Academic literature on the topic 'Graph Pooling and Convolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph Pooling and Convolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph Pooling and Convolution"
Qin, Jian, Li Liu, Hui Shen, and Dewen Hu. "Uniform Pooling for Graph Networks." Applied Sciences 10, no. 18 (September 10, 2020): 6287. http://dx.doi.org/10.3390/app10186287.
Full textYang, Xiaowen, Yanghui Wen, Shichao Jiao, Rong Zhao, Xie Han, and Ligang He. "Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution." Electronics 12, no. 24 (December 13, 2023): 4991. http://dx.doi.org/10.3390/electronics12244991.
Full textDiao, Qi, Yaping Dai, Jiacheng Wang, Xiaoxue Feng, Feng Pan, and Ce Zhang. "Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image Classification." Remote Sensing 16, no. 6 (March 7, 2024): 937. http://dx.doi.org/10.3390/rs16060937.
Full textMa, Zheng, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. "Path integral based convolution and pooling for graph neural networks*." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 12 (December 1, 2021): 124011. http://dx.doi.org/10.1088/1742-5468/ac3ae4.
Full textLi, Shenhao, Zhichon Pan, Hongyi Li, Yue Xiao, Ming Liu, and Xiaorui Wang. "Convergence criterion of power flow calculation based on graph neural network." Journal of Physics: Conference Series 2703, no. 1 (February 1, 2024): 012042. http://dx.doi.org/10.1088/1742-6596/2703/1/012042.
Full textGuo, Kan, Yongli Hu, Yanfeng Sun, Sean Qian, Junbin Gao, and Baocai Yin. "Hierarchical Graph Convolution Network for Traffic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 1 (May 18, 2021): 151–59. http://dx.doi.org/10.1609/aaai.v35i1.16088.
Full textBachlechner, M., T. Birkenfeld, P. Soldin, A. Stahl, and C. Wiebusch. "Partition pooling for convolutional graph network applications in particle physics." Journal of Instrumentation 17, no. 10 (October 1, 2022): P10004. http://dx.doi.org/10.1088/1748-0221/17/10/p10004.
Full textArsini, Lorenzo, Barbara Caccia, Andrea Ciardiello, Stefano Giagu, and Carlo Mancini Terracciano. "Nearest Neighbours Graph Variational AutoEncoder." Algorithms 16, no. 3 (March 6, 2023): 143. http://dx.doi.org/10.3390/a16030143.
Full textCheung, Mark, John Shi, Oren Wright, Lavendar Y. Jiang, Xujin Liu, and Jose M. F. Moura. "Graph Signal Processing and Deep Learning: Convolution, Pooling, and Topology." IEEE Signal Processing Magazine 37, no. 6 (November 2020): 139–49. http://dx.doi.org/10.1109/msp.2020.3014594.
Full textChen, Jiawang, and Zhenqiang Wu. "Learning Embedding for Signed Network in Social Media with Hierarchical Graph Pooling." Applied Sciences 12, no. 19 (September 28, 2022): 9795. http://dx.doi.org/10.3390/app12199795.
Full textDissertations / Theses on the topic "Graph Pooling and Convolution"
Wu, Jindong. "Pooling strategies for graph convolution neural networks and their effect on classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288953.
Full textMed utvecklingen av grafneurala nätverk har detta nya neurala nätverk tillämpats i olika område. Ett av de svåra problemen för forskare inom detta område är hur man väljer en lämplig poolningsmetod för en specifik forskningsuppgift från en mängd befintliga poolningsmetoder. I den här arbetet, baserat på de befintliga vanliga grafpoolingsmetoderna, utvecklar vi ett riktmärke för neuralt nätverk ram som kan användas till olika diagram pooling metoders jämförelse. Genom att använda ramverket jämför vi fyra allmängiltig diagram pooling metod och utforska deras egenskaper. Dessutom utvidgar vi två metoder för att förklara beslut om neuralt nätverk från convolution neurala nätverk till diagram neurala nätverk och jämföra dem med befintliga GNNExplainer. Vi kör experiment av grafisk klassificering uppgifter under benchmarkingramverk och hittade olika egenskaper av olika diagram pooling metoder. Dessutom verifierar vi korrekthet i dessa förklarningsmetoder som vi utvecklade och mäter överenskommelserna mellan dem. Till slut, vi försöker utforska egenskaper av olika metoder för att förklara neuralt nätverks beslut och deras betydelse för att välja pooling metoder i grafisk neuralt nätverk.
Mazari, Ahmed. "Apprentissage profond pour la reconnaissance d’actions en vidéos." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS171.
