. http://dx.doi.org/10.3390/s20205743.
Full textJorge, A. Belen, F. Corà, A. Sella, P. F. McMillan, and Daniel J. L. Brett. "Electrochemical properties of graphitic carbon nitrides." International Journal of Nanotechnology 11, no. 9/10/11 (2014): 737. http://dx.doi.org/10.1504/ijnt.2014.063784.
Full textHaiber, Diane M., Michael M. J. Treacy, and Peter A. Crozier. "Local Structural Analysis of Graphitic Carbon Nitrides." Microscopy and Microanalysis 24, S1 (August 2018): 1990–91. http://dx.doi.org/10.1017/s1431927618010437.
Full textSteinmann, Stephan N., Sigismund T. A. G. Melissen, Tangui Le Bahers, and Philippe Sautet. "Challenges in calculating the bandgap of triazine-based carbon nitride structures." Journal of Materials Chemistry A 5, no. 10 (2017): 5115–22. http://dx.doi.org/10.1039/c6ta08939a.
Full textChan, Ming-Hsien, Ru-Shi Liu, and Michael Hsiao. "Graphitic carbon nitride-based nanocomposites and their biological applications: a review." Nanoscale 11, no. 32 (2019): 14993–5003. http://dx.doi.org/10.1039/c9nr04568f.
Full textVerma, Santosh Kumar, Rameshwari Verma, Yarabahally R. Girish, Fan Xue, Long Yan, Shekhar Verma, Monika Singh, et al. "Correction: Heterogeneous graphitic carbon nitrides in visible-light-initiated organic transformations." Green Chemistry 24, no. 2 (2022): 957. http://dx.doi.org/10.1039/d2gc90005j.
Full textFronczak, Maciej, Emília Tálas, Zoltán Pászti, Gábor P. Szijjártó, Judith Mihály, András Tompos, Piotr Baranowski, Santosh Kr Tiwari, and Michał Bystrzejewski. "Photocatalytic performance of alkali metal doped graphitic carbon nitrides and Pd-alkali metal doped graphitic carbon nitride composites." Diamond and Related Materials 125 (May 2022): 109006. http://dx.doi.org/10.1016/j.diamond.2022.109006.
Full textLiao, Guangfu, Yan Gong, Li Zhang, Haiyang Gao, Guan-Jun Yang, and Baizeng Fang. "Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light." Energy & Environmental Science 12, no. 7 (2019): 2080–147. http://dx.doi.org/10.1039/c9ee00717b.
Full textTheerthagiri, J., R. A. Senthil, J. Madhavan, and B. Neppolian. "A Comparative Study on the Role of Precursors of Graphitic Carbon Nitrides for the Photocatalytic Degradation of Direct Red 81." Materials Science Forum 807 (November 2014): 101–13. http://dx.doi.org/10.4028/www.scientific.net/msf.807.101.
Full textMartínez-Cartagena, Manuel Eduardo, Juan Bernal-Martínez, Arnulfo Banda-Villanueva, Javier Enríquez-Medrano, Víctor D. Lechuga-Islas, Ilse Magaña, Teresa Córdova, Diana Morales-Acosta, José Luis Olivares-Romero, and Ramón Díaz-de-León. "Biomimetic Synthesis of PANI/Graphitic Oxidized Carbon Nitride for Supercapacitor Applications." Polymers 14, no. 18 (September 19, 2022): 3913. http://dx.doi.org/10.3390/polym14183913.
Full textDissertations / Theses on the topic "Graphitic Carbon Nitrides"
Rahman, A. S. "Theoretical and experimental investigations of graphitic and crystalline carbon nitrides." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1426441/.
Full textKharlamov, A. I., M. E. Bondarenko, G. A. Kharlamova, and V. V. Fomemko. "Direct Synthesis of O-doped Carbon Nitride and Oxide of Graphite-like Carbon Nitride from Melamine." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42601.
