Contents
Academic literature on the topic 'Graphes en rubans métriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphes en rubans métriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Graphes en rubans métriques"
Yakovlev, Ivan. "Graphes en rubans métriques." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0143.
Full textThis thesis presents several contributions to the study of counting functions for metric ribbon graphs. Ribbon graphs, also known as combinatorial maps, are cellular embeddings of graphs in surfaces modulo homeomorphisms. They are combinatorial objects that can be represented as gluings of polygons or factorizations of permutations. Metric on a ribbon graph is an assignment of positive lengths to its edges. The counting functions give the number of integral metric ribbon graphs with fixed combinatorics (genus of the surface, degrees of vertices, number of boundaries) as a function of the perimeters of the boundaries. Our approach to their study is purely combinatorial and relies on bijections and surgeries for ribbon graphs. Firstly, we show that these functions are piecewise (quasi-)polynomials, specifying exactly the regions of (quasi-)polynomiality. We then study the cases when their top-degree terms are honest polynomials. Our interest in such cases comes from the fact that the corresponding polynomials can be used for refined enumeration of square-tiled surfaces, which correspond to integer points in the strata of (half-)translations surfaces (equivalently, strata of differentials on Riemann surfaces). Consequently, one can give refined/alternative formulas for Masur-Veech volumes of strata. One known example are the Kontsevich polynomials, counting trivalent metric ribbon graphs of given genus and perimeters of boundaries. They were recently used by Delecroix, Goujard, Zograf and Zorich to give a combinatorial formula for the volumes of principal strata of quadratic differentials. We concentrate on face-bipartite metric ribbon graphs, which appear in the study of Abelian differentials. We show that in the case of one-vertex graphs the top-degree terms of the counting functions on certain subspaces are in fact (explicit) polynomials. As a consequence, we deduce the generating function for the contributions of n-cylinder square-tiled surfaces to the volumes of minimal strata of Abelian differentials, refining a previous result of Sauvaget. We then present a similar polynomiality result for the two subfamilies of graphs corresponding to even/odd spin connected components of the minimal strata. This also gives a refinement of a formula for the corresponding volume differences previously obtained by Chen, Möller, Sauvaget and Zagier. Next we conjecture that the polynomiality phenomenon holds for families of graphs with several vertices, if each graph is weighted by the count of certain spanning trees. We prove the conjecture in the planar case. In the process, we construct families of plane trees which correspond to certain triangulations of the product of two simlpices, which are interesting from the point of view of the theory of polytopes. Finally, we present a contribution to a joint work with Duryev and Goujard, where the combinatorial formula of Delecroix, Goujard, Zograf and Zorich is generalized to all strata of quadratic differentials with odd singularities. The contribution is a combinatorial proof of the formula for coefficients counting certain degenerations of (non-face-bipartite) metric ribbon graphs
Ducoffe, Guillaume. "Propriétés métriques des grands graphes." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4134/document.
Full textLarge scale communication networks are everywhere, ranging from data centers withmillions of servers to social networks with billions of users. This thesis is devoted tothe fine-grained complexity analysis of combinatorial problems on these networks.In the first part, we focus on the embeddability of communication networks totree topologies. This property has been shown to be crucial in the understandingof some aspects of network traffic (such as congestion). More precisely, we studythe computational complexity of Gromov hyperbolicity and of tree decompositionparameters in graphs – including treelength and treebreadth. On the way, we givenew bounds on these parameters in several graph classes of interest, some of thembeing used in the design of data center interconnection networks. The main resultin this part is a relationship between treelength and treewidth: another well-studiedgraph parameter, that gives a unifying view of treelikeness in graphs and has algorithmicapplications. This part borrows from graph theory and recent techniques incomplexity theory. The second part of the thesis is on the modeling of two privacy concerns with social networking services. We aim at analysing information flows in these networks,represented as dynamical processes on graphs. First, a coloring game on graphs isstudied as a solution concept for the dynamic of online communities. We give afine-grained complexity analysis for computing Nash and strong Nash equilibria inthis game, thereby answering open questions from the literature. On the way, wepropose new directions in algorithmic game theory and parallel complexity, usingcoloring games as a case example
Turek, Ondrej. "Opérateurs de Schrödinger sur des graphes métriques." Phd thesis, Université du Sud Toulon Var, 2009. http://tel.archives-ouvertes.fr/tel-00527790.