Full textNowadays, video contents are ubiquitous through the popular use of internet and smartphones, as well as social media. Many daily life applications such as video surveillance and video captioning, as well as scene understanding require sophisticated technologies to process video data. It becomes of crucial importance to develop automatic means to analyze and to interpret the large amount of available video data. In this thesis, we are interested in video action recognition, i.e. the problem of assigning action categories to sequences of videos. This can be seen as a key ingredient to build the next generation of vision systems. It is tackled with AI frameworks, mainly with ML and Deep ConvNets. Current ConvNets are increasingly deeper, data-hungrier and this makes their success tributary of the abundance of labeled training data. ConvNets also rely on (max or average) pooling which reduces dimensionality of output layers (and hence attenuates their sensitivity to the availability of labeled data); however, this process may dilute the information of upstream convolutional layers and thereby affect the discrimination power of the trained video representations, especially when the learned action categories are fine-grained
GIACOPELLI, Giuseppe. "An Original Convolution Model to analyze Graph Network Distribution Features." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/553177.
Full textZulfiqar, Omer. "Detecting Public Transit Service Disruptions Using Social Media Mining and Graph Convolution." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103745.
Full textMaster of Science
Millions of people worldwide rely on public transit networks for their daily commutes and day to day movements. With the growth in the number of people using the service, there has been an increase in the number of daily passengers affected by service disruptions. This thesis and research involves proposing and developing three different approaches to help aid in the timely detection of these disruptions. In this work we have developed a pure data mining approach along with two deep learning models using neural networks and live data from Twitter to identify these disruptions. The data mining approach uses a set of dirsuption related input keywords to identify similar keywords within the live Twitter data. By collecting historical data we were able to create deep learning models that represent the vocabulary from the disruptions related Tweets in the form of a graph. A graph is a collection of data values where the data points are connected to one another based on their relationships. A longer chain of connection between two words defines a weak relationship, a shorter chain defines a stronger relationship. In our graph, words with similar contextual meanings are connected to each other over shorter distances, compared to words with different meanings. At the end we use a neural network as a classifier to scan this graph to learn the semantic relationships within our data. Afterwards, this learned information can be used to accurately classify the disruption related Tweets within a pool of random Tweets. Once all the proposed approaches have been developed, a benchmark evaluation is performed against other existing text classification techniques, to justify the effectiveness of the approaches. The final results indicate that the proposed graph based models achieved a higher accuracy, compared to the data mining model, and also outperformed all the other baseline models. Our Tweet-Level GCN had the highest accuracy of 89.9%.
Pappone, Francesco. "Graph neural networks: theory and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23893/.
Full textVialatte, Jean-Charles. "Convolution et apprentissage profond sur graphes." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0118/document.
Full textConvolutional neural networks have proven to be the deep learning model that performs best on regularly structured datasets like images or sounds. However, they cannot be applied on datasets with an irregular structure (e.g. sensor networks, citation networks, MRIs). In this thesis, we develop an algebraic theory of convolutions on irregular domains. We construct a family of convolutions that are based on group actions (or, more generally, groupoid actions) that acts on the vertex domain and that have properties that depend on the edges. With the help of these convolutions, we propose extensions of convolutional neural netowrks to graph domains. Our researches lead us to propose a generic formulation of the propagation between layers, that we call the neural contraction. From this formulation, we derive many novel neural network models that can be applied on irregular domains. Through benchmarks and experiments, we show that they attain state-of-the-art performances, and beat them in some cases
Bereczki, Márk. "Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Full textRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
Lamma, Tommaso. "A mathematical introduction to geometric deep learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23886/.
Full textKarimi, Ahmad Maroof. "DATA SCIENCE AND MACHINE LEARNING TO PREDICT DEGRADATION AND POWER OF PHOTOVOLTAIC SYSTEMS: CONVOLUTIONAL AND SPATIOTEMPORAL GRAPH NEURAL NETWORK." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1601082841477951.
Full textMartineau, Maxime. "Deep learning onto graph space : application to image-based insect recognition." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4024.
Full textThe goal of this thesis is to investigate insect recognition as an image-based pattern recognition problem. Although this problem has been extensively studied along the previous three decades, an element is to the best of our knowledge still to be experimented as of 2017: deep approaches. Therefore, a contribution is about determining to what extent deep convolutional neural networks (CNNs) can be applied to image-based insect recognition. Graph-based representations and methods have also been tested. Two attempts are presented: The former consists in designing a graph-perceptron classifier and the latter graph-based work in this thesis is on defining convolution on graphs to build graph convolutional neural networks. The last chapter of the thesis deals with applying most of the aforementioned methods to insect image recognition problems. Two datasets are proposed. The first one consists of lab-based images with constant background. The second one is generated by taking a ImageNet subset. This set is composed of field-based images. CNNs with transfer learning are the most successful method applied on these datasets
Book chapters on the topic "Graph Pooling and Convolution"
Gopinath, Karthik, Christian Desrosiers, and Herve Lombaert. "Adaptive Graph Convolution Pooling for Brain Surface Analysis." In Lecture Notes in Computer Science, 86–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20351-1_7.
