Journal articles on the topic 'Graphene liquid interface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Graphene liquid interface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chen, Xianjue, and Colin L. Raston. "Liquid interface evolution of polyhedral-like graphene." Chemical Communications 51, no. 78 (2015): 14609–12. http://dx.doi.org/10.1039/c5cc05888k.
Full textPeng, Xiaoyi, Pengfei Jiang, Yulou Ouyang, Shuang Lu, Weijun Ren, and Jie Chen. "Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure." Nanotechnology 33, no. 3 (October 29, 2021): 035707. http://dx.doi.org/10.1088/1361-6528/ac2f5c.
Full textKam, Kevin, Brianne Tengan, Cody Hayashi, Richard Ordonez, and David Garmire. "Polar Organic Gate Dielectrics for Graphene Field-Effect Transistor-Based Sensor Technology." Sensors 18, no. 9 (August 23, 2018): 2774. http://dx.doi.org/10.3390/s18092774.
Full textShao, Jiao-Jing, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su, and Quan-Hong Yang. "Graphene oxide hydrogel at solid/liquid interface." Chemical Communications 47, no. 20 (2011): 5771. http://dx.doi.org/10.1039/c1cc11166c.
Full textXin, Jing, Beibei Xie, Ya Li, Juanjuan Shang, Yujiao Qiu, Libing Liu, Shaofu Zhao, Lidan Fan, and Renjie Zhang. "Formation of graphene oxide films at the liquid/liquid interface." Composite Interfaces 21, no. 7 (May 19, 2014): 623–30. http://dx.doi.org/10.1080/15685543.2014.918789.
Full textWehrhold, Michel, Tilmann J. Neubert, Anur Yadav, Martin Vondráček, Rodrigo M. Iost, Jan Honolka, and Kannan Balasubramanian. "pH sensitivity of interfacial electron transfer at a supported graphene monolayer." Nanoscale 11, no. 31 (2019): 14742–56. http://dx.doi.org/10.1039/c9nr05049c.
Full textPatil, Sagar H., Bihag Anothumakkool, Shivaram D. Sathaye, and Kashinath R. Patil. "Architecturally designed Pt–MoS2 and Pt–graphene composites for electrocatalytic methanol oxidation." Physical Chemistry Chemical Physics 17, no. 39 (2015): 26101–10. http://dx.doi.org/10.1039/c5cp04141d.
Full textChen, Long, Liangliang Huang, and Jiahua Zhu. "Stitching graphene oxide sheets into a membrane at a liquid/liquid interface." Chem. Commun. 50, no. 100 (October 21, 2014): 15944–47. http://dx.doi.org/10.1039/c4cc07558g.
Full textAllaire, Ryan H., Abhijeet Dhakane, Reece Emery, P. Ganesh, Philip D. Rack, Lou Kondic, Linda Cummings, and Miguel Fuentes-Cabrera. "Surface, Interface, and Temperature Effects on the Phase Separation and Nanoparticle Self Assembly of Bi-Metallic Ni0.5Ag0.5: A Molecular Dynamics Study." Nanomaterials 9, no. 7 (July 21, 2019): 1040. http://dx.doi.org/10.3390/nano9071040.
Full textRodgers, Andrew N. J., and Robert A. W. Dryfe. "Oxygen Reduction at the Liquid-Liquid Interface: Bipolar Electrochemistry through Adsorbed Graphene Layers." ChemElectroChem 3, no. 3 (October 22, 2015): 472–79. http://dx.doi.org/10.1002/celc.201500343.
Full textKolmakov, Andrei, Hongxuan Guo, Alexander Yulaev, Evgheni Strelcov, and Alexander Tselev. "Polarization of the Graphene-Liquid Electrolyte Interface Probed by SEM." Microscopy and Microanalysis 24, S1 (August 2018): 354–55. http://dx.doi.org/10.1017/s143192761800226x.
Full textCingolani, Juan Santiago, Martin Deimel, Simone Köcher, Christoph Scheurer, Karsten Reuter, and Mie Andersen. "Interface between graphene and liquid Cu from molecular dynamics simulations." Journal of Chemical Physics 153, no. 7 (August 21, 2020): 074702. http://dx.doi.org/10.1063/5.0020126.
