Academic literature on the topic 'Graphene-Solvent Interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphene-Solvent Interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Graphene-Solvent Interactions"

1

Abahussain, Abdulaziz A. M., S. Z. J. Zaidi, M. H. Nazir, M. Raza, M. H. Nazir, and S. Hassan. "A DFT Study of Graphene as a Drug Carrier for Gemcitabine Anticancer Drug." Journal of New Materials for Electrochemical Systems 25, no. 4 (December 31, 2022): 234–39. http://dx.doi.org/10.14447/jnmes.v25i4.a02.

Full text
Abstract:
Research is being carried out worldwide for possible treatment of cancer. Graphene has been studied as a drug carrier for various cancer-related drugs [1-2]. In the present work, we apply theoretical models to study the electrons interactions, thermodynamic properties, and solvent interaction of the drug-carrier configuration. The stability of graphene means that it can be a nanocarrier in the biological system. The simulations result shows that graphene provides a stable base, where gemcitabine is a highly dissolvable and reactive drug. The adsorption of gemcitabine on the graphene was physical. The drug carrier configuration formed a highly impactful drug-carrier design.
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Yanyu, Dongqing Wu, Xinliang Feng, and Klaus Müllen. "Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions." Advanced Materials 21, no. 17 (May 4, 2009): 1679–83. http://dx.doi.org/10.1002/adma.200803160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Graziano, Antimo, Shaffiq Jaffer, and Mohini Sain. "Graphene oxide modification for enhancing high-density polyethylene properties: a comparison between solvent reaction and melt mixing." Journal of Polymer Engineering 39, no. 1 (December 19, 2018): 85–93. http://dx.doi.org/10.1515/polyeng-2018-0106.

Full text
Abstract:
Abstract Graphene oxide (GO) was chemically modified in xylene with dodecyl amine and hydrazine monohydrate to obtain reduced functionalized graphene oxide (RFGO). Composites of high-density polyethylene (HDPE) and GO were made via solvent reaction, whereas both melt mixing and solvent reaction were used for HDPE-RFGO composites for comparison purposes. Elemental and thermal analysis showed the success of GO modification in grafting amine functionalities onto its structure and restoring most of the original graphene C=C bonds. A significant increase in mechanical properties, thermal stability, and crystallization behavior was observed for HDPE-RFGO (solvent) compared with HDPE and HDPE-GO, proving that homogeneous dispersion of RFGO in the polymer matrix and strong interactions between them resulted in facilitated stress transfer, delayed thermal degradation, and more efficient nucleating effect in inducing the crystal growth of HDPE. A comparison of HDPE-RFGO properties enhancement between the melt mixing method and the solvent reaction method showed that, apart from mechanical behavior, the RFGO contribution was the same, suggesting that the optimization of the ecofriendlier approach (melt) could eventually lead to its total use for the mass production of high-performance, cost-effective, and more environmentally friendly graphene-based thermoplastic polyolefin nanocomposites suitable for highly demanding industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Berisha, Avni. "Interactions between the Aryldiazonium Cations and Graphene Oxide: A DFT Study." Journal of Chemistry 2019 (February 26, 2019): 1–5. http://dx.doi.org/10.1155/2019/5126071.

Full text
Abstract:
Understanding the grafting behavior of the aryldiazonium cations is of fundamental and also of practical importance for the vast number of applications that involve the use of modified graphene oxide (from simple adsorption process to electronic and photovoltaic applications). In this work, the mechanism of the adsorption and grafting of diazonium cations on the graphene oxide surface was investigated by the use of density functional theory. Two types of aryldiazonium cations, one bearing only phenyl ring and the other nitrophenyl, were selected as adsorbates/grafted moiety. By evaluating the adsorption energies at 7 different positions onto the graphene oxide both in the gaseous and solvent phase (using COSMO approach), the most probable adsorption sites were found. Moreover, the most stable adsorption sites were used to calculate and plot NCI (noncovalent interactions). The obtained results are important as they not only give molecular insights regarding the nature of the interaction and its dependence on the adsorption site of the graphene oxide surface but also on the activation energy for such a grafting reaction to take place, providing a mechanistic aspect to understand these grafting reactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Arunachalam, Vaishali, and Sukumaran Vasudevan. "Graphene–Solvent Interactions in Nonaqueous Dispersions: 2D ROESY NMR Measurements and Molecular Dynamics Simulations." Journal of Physical Chemistry C 122, no. 3 (January 10, 2018): 1881–88. http://dx.doi.org/10.1021/acs.jpcc.7b11138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Czajka, Michael, Robert A. Shanks, and Ing Kong. "Preparation of graphene and inclusion in composites with poly(styrene-b-butadiene-b-styrene)." Science and Engineering of Composite Materials 22, no. 1 (January 1, 2015): 7–16. http://dx.doi.org/10.1515/secm-2013-0119.