Full textWang, Jing. "Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation." Doctoral thesis, KTH, Tillämpad processmetallurgi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173216.
Full textQC 20150909
Li, Lingling. "Porphyrins, graphitic carbon nitride and their hybrids for photocatalytic solar fuel generation." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/736.
Full textHe, Jijiang. "Preparation and photocatalysis of graphite carbon nitride based photocatalysts." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/521.
Full textLiu, Mengdi. "Ta₃N₅/Polymeric g-C₃N₄ as Hybrid Photoanode for Solar Water Splitting:." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108366.
Full textWater splitting has been recognized as a promising solution to challenges associated with the intermittent nature of solar energy for over four decades. A great deal of research has been done to develop high efficient and cost-effective catalysts for this process. Among which tantalum nitride (Ta₃N₅) has been considered as a promising candidate to serve as a good catalyst for solar water splitting based on its suitable band structure, chemical stability and high theoretical efficiency. However, this semiconductor is suffered from its special self-oxidation problem under photoelectrochemical water splitting conditions. Several key unique properties of graphitic carbon nitride (g-C₃N₄) render it an ideal choice for the protection of Ta₃N₅. In this work, Ta₃N₅/g-C₃N₄ hybrid photoanode was successfully synthesized. After addition of co-catalyst, the solar water splitting performance of this hybrid photoanode was enhanced. And this protection method could also act as a potential general protection strategy for other unstable semiconductors
Thesis (MS) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Adekoya, Oluwatobi. "Design and Synthesis of Graphitic Carbon Nitride (g-C3N4) Based Materials for Rechargeable Batteries." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/401444.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Nguyen, Chinh Chien, and Chinh Chien Nguyen. "Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30378.
Full textAfin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges.
The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
Kumru, Baris [Verfasser], and Markus [Akademischer Betreuer] Antonietti. "Utilization of graphitic carbon nitride in dispersed media / Baris Kumru ; Betreuer: Markus Antonietti." Potsdam : Universität Potsdam, 2018. http://d-nb.info/1219078034/34.
Full textLi, Yibing. "Graphitic Carbon-Based Functional Nanomaterials for Environmental Remediation and Energy Conversion Applications." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366091.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Books on the topic "Graphitic Carbon Nitrides"
Striegler, Karl. Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0.
Full textStriegler, Karl. Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers and Nanoparticles. Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH, 2015.
Find full textModified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers and Nanoparticles. Spektrum Akademischer Verlag GmbH, 2015.
Find full textNanoscale Graphitic Carbon Nitride. Elsevier, 2022. http://dx.doi.org/10.1016/c2019-0-04468-8.
Full textPandikumar, Alagarsamy, C. Murugan, and S. Vinoth. Nanoscale Graphitic Carbon Nitride. Elsevier, 2021.
Find full textPandikumar, Alagarsamy, C. Murugan, and S. Vinoth. Nanoscale Graphitic Carbon Nitride: Synthesis and Applications. Elsevier, 2021.
Find full textThomas, Sabu, S. Anas, and Jomon Joy. Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material. Elsevier, 2021.
Find full textThomas, Sabu, S. Anas, and Jomon Joy. Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material. Elsevier, 2021.
Find full textEid, Kamel, and Aboubakr M. Abdullah. Carbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation. Royal Society of Chemistry, The, 2021.
Find full textCarbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation. Royal Society of Chemistry, The, 2021.
Find full textBook chapters on the topic "Graphitic Carbon Nitrides"
Kumar, Sudesh, Kakarla Raghava Reddy, Ch Venkata Reddy, Nagaraj P. Shetti, Veera Sadhu, M. V. Shankar, Vasu Govardhana Reddy, A. V. Raghu, and Tejraj M. Aminabhavi. "Metal Nitrides and Graphitic Carbon Nitrides as Novel Photocatalysts for Hydrogen Production and Environmental Remediation." In Nanostructured Materials for Environmental Applications, 485–519. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6_19.