Full textTurek, Ondřej. "Opérateurs de Schrödinger sur des graphes métriques." Toulon, 2009. http://tel.archives-ouvertes.fr/tel-00527790/fr/.
Full textThis thesis is devoted to investigation of quantum graphs, in other words, quantum systems in which a nonrelativistic particle is confined to a graph. We propose a new way to represent the boundary conditions, and with the help of this result we solve the longstanding open problemof approximating by regular graphs all singular vertex couplings in quantum graph vertices. We present a construction in which the edges are disjunct and the pairs of the so obtained endpoints are joined by additional connecting edges of lengths 2d. Each connecting edge carries a delta potential and a vector potential. It is shown that when the lengths 2d of the connecting edges shrink to zero and the added potentials properly depend on d, the limit can yield any requested singular vertex coupling. This type of boundary conditions is used to examine scattering properties of singular vertices of degrees 2 and 3. We show thar the couplings between each pair of the outgoing edges are individually tunable, which could enable the design of quantum spectral junctions filters. We also study Schrödinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by delta-couplings. If the graph is periodic, the Hamiltonian has a band spectrum. We consid a "bending" deformation of the chain consisting in changing the position of the point of contact between two rings. We show that this deformation gives rive to eigenvalues and analyze their dependence on the "bending angle"
Sénizergues, Delphin. "Structures arborescentes aléatoires : recollements d’espaces métriques et graphes stables." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD013.
Full textThe subject of this thesis is the study of some random metric spaces with a tree-like structure. We first study a construction in which we glue a sequence of metric spaces onto each other in a sequential manner. Under some conditions on the spaces that we aggregate, we compute the Hausdorff dimension of the obtained structure and it has a surprising expression ! We then investigate some asymptotic properties (degrees, height,profile) of two models of growing discrete trees, the weighted recursive trees and the preferential attachment trees with additive fitnesses. The former encodes the underlying discrete structure in the construction described above and the latter have a similar interpretation for some models of discrete growing graphs. We make use of this connection in order to prove scaling limit results for these random discrete graphs towards continuous metric space constructed by a gluing procedure. Last, in a joint work with Christina Goldschmidt and Bénédicte Haas, we investigate the behaviour of the alphastable component with fixed surplus. This random metric space appears as the scaling limit of large connected components of the configuration model with heavy-tailed degrees. This abject is almost a tree except for a finite number of cycles. We compute the distribution of the cyclic structure and give a description of the whole space as trees glued along this structure
Saidane, Faouzi. "Graphes et langages : une approche métrique." Lyon 1, 1991. http://www.theses.fr/1991LYO10206.
Full textMarcus, Karina. "Multiflots, métriques et graphes h-parfaits : les cycles impairs dans l'optimisation combinatoire." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005002.
Full textChepoi, Victor. "Métriques et convexité dans les graphes et espaces discrèts : propriétés et algorithmes." Aix-Marseille 2, 1997. http://www.theses.fr/1997AIX22124.
Full textBeaudou, Laurent. "Autour de problèmes de plongements de graphes." Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10089.
Full textThis Ph. D. Manuscript is built around the notion of graph embedding. An embedding of a graph G is an application mapping the vertices of G to elements of another structure, and preserving some properties of G. There are two types of embeddings. The combinatorial embeddings map the vertices of a graph G to the vertices of a graph H. The usual property that is preserved is the adjacency between vertices. In this thesis, we consider the isometric embeddings, preserving in addition the distances between vertices. We give some structural characterizations for families of graphs isometrically embeddable in hypercubes or Hamming graphs. The topological embeddings aim at drawing a graph G on some surface. Vertices are mapped to distinct points of the surface and the edges are represented by continuous curves linking these points. Is it possible to draw a graph G so that the edges do not cross eachother ? If not, what is the minimum number of crossings of a drawing of G ? We deal with these questions on different surfaces, or in relation with some graph operations as direct product or zip product
Beaudou, Laurent. "Autour de problèmes de plongements de graphes." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00401226.
Full text