Full text
Abstract:
AbstractThe aim of this work was to prepare and characterize nanocomposites containing graphene from intercalated graphite. The graphene was produced by rapid thermal expansion using expandable graphite oxide or obtained commercially. The polymer used was poly(styrene-b-butadiene-b-styrene) (SBS). The SBS was dissolved in p-xylene and the graphene was ultrasonically suspended in the xylene solution. The morphology, dynamic mechanical, electrical, and thermal properties of composites were characterized. Graphene at 1% (w/w) (hydrogen atmosphere) was found to increase the storage modulus (68%) and loss modulus (147%) of the glassy state of polybutadiene in SBS. The damping factor of SBS was enhanced by 74% corresponding to the polystyrene phase of SBS using Cheap Tubes graphene. The composites were insulators at 1% (w/w). The styrene groups in SBS strongly adsorb onto the graphenes, preventing a percolation network that would enhance electrical permittivity. Graphene enhanced physical crosslinks of the polystyrene phase to increase the modulus at low concentration. Graphene dispersion using ultrasonic shear depended on π-π interactions between the aromatic rings of the solvent, graphene, and polystyrene. This is a simple, fast, cheap, and scalable way of making high-quality graphene and a new way of graphene dispersal in polymers.
APA, Harvard, Vancouver, ISO, and other styles
7

Moni, Grace, Jiji Abraham, Chinchu Kurian, Ayarin Joseph, and Soney C. George. "Effect of reduced graphene oxide on the solvent transport characteristics and sorption kinetics of fluoroelastomer nanocomposites." Physical Chemistry Chemical Physics 20, no. 26 (2018): 17909–17. http://dx.doi.org/10.1039/c8cp02411a.

Full text
Abstract:
Molecular transport characteristics of fluoroelastomer nanocomposites in aromatic hydrocarbons exhibited improved chemical resistivity by the incorporation of reduced graphene oxide, due to its better reinforcing efficiency and improved polymer-filler interactions.
APA, Harvard, Vancouver, ISO, and other styles
8

Son, Chang Yun, and Zhen-Gang Wang. "Image-charge effects on ion adsorption near aqueous interfaces." Proceedings of the National Academy of Sciences 118, no. 19 (May 4, 2021): e2020615118. http://dx.doi.org/10.1073/pnas.2020615118.

Full text
Abstract:
Electrostatic interactions near surfaces and interfaces are ubiquitous in many fields of science. Continuum electrostatics predicts that ions will be attracted to conducting electrodes but repelled by surfaces with lower dielectric constant than the solvent. However, several recent studies found that certain “chaotropic” ions have similar adsorption behavior at air/water and graphene/water interfaces. Here we systematically study the effect of polarization of the surface, the solvent, and solutes on the adsorption of ions onto the electrode surfaces using molecular dynamics simulation. An efficient method is developed to treat an electrolyte system between two parallel conducting surfaces by exploiting the mirror-expanded symmetry of the exact image-charge solution. With neutral surfaces, the image interactions induced by the solvent dipoles and ions largely cancel each other, resulting in no significant net differences in the ion adsorption profile regardless of the surface polarity. Under an external electric field, the adsorption of ions is strongly affected by the surface polarization, such that the charge separation across the electrolyte and the capacitance of the cell is greatly enhanced with a conducting surface over a low-dielectric-constant surface. While the extent of ion adsorption is highly dependent on the electrolyte model (the polarizability of solvent and solutes, as well as the van der Waals radii), we find the effect of surface polarization on ion adsorption is consistent throughout different electrolyte models.
APA, Harvard, Vancouver, ISO, and other styles
9

Borzehandani, Mostafa Yousefzadeh, Emilia Abdulmalek, Mohd Basyaruddin Abdul Rahman, and Muhammad Alif Mohammad Latif. "Elucidating the Aromatic Properties of Covalent Organic Frameworks Surface for Enhanced Polar Solvent Adsorption." Polymers 13, no. 11 (June 3, 2021): 1861. http://dx.doi.org/10.3390/polym13111861.