Full textPolishchuk, Yu, S. Dubinevych, V. Zinin, and E. Shembel. "Graphene-enhanced sulfur cathode with high interface stability in Li-S batteries." Journal of Physics: Conference Series 2382, no. 1 (November 1, 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2382/1/012005.
Full textHuang, Li-Jiao, Xue Tian, Jin-Tao Yi, Ru-Qin Yu, and Xia Chu. "A turn-on upconversion fluorescence resonance energy transfer biosensor for ultrasensitive endonuclease detection." Analytical Methods 7, no. 18 (2015): 7474–79. http://dx.doi.org/10.1039/c5ay01169h.
Full textLiu, Yue E., Cheng En He, Ren Gui Peng, Wei Tang, and Ying Kui Yang. "Ionic Liquid Assisted Dispersion of Reduced Graphene Oxide in Epoxy Composites with Improved Mechanical Properties." Advanced Materials Research 738 (August 2013): 56–60. http://dx.doi.org/10.4028/www.scientific.net/amr.738.56.
Full textTrusova, Elena A., Klara V. Kotsareva, Alexey N. Kirichenko, Sergey S. Abramchuk, and Igor A. Perezhogin. "Sonochemical Preparation and Subsequent Fixation of Oxygen-Free Graphene Sheets at N,N-Dimethyloctylamine-Aqua Boundary." Advances in Materials Science and Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/6026437.
Full textCui, Xinghong, Yanfang Zhu, Fei Li, Daijun Liu, Jianjun Chen, Yuxin Zhang, Li Li Zhang, and Junyi Ji. "Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe2O3 on crumpled graphene." RSC Advances 6, no. 11 (2016): 9007–12. http://dx.doi.org/10.1039/c5ra22408j.
Full textThomas, Loji K., and Michael Reichling. "Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM." Beilstein Journal of Nanotechnology 10 (April 1, 2019): 804–10. http://dx.doi.org/10.3762/bjnano.10.80.
Full textCollins, Liam, Jason I. Kilpatrick, Ivan V. Vlassiouk, Alexander Tselev, Stefan A. L. Weber, Stephen Jesse, Sergei V. Kalinin, and Brian J. Rodriguez. "Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface." Applied Physics Letters 104, no. 13 (March 31, 2014): 133103. http://dx.doi.org/10.1063/1.4870074.
Full textD'Urso, Luisa, Cristina Satriano, Giuseppe Forte, Giuseppe Compagnini, and Orazio Puglisi. "Water structure and charge transfer phenomena at the liquid–graphene interface." Physical Chemistry Chemical Physics 14, no. 42 (2012): 14605. http://dx.doi.org/10.1039/c2cp42249b.
Full textPatil, Sagar H., Aarti P. Gaikwad, Babasaheb J. Waghmode, Shivaram D. Sathaye, and Kashinath R. Patil. "A graphene–MnO2 composite supercapacitor material accomplished tactically using liquid–liquid and solid–liquid interface reaction techniques." New Journal of Chemistry 44, no. 17 (2020): 6853–61. http://dx.doi.org/10.1039/c9nj05898b.
Full textMéndez-Morales, Trinidad, Jesús Carrete, Martín Pérez-Rodríguez, Óscar Cabeza, Luis J. Gallego, Ruth M. Lynden-Bell, and Luis M. Varela. "Molecular dynamics simulations of the structure of the graphene–ionic liquid/alkali salt mixtures interface." Phys. Chem. Chem. Phys. 16, no. 26 (2014): 13271–78. http://dx.doi.org/10.1039/c4cp00918e.
Full textGudarzi, Mohsen Moazzami, and Farhad Sharif. "Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites." Soft Matter 7, no. 7 (2011): 3432. http://dx.doi.org/10.1039/c0sm01311k.
Full textChen, Shiue-Luen, Chong-You Chen, Jason Chia-Hsun Hsieh, Zih-Yu Yu, Sheng-Jen Cheng, Kuan Yu Hsieh, Jia-Wei Yang, Priyank V. Kumar, Shien-Fong Lin, and Guan-Yu Chen. "Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis." Nanomaterials 9, no. 12 (December 3, 2019): 1725. http://dx.doi.org/10.3390/nano9121725.
Full textGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, Yanfei Liu, Jiawei Tang, and Wenzhong Wang. "Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts." Materials 15, no. 10 (May 16, 2022): 3546. http://dx.doi.org/10.3390/ma15103546.
Full textLv, Wei, Zhangxun Xia, Sida Wu, Ying Tao, Feng-Min Jin, Baohua Li, Hongda Du, Zhen-Ping Zhu, Quan-Hong Yang, and Feiyu Kang. "Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface." Journal of Materials Chemistry 21, no. 10 (2011): 3359. http://dx.doi.org/10.1039/c0jm02852e.
Full textShao, Jiao-Jing, Wei Lv, Quangui Guo, Chen Zhang, Qiang Xu, Quan-Hong Yang, and Feiyu Kang. "Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface." Chem. Commun. 48, no. 31 (2012): 3706–8. http://dx.doi.org/10.1039/c1cc16838j.
Full textFedorov, Maxim V., and R. M. Lynden-Bell. "Probing the neutral graphene–ionic liquid interface: insights from molecular dynamics simulations." Physical Chemistry Chemical Physics 14, no. 8 (2012): 2552. http://dx.doi.org/10.1039/c2cp22730d.
Full textGómez-González, V., A. García-Fuente, A. Vega, J. Carrete, O. Cabeza, L. J. Gallego, and L. M. Varela. "Density Functional Study of Charge Transfer at the Graphene/Ionic Liquid Interface." Journal of Physical Chemistry C 122, no. 27 (July 2, 2018): 15070–77. http://dx.doi.org/10.1021/acs.jpcc.8b02795.
Full textZhang, Man, Jun Zhang, Zhenyao Ding, Haili Wang, Lihui Huang, and Xinjian Feng. "Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays." Biomimetics 8, no. 1 (January 8, 2023): 26. http://dx.doi.org/10.3390/biomimetics8010026.
Full textBramhaiah, Kommula, Vidya N. Singh, and Neena S. John. "Three Dimensional Branched Gold Nanostructures on Reduced Graphene Oxide Films Formed at a Liquid/Liquid Interface." Particle & Particle Systems Characterization 31, no. 11 (July 1, 2014): 1168–74. http://dx.doi.org/10.1002/ppsc.201400037.
Full textDiego, Michele, Marco Gandolfi, Stefano Giordano, Fabien Vialla, Aurélien Crut, Fabrice Vallée, Paolo Maioli, Natalia Del Fatti, and Francesco Banfi. "Tuning photoacoustics with nanotransducers via thermal boundary resistance and laser pulse duration." Applied Physics Letters 121, no. 25 (December 19, 2022): 252201. http://dx.doi.org/10.1063/5.0135147.
Full textPervez, Syed Atif, Milad Madinehei, and Nima Moghimian. "Graphene in Solid-State Batteries: An Overview." Nanomaterials 12, no. 13 (July 5, 2022): 2310. http://dx.doi.org/10.3390/nano12132310.
Full textVelasco-Velez, Juan J., Verena Pfeifer, Michael Hävecker, Robert S. Weatherup, Rosa Arrigo, Cheng-Hao Chuang, Eugen Stotz, et al. "Photoelectron Spectroscopy at the Graphene-Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst." Angewandte Chemie International Edition 54, no. 48 (October 14, 2015): 14554–58. http://dx.doi.org/10.1002/anie.201506044.
Full textPurwidyantri, Agnes, Telma Domingues, Jérôme Borme, Joana Rafaela Guerreiro, Andrey Ipatov, Catarina M. Abreu, Marco Martins, Pedro Alpuim, and Marta Prado. "Influence of the Electrolyte Salt Concentration on DNA Detection with Graphene Transistors." Biosensors 11, no. 1 (January 17, 2021): 24. http://dx.doi.org/10.3390/bios11010024.
Full textKondo, Hiroki, Takayoshi Tsutsumi, Kenji Ishikawa, Makoto Sekine, and Masaru Hori. "(Invited) Synthesis, Functionalization, and Three-Dimensional Structuring of Carbon Nanomaterials By Gas-Liquid Interface Plasma." ECS Meeting Abstracts MA2022-02, no. 18 (October 9, 2022): 870. http://dx.doi.org/10.1149/ma2022-0218870mtgabs.
Full textLi, Kun, Jing Jie Sha, Lei Liu, Gen Sheng Wu, Wei Si, and Yun Fei Chen. "Molecular Dynamics Study of Confined Fluid in Graphene Nanopores." Advanced Materials Research 1061-1062 (December 2014): 205–8. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.205.
Full textKang, Sumin, Taeshik Yoon, Boo Soo Ma, Min Sun Cho, and Taek-Soo Kim. "Liquid-assisted adhesion control of graphene–copper interface for damage-free mechanical transfer." Applied Surface Science 551 (June 2021): 149229. http://dx.doi.org/10.1016/j.apsusc.2021.149229.
Full textLu, Pengfei, Qiaobo Dai, Liangyu Wu, and Xiangdong Liu. "Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface." Applied Sciences 7, no. 9 (September 12, 2017): 939. http://dx.doi.org/10.3390/app7090939.
Full textWang, Zhuo, Xuesong Yang, and Maggie Yihong Chen. "Assembly of Patterned Graphene Film Aided by Wetting/Nonwetting Surface on Liquid Interface." IEEE Transactions on Nanotechnology 13, no. 3 (May 2014): 589–93. http://dx.doi.org/10.1109/tnano.2014.2312951.
Full textUysal, Ahmet, Hua Zhou, Guang Feng, Sang Soo Lee, Song Li, Paul Fenter, Peter T. Cummings, et al. "Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface." Journal of Physical Chemistry C 118, no. 1 (December 19, 2013): 569–74. http://dx.doi.org/10.1021/jp4111025.
Full textKim, Hyeri, Young Rae Jang, Jeseung Yoo, Young-Soo Seo, Ki-Yeon Kim, Jeong-Soo Lee, Soon-Dong Park, Chan-Joong Kim, and Jaseung Koo. "Morphology Control of Surfactant-Assisted Graphene Oxide Films at the Liquid–Gas Interface." Langmuir 30, no. 8 (February 19, 2014): 2170–77. http://dx.doi.org/10.1021/la403255q.
Full textCheong, Jun Young, Joon Ha Chang, Sung Joo Kim, Chanhoon Kim, Hyeon Kook Seo, Jae Won Shin, Jong Min Yuk, Jeong Yong Lee, and Il-Doo Kim. "In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation." Microscopy and Microanalysis 23, no. 6 (December 2017): 1107–15. http://dx.doi.org/10.1017/s1431927617012739.
Full textSiddaiah, Arpith, Pankaj Kumar, Artie Henderson, Manoranjan Misra, and Pradeep L. Menezes. "Surface Energy and Tribology of Electrodeposited Ni and Ni–Graphene Coatings on Steel." Lubricants 7, no. 10 (October 9, 2019): 87. http://dx.doi.org/10.3390/lubricants7100087.
Full textCotet, Liviu Cosmin, Klára Magyari, Milica Todea, Mircea Cristian Dudescu, Virginia Danciu, and Lucian Baia. "Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension." Journal of Materials Chemistry A 5, no. 5 (2017): 2132–42. http://dx.doi.org/10.1039/c6ta08898h.
Full textButko A.V., Butko V.Y., and Kumzerov Y.A. "Optimization of graphene transistor sensors based on quantum capacitance and charge carrier mobility analysis." Physics of the Solid State 64, no. 12 (2022): 2041. http://dx.doi.org/10.21883/pss.2022.12.54405.441.
Full textKim, Hyeri, Jongsoon Kim, Hee-Sung Jeong, Hyungsub Kim, Hoyeon Lee, Jae-Min Ha, Sung-Min Choi, et al. "Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid–gas interface for Li-ion battery anodes." Chemical Communications 54, no. 41 (2018): 5229–32. http://dx.doi.org/10.1039/c8cc02148a.
Full textKavitha, C., K. Bramhaiah, Neena S. John, and Shantanu Aggarwal. "Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide–osmium hybrid nano thin films." Royal Society Open Science 4, no. 9 (September 2017): 170353. http://dx.doi.org/10.1098/rsos.170353.
Full textLoulijat, Hamid. "Numerical study of the formation of liquid layer at the liquid–solid interface near the graphene in nanofluid." Materials Today: Proceedings 50 (2022): 2143–51. http://dx.doi.org/10.1016/j.matpr.2021.09.439.
Full textBiswas, Sanjib, and Lawrence T. Drzal. "A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid−Liquid Interface." Nano Letters 9, no. 1 (January 14, 2009): 167–72. http://dx.doi.org/10.1021/nl802724f.
Full text