Academic literature on the topic 'Graphene Polymer Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graphene Polymer Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Graphene Polymer Systems"

1

Kausar, Ayesha, Ishaq Ahmad, and Patrizia Bocchetta. "High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance." Journal of Composites Science 6, no. 12 (2022): 362. http://dx.doi.org/10.3390/jcs6120362.

Full text
Abstract:
Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corro
APA, Harvard, Vancouver, ISO, and other styles
2

Njoroge, Jean, Arnab Chakrabarty, and Tahir Çağın. "Shockwave Response of Polymer and Polymer Nanocomposites." Materials Science Forum 856 (May 2016): 64–69. http://dx.doi.org/10.4028/www.scientific.net/msf.856.64.

Full text
Abstract:
We present non-equilibrium molecular dynamic simulations of the shock compression of polyurethane and its graphene-based nanocomposite systems. Using the projectile/wall approach, planar shock waves with piston velocity range from 0.1 to 2.5 km/s is applied for both systems. In this study, direct molecular-level simulations of shock-wave generation and propagation are utilized in order to construct the appropriate shock-Hugoniot relations. Through this study, we determined that inclusion of graphene into the polyurethane system has a significant effect on the shock propagation behavior when in
APA, Harvard, Vancouver, ISO, and other styles
3

Kausar, Ayesha, Ishaq Ahmad, M. H. Eisa, and Malik Maaza. "Graphene Nanocomposites in Space Sector—Fundamentals and Advancements." C 9, no. 1 (2023): 29. http://dx.doi.org/10.3390/c9010029.

Full text
Abstract:
Graphene is one of the most significant carbon nanomaterials, with a one-atom-thick two-dimensional nanostructure. Like other nanocarbons, graphene has been used as a polymer reinforcement. This review explores the impact of graphene and graphene-based nanocomposites on aerospace applications. The fabrication and indispensable features of graphene-derived nanocomposites have been considered. Numerous polymers and nanocomposites have been employed for aerospace systems such as reinforced thermosetting/thermoplastic polymers and epoxy/graphene nanocomposites. Moreover, graphene-modified carbon-f
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmed, Jubair, Tanveer A. Tabish, Shaowei Zhang, and Mohan Edirisinghe. "Porous Graphene Composite Polymer Fibres." Polymers 13, no. 1 (2020): 76. http://dx.doi.org/10.3390/polym13010076.

Full text
Abstract:
Since the isolation of graphene, there have been boundless pursuits to exploit the many superior properties that this material possesses; nearing the two-decade mark, progress has been made, but more is yet to be done for it to be truly exploited at a commercial scale. Porous graphene (PG) has recently been explored as a promising membrane material for polymer composite fibres. However, controlling the incorporation of high surface area PG into polymer fibres remain largely unexplored. Additionally, most polymer-graphene composites suffer from low production rates and yields. In this paper, gr
APA, Harvard, Vancouver, ISO, and other styles
5

RAMU, I., Battina N. MALLESWARARAO, J. CHANDRA SEKHAR, M. VENU, and P. SENTHIL KUMAR. "Study on Free Vibration Analysis of a Rotating Fibre-Graphene-Reinforced Hybrid Polymer Composites Pre-Twist Shel." INCAS BULLETIN 15, no. 2 (2023): 149–59. http://dx.doi.org/10.13111/2066-8201.2023.15.2.14.

Full text
Abstract:
The present work aims to develop a computational procedure for investigating the vibration behaviour of pre-twisted laminated composite shell containing graphene inclusions in their matrix. According to nanoscopic empirical equations, graphene's mechanical properties are determined by its size dependence. It has been demonstrated that the orthotropic mechanical properties of composite laminates made from carbon fibres and hybrid matrix can be evaluated. Based on pre-twist and geometric configurations, finite element methods have been used to model hybrid materials shells that include carbon fi
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Shih-Hsiung, Naveed Ahmad, and Chung-Feng Jeffrey Kuo. "Development of Multifunctional Nano-Graphene-Grafted Polyester to Enhance Thermal Insulation and Performance of Modified Polyesters." Polymers 14, no. 18 (2022): 3821. http://dx.doi.org/10.3390/polym14183821.