Full textAhmad, Fareed, Zishan H. Khan, and Sundar Singh. "Graphitic Carbon Nitrides: Synthesis, Properties, and Applications in Perovskite Solar Cells." In Materials Horizons: From Nature to Nanomaterials, 45–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0553-7_2.
Full textStriegler, Karl. "Introduction and Objective." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 1–2. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_1.
Full textStriegler, Karl. "Literature Overview." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 3–17. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_2.
Full textStriegler, Karl. "Experimental Section." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 19–31. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_3.
Full textStriegler, Karl. "Results and Discussion." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 33–68. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_4.
Full textStriegler, Karl. "Conclusion and Outlook." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 69–71. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_5.
Full textĐurđić, Slađana, Vesna Stanković, and Dalibor M. Stanković. "Graphitic Carbon Nitride in Biosensing Application." In Handbook of Nanobioelectrochemistry, 153–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9437-1_8.
Full textMostafa, Islam M., Fangxin Du, and Guobao Xu. "CHAPTER 2. Graphitic Carbon Nitride-based Chemiluminescent and Electrochemiluminescent Sensors." In Nanoscience & Nanotechnology Series, 38–79. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164606-00038.
Full textRazali, Nur Aqilah Mohd, Wan Norharyati Wan Salleh, Farhana Aziz, Ahmad Fauzi Ismail, and Wan Mohd Asyraf Wan Mahmood. "Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Wastewater Treatment." In Advanced Materials for Wastewater Treatment and Desalination, 3–23. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003167327-2.
Full textConference papers on the topic "Graphitic Carbon Nitrides"
Bucuci, Marian, Ştefan Ungureanu, Anca Miron, and Andrei C. Cziker. "Hydrogen Storage Potential of the Graphitic Carbon Nitride." In 2023 10th International Conference on Modern Power Systems (MPS). IEEE, 2023. http://dx.doi.org/10.1109/mps58874.2023.10187412.
Full textLi, Huimin, Huixian Zhang, Keming Fang, Lining Yang, and Jianrong Chen. "Graphitic Carbon Nitride Photocatalysts for Degradation of Organic Pollutants." In 2018 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/amcce-18.2018.101.
Full textPatra, P. C., and Y. N. Mohapatra. "Synthesis and characterization of Ag embedded graphitic carbon nitride." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032700.
Full textPareek, Saurabh, and Supravat Karak. "2-D graphitic carbon nitride nanostructures for optoelectronic application." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0025687.
Full textFan, Mingqi, Tao Li, Guiqiu Li, Kejian Yang, Dechun Li, and Christian Krankel. "Graphitic carbon nitride: A new saturable absorber for ∼3 μm." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086243.
Full textEsen, Cansu, and Baris Kumru. "Light-Driven Integration of Graphitic Carbon Nitride into Polymer Materials." In IOCPS 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iocps2021-11590.
Full textShalom, Menny. "Graphitic Carbon Nitride Layers as Light-Harvesting Semiconductors for Photoelectrochemical Cells." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.226.
Full textMemon, U. B., A. Ibrahim, A. Pattanayak, S. P. Duttagupta, A. Sarkar, and R. K. Singh Raman. "A simulation study of terahertz dielectric resonator using graphitic carbon nitride." In 2018 22nd International Microwave and Radar Conference (MIKON). IEEE, 2018. http://dx.doi.org/10.23919/mikon.2018.8405337.
Full textYan, Zhengyu, Caoyuan Wang, Ruowei Yu, Zixian Hu, and Limin Xiao. "Graphitic Carbon Nitride Nanosheets Deposited on Microfibers for Relative Humidity Sensing." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/acpc.2020.m4a.50.
Full textCahyadi, Bagas, Leony Inatsan Pertiwi, Queenta Perdania Putri, and Anatta Wahyu Budiman. "Photodegradation of batik waste with graphitic carbon nitride using UV-BLB." In THE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING 2019 (ICIMECE 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000665.
Full text