Full textCorcoran, Padraig. "Function Space Pooling for Graph Convolutional Networks." In Lecture Notes in Computer Science, 473–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57321-8_26.
Full textWendlinger, Lorenz, Michael Granitzer, and Christofer Fellicious. "Pooling Graph Convolutional Networks for Structural Performance Prediction." In Machine Learning, Optimization, and Data Science, 1–16. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25891-6_1.
Full textSai Prasanna, M. S., and A. Senthil Thilak. "Diagnosis of Autism Spectrum Disorder Using Context-Based Pooling and Cluster-Graph Convolution Networks." In Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing, 147–56. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2746-3_15.
Full textLiu, Wenya, Zhi Yang, Haitao Gan, Zhongwei Huang, Ran Zhou, and Ming Shi. "Hierarchical Pooling Graph Convolutional Neural Network for Alzheimer’s Disease Diagnosis." In PRICAI 2023: Trends in Artificial Intelligence, 426–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7019-3_39.
Full textBacciu, Davide, and Luigi Di Sotto. "A Non-negative Factorization Approach to Node Pooling in Graph Convolutional Neural Networks." In Lecture Notes in Computer Science, 294–306. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-35166-3_21.
Full textLiu, Chuang, Yibing Zhan, Xueqi Ma, Dapeng Tao, Bo Du, and Wenbin Hu. "Masked Graph Auto-Encoder Constrained Graph Pooling." In Machine Learning and Knowledge Discovery in Databases, 377–93. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26390-3_23.
Full textZhang, Yu, Dajiang Liu, and Yongkang Xing. "Dynamic Convolution Pruning Using Pooling Characteristic in Convolution Neural Networks." In Communications in Computer and Information Science, 558–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92307-5_65.
Full textGuo, Yanwen, and Yu Cao. "Multi-subspace Attention Graph Pooling." In Lecture Notes in Computer Science, 114–26. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20865-2_9.
Full textIslam, Muhammad Ifte Khairul, Max Khanov, and Esra Akbas. "MPool: Motif-Based Graph Pooling." In Advances in Knowledge Discovery and Data Mining, 105–17. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33377-4_9.
Full textConference papers on the topic "Graph Pooling and Convolution"
Wang, Lingang, and Lei Sun. "MVMNET: Graph Classification Pooling Method with Maximum Variance Mapping." In 12th International Conference on Advanced Information Technologies and Applications. Academy and Industry Research Collaboration Center (AIRCC), 2023. http://dx.doi.org/10.5121/csit.2023.130613.
Full textDu, Jinlong, Senzhang Wang, Hao Miao, and Jiaqiang Zhang. "Multi-Channel Pooling Graph Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/199.
Full textXu, Yanan, Yanmin Zhu, Yanyan Shen, and Jiadi Yu. "Learning Shared Vertex Representation in Heterogeneous Graphs with Convolutional Networks for Recommendation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/642.
Full textQi, Zhang, and Ryosuke Saga. "Pooling Method Based on Edge Contraction for Graph Convolution Networks." In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2022. http://dx.doi.org/10.1109/smc53654.2022.9945438.
Full textZhou, Kaixiong, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. "Multi-Channel Graph Neural Networks." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/188.
Full textWang, Ziyun, Yang Ding, Shiyu Lu, and Cheng Han. "Mesh Model Codec Based on Fusion Graph Convolution and Parallel Pooling." In 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML). IEEE, 2023. http://dx.doi.org/10.1109/icicml60161.2023.10424758.
Full textCheung, Mark, John Shi, Lavender Jiang, Oren Wright, and Jose M. F. Moura. "Pooling in Graph Convolutional Neural Networks." In 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019. http://dx.doi.org/10.1109/ieeeconf44664.2019.9048796.
Full textZhu, Yiran, Xing Xu, Fumin Shen, Yanli Ji, Lianli Gao, and Heng Tao Shen. "PoseGTAC: Graph Transformer Encoder-Decoder with Atrous Convolution for 3D Human Pose Estimation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/188.
Full textJiang, Di, Yuan Cao, and Qiang Yang. "On the Channel Pruning using Graph Convolution Network for Convolutional Neural Network Acceleration." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/431.
Full textGao, Hongyang, Yongjun Chen, and Shuiwang Ji. "Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations." In WWW '19: The Web Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3308558.3313395.
Full text