Full text
Abstract:
Covalent organic frameworks (COFs) have a distinguished surface as they are mostly made by boron, carbon, nitrogen and oxygen. Many applications of COFs rely on polarity, size, charge, stability and hydrophobicity/hydrophilicity of their surface. In this study, two frequently used COFs sheets, COF-1 and covalent triazine-based frameworks (CTF-1), are studied. In addition, a theoretical porous graphene (TPG) was included for comparison purposes. The three solid sheets were investigated for aromaticity and stability using quantum mechanics calculations and their ability for water and ethanol adsorption using molecular dynamics simulations. COF-1 demonstrated the poorest aromatic character due to the highest energy delocalization interaction between B–O bonding orbital of sigma type and unfilled valence-shell nonbonding of boron. CTF-1 was identified as the least kinetically stable and the most chemically reactive. Both COF-1 and CTF-1 showed good surface properties for selective adsorption of water via hydrogen bonding and electrostatic interactions. Among the three sheets, TPG’s surface was mostly affected by aromatic currents and localized π electrons on the phenyl rings which in turn made it the best platform for selective adsorption of ethanol via van der Waals interactions. These results can serve as guidelines for future studies on solvent adsorption for COFs materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Araya-Hermosilla, Esteban, Matteo Minichino, Virgilio Mattoli, and Andrea Pucci. "Chemical and Temperature Sensors Based on Functionalized Reduced Graphene Oxide." Chemosensors 8, no. 2 (June 21, 2020): 43. http://dx.doi.org/10.3390/chemosensors8020043.

Full text
Abstract:
In this work, we investigated the functionalization of reduced graphene oxide (rGO) with 2-(dodecen-1-yl) succinic anhydride (TPSA) to increase the rGO effective interactions with organic solvents both in liquid and vapor phases. Thermogravimetric analysis, STEM, XPS, FTIR-ATR, and Raman spectroscopy confirmed the effective functionalization of rGO with about the 30 wt% of grafted TPSA without affecting the structural characteristics of graphene but successfully enhancing its dispersibility in the selected solvent except for the apolar hexane. Solid TPSA-rGO dispersions displayed a reproducible semiconducting (activated) electrical transport with decreased resistance when heated from 20 °C to 60 °C and with a negative temperature coefficient of 10−3 K−1, i.e., comparable in absolute value with temperature coefficient in metals. It is worth noting that the same solid dispersions showed electrical resistance variation upon exposure to vapors with a detection limit in the order of 10 ppm and sensitivity α of about 10−4 ppm−1.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Graphene-Solvent Interactions"

1

Sohrabi, Beheshteh. "Amphiphiles." In Self-Assembly of Materials and Supramolecular Structures [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107880.

Full text
Abstract:
Amphiphiles form a large group of supramolecular structures can aggregate and be adsorbed spontaneously at the interface. Amphiphilicity is a feature of polar contrast between the groups that make up a molecule and their spatial separation. The most important classes of amphiphiles are surfactants, lipoproteins, and polymers that have hydrophilic and hydrophobic chemical moieties covalently bonded and spatially separated. Since surfactants are widely used in various industrial fields, we decide to focus on surfactants in addition to a brief review of the other amphiphiles. Surfactants are used in industrial applications and consumer products, from medical to cosmetics and food industry. Various industries require new surfactants from sustainable and renewable raw materials with improved performance, biocompatibility and minimal environmental impact. For example, liquid phase exfoliation and dispersion methods using surfactants in the solvent media have recently gained lots of attention because of their great potential for large-scale production. Notably, an ideal exfoliation for reaching desired graphene and CNTs may be achievable by molecular engineering of surfactants to improve the quality of molecular interactions. This chapter experimentally and theoretically highlighted physico-chemical characteristic parameters, and interactions of the components, which are essential to design and discover efficient exfoliation and dispersion systems.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Graphene-Solvent Interactions"

1

Illera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez, and D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.

Full text
Abstract:
The outstanding properties of single-layer graphene sheets for energy storage are hindered as agglomeration or restacking leads to the formation of graphite. The implications of the aforementioned arise on the difficulties associated with the aqueous processing of graphene sheets: from large-scale production to its utilization in solvent-assisted techniques like spin coating or layer-by-layer deposition. To overcome this, aqueous dispersions of graphene were stabilized by cellulose nanocrystals colloids. Aqueous cellulose nanocrystals dispersion highlights as a low-cost and environmentally friendly stabilizer towards graphene large-scale processing. Colloids of cellulose nanocrystals are formed by electrostatic repulsion of fibrils due to de-protonated carboxyl or sulfate half-ester functional groups. Graphene dispersions are obtained by hydrothermal reduction of electrochemically exfoliated graphene oxide in the presence of cellulose nanocrystals. This approach allows the preservation of the intrinsic properties of the nano-sheets by promoting non-covalent interactions between cellulose and graphene. The dispersions could be cast to form free-standing flexible conducting films or freeze-dried to form foams and aerogels for capacitive energy storage.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography