Academic literature on the topic 'Graphene Structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphene Structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graphene Structure"
Woellner, Cristiano Francisco, Pedro Alves da Silva Autreto, and Douglas S. Galvao. "One Side-Graphene Hydrogenation (Graphone): Substrate Effects." MRS Advances 1, no. 20 (2016): 1429–34. http://dx.doi.org/10.1557/adv.2016.196.
Full textMurav’ev, V. V., and V. M. Mishchenka. "Ab-initio simulation of hydrogenated graphene properties." Doklady BGUIR 19, no. 8 (January 1, 2022): 5–9. http://dx.doi.org/10.35596/1729-7648-2021-19-8-5-9.
Full textQu, Li-Hua, Xiao-Long Fu, Chong-Gui Zhong, Peng-Xia Zhou, and Jian-Min Zhang. "Equibiaxial Strained Oxygen Adsorption on Pristine Graphene, Nitrogen/Boron Doped Graphene, and Defected Graphene." Materials 13, no. 21 (November 4, 2020): 4945. http://dx.doi.org/10.3390/ma13214945.
Full textLee, Ji, Sung Kwon, Soonchul Kwon, Min Cho, Kwang Kim, Tae Han, and Seung Lee. "Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach." Nanomaterials 9, no. 2 (February 15, 2019): 268. http://dx.doi.org/10.3390/nano9020268.
Full textLiu, Li, and Chang Chun Zhou. "Preparation and Application of Grapheme." Applied Mechanics and Materials 670-671 (October 2014): 127–29. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.127.
Full textRozhkov, M. A., A. L. Kolesnikova, I. Hussainova, M. A. Kaliteevskii, T. S. Orlova, Yu Yu Smirnov, I. S. Yasnikov, L. V. Zhigilei, V. E. Bougrov, and A. E. Romanov. "Evolution of Dirac Cone in Disclinated Graphene." REVIEWS ON ADVANCED MATERIALS SCIENCE 57, no. 2 (July 1, 2018): 137–42. http://dx.doi.org/10.1515/rams-2018-0057.
Full textColmiais, Ivo, Vitor Silva, Jérôme Borme, Pedro Alpuim, and Paulo M. Mendes. "Extraction of Graphene’s RF Impedance through Thru-Reflect-Line Calibration." Micromachines 14, no. 1 (January 14, 2023): 215. http://dx.doi.org/10.3390/mi14010215.
Full textWang, Xuan Lun, and Wei Jiu Huang. "Fabrication and Characterization of Graphene/Polyimide Nanocomposites." Advanced Materials Research 785-786 (September 2013): 138–44. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.138.
Full textRAO, C. N. R., K. S. SUBRAHMANYAM, H. S. S. RAMAKRISHNA MATTE, and A. GOVINDARAJ. "GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES." Modern Physics Letters B 25, no. 07 (March 20, 2011): 427–51. http://dx.doi.org/10.1142/s0217984911025961.
Full textRAO, C. N. R., K. S. SUBRAHMANYAM, H. S. S. RAMAKRISHNA MATTE, URMIMALA MAITRA, KOTA MOSES, and A. GOVINDARAJ. "GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES." International Journal of Modern Physics B 25, no. 30 (December 10, 2011): 4107–43. http://dx.doi.org/10.1142/s0217979211059358.
Full textDissertations / Theses on the topic "Graphene Structure"
Nair, Rahul Raveendran. "Atomic structure and properties of graphene and novel graphene derivatives." Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527419.
Full textPierce, James Kevin. "Magnetic structure of chiral graphene nanoribbons." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57782.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Pradhan, Siddharth. "Quantification of Graphene Oxide Structure Using an Improved Model." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342730902.
Full textWang, Jun, and 王俊. "Optical properties of graphene/GaN hybrid structure." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206660.
Full textpublished_or_final_version
Physics
Master
Master of Philosophy
Pandey, Priyanka A. "Structure and applications of chemically modified graphene." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55111/.
Full textThomas, Helen R. "The structure and reactivity of graphene oxide." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74090/.
Full textPlachinda, Pavel. "Electronic Properties and Structure of Functionalized Graphene." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/585.
Full textWang, Zi. "Electronic structure and quantum transport in disordered graphene." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104783.