Full text
Abstract:
Nano-graphene materials have improved many thermal properties based on polymer systems. The additive polymers’ thermal insulation cannot be significantly increased for use as a reinforcement in multifunctional thermally insulating polymer foam. Herein, we present the development of far-infrared emissivity and antistatic properties using multifunctional nano-graphene polyester fibers. Nano-graphene far-infrared thermal insulation polyester was synthesized with 2% nano-graphene and dispersant polypropylene wax-maleic anhydride (PP wax-MA) using the Taguchi method combined with grey relational an
APA, Harvard, Vancouver, ISO, and other styles
7

Yasinzai, Maimoona, Ghulam Mustafa, Nazia Asghar, et al. "Ion-Imprinted Polymer-Based Receptors for Sensitive and Selective Detection of Mercury Ions in Aqueous Environment." Journal of Sensors 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/8972549.

Full text
Abstract:
Interdigital electrodes (IDE) coated with ion-imprinted polymers (IIP) as recognition materials have been tested for screening and ion quantification. For screening of receptors, three polymer systems based on styrene (Sty), N-vinylpyrrolidone (NVP), and Sty-co-NVP were examined to identify an efficient recognition system for mercury ions in an aqueous environment. Results showed that all these polymeric systems can detect analyte even in very low concentration, that is, 10 ppm. Ion-imprinted polystyrene system proved to be an ideal receptor for detecting mercury ions in solution with a detect
APA, Harvard, Vancouver, ISO, and other styles
8

Rissanou, Anastassia, Apostolos Konstantinou, and Kostas Karatasos. "Morphology and Dynamics in Hydrated Graphene Oxide/Branched Poly(ethyleneimine) Nanocomposites: An In Silico Investigation." Nanomaterials 13, no. 12 (2023): 1865. http://dx.doi.org/10.3390/nano13121865.

Full text
Abstract:
Graphene oxide (GO)—branched poly(ethyleneimine) (BPEI) hydrated mixtures were studied by means of fully atomistic molecular dynamics simulations to assess the effects of the size of polymers and the composition on the morphology of the complexes, the energetics of the systems and the dynamics of water and ions within composites. The presence of cationic polymers of both generations hindered the formation of stacked GO conformations, leading to a disordered porous structure. The smaller polymer was found to be more efficient at separating the GO flakes due to its more efficient packing. The va
APA, Harvard, Vancouver, ISO, and other styles
9

Rissanou, N., P. Bačová, A. J. Power, and V. Harmandaris. "Atomistic Molecular Dynamics Simulations of Polymer/Graphene Nanostructured Systems." Materials Today: Proceedings 5, no. 14 (2018): 27472–81. http://dx.doi.org/10.1016/j.matpr.2018.09.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Jian Wei, Cai Jiang, Gang Shi, and Da Zhi Jiang. "Diffusion of Epoxy Molecules on the Chemically Modified Graphene: A Molecular Dynamics Simulation Study." Materials Science Forum 817 (April 2015): 803–8. http://dx.doi.org/10.4028/www.scientific.net/msf.817.803.

Full text
Abstract:
Buckypaper based polymer composites provides a new technical approach toward realizing conductive/structural multifunctional composites. Resin infiltration in the buckypaper is critical for the fabrication of buckypaper/polymer composites. To investigate the micro-infusion process of the polymer inside the paper, molecular dynamics (MD) simulations are conducted to study the diffusion behavior of epoxy molecules on the modified graphene and between graphene layers. The graphene molecular structures are constructed to represent the wall structures of the carbon nanotubes. Diffusion coefficients
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!