Full textLe graphène, une seule feuille de graphite, a de nombreuse propriétés électroniques et mécaniques intéressantes, et ce qui en fait une solution viable pour l'électronique de demain. Il reste le matériau le plus largement étudié en physique de la matière condensée en 2011. En raison des effets du désordre, de nombreux propriétés utiles du graphène prédite par la théorie n'apparaissent pas dans les systèmes du monde réel, et les effets exacts du désordre dans le graphène n'ont pas été étudiées à toute satisfaction. L'objectif de cette thèse est de fournir une étude premiers principes de l'effet du désordre introduit dans des nanostructures de graphène. Nous allons passer brièvement en revue les concepts de base de la théorie électronique de la matière condensée, suivie par une discussion plus détaillée sur la théorie de la fonctionnelle de la densité (DFT) qui est la théorie atomique la plus couramment appliquée pour la physique matériaux. Nous allons ensuite présenter la méthode LMTO, des de la DFT, qui est spécialisée dans le calcul des cristaux solides. LMTO est mathématiquement très efficace et est en mesure de traiter plus de quelques milliers d'atomes, tout en restant raisonnablement précise. Ces qualités font que la méthode LMTO est très utile pour l'analyse du transport quantique. Nous discuterons ensuite l'application du DFT est dans le formalisme de la fonction non-équilibre de Green de Keldysh (NEGF) pour traiter les systèmes non-équilibre, tels que le courant de charge. Enfin, dans NEGF-DFT, nous allons utiliser l'approximation du potentiel cohérent (CPA) et la correction non-équilibre de vertex (NVC) afin d'appliquer la théorie de la moyenne du désordre de configuration. Ce cadre théorique est ensuite appliquée à l'étude du transport quantique dans le graphène avec du désordre atomique. Nous allons étudier les effets de la substitution du bore (B) et de l'azote (N) dans le graphène connecté aux électrodes de graphène pure. Nous avons calculé le transport quantique des dispositifs de graphène en fonction de la concentration du désordre x, longueur du dispositif L, l'énergie E, et nos résultats suggèrent que le dopage affecte grandement les propriétés de transport quantique en induisant diffusion de maniere significante. En particulier, ceci est la première fois que la conductance en fonction de la concentration du dopage x est obtenue à partir de théorie premiers principes atomiques. Il est important de noter que la théorie de la NVC nous permet de déterminer directement la contribution de la diffusion à la conductance totale. étant donné que les atomes B et N les atomes sont situés de chaque côté du carbone dans le tableau périodique, il est intéressant de constater que la diffusion du désordre due à ces impuretés apparait presque parfaitement de chaque côté du niveau de Fermi dans le graphène. Un tel comportement peut être compris du point de vue de la charge des dopants.
Mohd, Halit Muhammad Khairulanwar Bin. "Processing, structure and properties of polyamide 6/graphene nanoplatelets nanocomposites." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/processing-structure-and-properties-of-polyamide-6graphene-nanoplatelets-nanocomposites(e879fdef-d5d4-4797-a865-58b61cb257d1).html.
Full textXian, Lede. "Electronic structure and interlayer coupling in twisted multilayer graphene." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51811.
Full textBooks on the topic "Graphene Structure"
Enoki, Toshiaki, C. N. R. Rao, and Swapan K. Pati. Graphene and its fascinating attributes. New Jersey: World Scientific, 2011.
Find full textLi, Yutao. Electronic and plasmonic band structure engineering of graphene using superlattices. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textForsythe, Carlos. Fractal Hofstadter Band Structure in Patterned Dielectric Superlattice Graphene Systems. [New York, N.Y.?]: [publisher not identified], 2017.
Find full textWu, Xin. Influence of Particle Beam Irradiation on the Structure and Properties of Graphene. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6457-9.
Full textA, Balandin Alexander, and Materials Research Society Meeting, eds. Functional two-dimensional layered materials, from graphene to topological insulators: Symposium held April 25-29, 2011, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2012.
Find full textThorpe, Yvonne. Graphing buildings and structures. Chicago, Ill: Heinemann Library, 2008.
Find full text1946-, Zabel H., Solin S. A. 1942-, and Hwang D. M, eds. Graphite intercalation compounds I: Structure and dynamics. Berlin: Springer-Verlag, 1990.
Find full textUnited States. National Aeronautics and Space Administration. and United States. Army Aviation Systems Command., eds. Structure-to-property relationships in addition cured polymers. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textCenter, Lewis Research, and United States. Army Aviation Systems Command., eds. Structure-to-property relationships in addition cured polymers. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textCenter, Lewis Research, and United States. Army Aviation Systems Command., eds. Structure-to-property relationships in addition cured polymers. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textBook chapters on the topic "Graphene Structure"
Gao, Wei. "Synthesis, Structure, and Characterizations." In Graphene Oxide, 1–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5_1.
Full textYoung, Robert J. "Graphene and Graphene-Based Nanocomposites." In Structure and Multiscale Mechanics of Carbon Nanomaterials, 75–98. Vienna: Springer Vienna, 2016. http://dx.doi.org/10.1007/978-3-7091-1887-0_4.
Full textStewart, Derek A., and K. Andre Mkhoyan. "Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications." In Graphene Nanoelectronics, 435–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22984-8_14.
Full textDimiev, Ayrat M. "Mechanism of Formation and Chemical Structure of Graphene Oxide." In Graphene Oxide, 36–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch2.
Full textGrushevskaya, H. V., and G. G. Krylov. "Electronic Structure and Transport in Graphene." In Graphene Science Handbook, 117–32. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2016. | “2016: CRC Press, 2016. http://dx.doi.org/10.1201/b19642-9.
Full textJavad Azizli, Mohammad, Masoud Mokhtary, Mohammad Barghamadi, and Katayoon Rezaeeparto. "Structure-Property Relationship of Graphene-Rubber Nanocomposite." In Graphene-Rubber Nanocomposites, 141–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200444-6.
Full textLam, Kai-Tak, and Gengchiau Liang. "Electronic Structure of Bilayer Graphene Nanoribbon and Its Device Application: A Computational Study." In Graphene Nanoelectronics, 509–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22984-8_16.
Full textZheng, Qingbin, and Jang-Kyo Kim. "Synthesis, Structure, and Properties of Graphene and Graphene Oxide." In Graphene for Transparent Conductors, 29–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2769-2_2.
Full textKirane, Kedar, and Surita Bhatia. "Structure-Property Relationships for the Mechanical Behavior of Rubber-Graphene Nanocomposites." In Graphene-Rubber Nanocomposites, 109–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200444-5.
Full textHartmann, Markus A., Melanie Todt, and F. G. Rammerstorfer. "Atomistic and continuum modelling of graphene and graphene-derived carbon nanostructures." In Structure and Multiscale Mechanics of Carbon Nanomaterials, 135–79. Vienna: Springer Vienna, 2016. http://dx.doi.org/10.1007/978-3-7091-1887-0_6.
Full textConference papers on the topic "Graphene Structure"
Shuvo, Mohammad Arif Ishtiaque, Md Ashiqur Rahaman Khan, Miguel Mendoza, Matthew Garcia, and Yirong Lin. "Synthesis and Characterization of Nanowire-Graphene Aerogel for Energy Storage Devices." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86431.
Full textKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem, and Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Full textKanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem, and Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.
Full textZubko, I. Yu. "Exact solution for inner displacements of graphene lattice." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932929.
Full textZubko, I. Yu, and V. I. Kochurov. "Computation of graphene elastic moduli at low temperature." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932930.
Full textGuo, Qihang, Jinyu Zhang, Yu He, Jiahao Kang, He Qian, Yan Wang, and Zhiping Yu. "The electronic structure of graphene nanomesh." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667678.
Full textVesely, S. L., A. A. Vesely, and S. R. Dolci. "The Fine Structure Constant and Graphene." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017668.
Full textPeng, Liu, Bang Li, Xin Yan, Xia Zhang, and Xiao-Min Ren. "Graphene/InAs nanowire composite structure photodetector." In Sixth Symposium on Novel Photoelectronic Detection Technology and Application, edited by Huilin Jiang and Junhao Chu. SPIE, 2020. http://dx.doi.org/10.1117/12.2558432.
Full textShmavonyan, G. Sh, and A. R. Mailian. "Graphite Pencil Drawn Lines: A Nanomaterial or Few Layer Graphene/Graphite Layered Structure." In 2nd International Conference on Green Materials and Environmental Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/gmee-15.2015.4.
Full textZhang, Bin, Jingwei Zhang, Chengguo Liu, and Zhi Peng Wu. "Graphene-based THz Antenna with A Graphene-metal CPW Feeding Structure." In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). IEEE, 2018. http://dx.doi.org/10.1109/ucmmt45316.2018.9015773.
Full textReports on the topic "Graphene Structure"
Plachinda, Pavel. Electronic Properties and Structure of Functionalized Graphene. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.585.
Full textGaillard, J. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395966.
Full textWang, Feng. Technical report on "BES Early Career. Control Graphene Electronic Structure for Energy Technology". Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1192236.
Full textFlynn, George W. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170229.
Full textPisani, William, Dane Wedgeworth, Michael Roth, John Newman, and Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46713.
Full textSzlufarska, Izabela, Dane Morgan, and Todd Allen. Modeling Fission Product Sorption in Graphite Structures. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1082917.
Full textCarlisle, J. A., E. L. Shirley, and E. A. Hudson. Probing the graphite band structure with resonant soft-x-ray fluorescence. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603582.
Full textRickard, N. D. STRUCTURAL DESIGN CRITERIA FOR REPLACEABLE GRAPHITE CORE ELEMENTS. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/10197186.
Full textYahr, G. T., and D. G. O`Connor. Structural design criteria and design data for AVLIS graphite components. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/711805.
Full textRobert L. Bratton and Tim D. Burchell. Status of ASME Section III Task Group on Graphite Support Core Structures. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/911242.
Full text