Academic literature on the topic 'Graph of discontinuous maps'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph of discontinuous maps.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph of discontinuous maps"
Efremova, L. S., and E. N. Makhrova. "One-dimensional dynamical systems." Russian Mathematical Surveys 76, no. 5 (October 1, 2021): 821–81. http://dx.doi.org/10.1070/rm9998.
Full textLi, Denghui, Zhenbang Cao, Xiaoming Zhang, Celso Grebogi, and Jianhua Xie. "Strange Nonchaotic Attractors From a Family of Quasiperiodically Forced Piecewise Linear Maps." International Journal of Bifurcation and Chaos 31, no. 07 (June 15, 2021): 2150111. http://dx.doi.org/10.1142/s021812742150111x.
Full textScott, C. B., and Eric Mjolsness. "Graph diffusion distance: Properties and efficient computation." PLOS ONE 16, no. 4 (April 27, 2021): e0249624. http://dx.doi.org/10.1371/journal.pone.0249624.
Full textANDRES, JAN, PAVLA ŠNYRYCHOVÁ, and PIOTR SZUCA. "SHARKOVSKII'S THEOREM FOR CONNECTIVITY Gδ-RELATIONS." International Journal of Bifurcation and Chaos 16, no. 08 (August 2006): 2377–93. http://dx.doi.org/10.1142/s0218127406016136.
Full textMargielewicz, J., J. Wojnarowski, and S. Zawiślak. "Numerical Studies of Nonlinear Gearing Models Using Bond Graph Method." International Journal of Applied Mechanics and Engineering 23, no. 4 (November 1, 2018): 885–96. http://dx.doi.org/10.2478/ijame-2018-0049.
Full textBellettini, Giovanni, Alaa Elshorbagy, Maurizio Paolini, and Riccardo Scala. "On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions." Annali di Matematica Pura ed Applicata (1923 -) 199, no. 2 (July 9, 2019): 445–77. http://dx.doi.org/10.1007/s10231-019-00887-0.
Full textAbello, James. "Hierarchical graph maps." Computers & Graphics 28, no. 3 (June 2004): 345–59. http://dx.doi.org/10.1016/j.cag.2004.03.012.
Full textBazhenov, Viktor, Olha Pogorelova, and Tetiana Postnikova. "Transient Chaos in Platform-vibrator with Shock." Strength of Materials and Theory of Structures, no. 106 (May 24, 2021): 22–40. http://dx.doi.org/10.32347/2410-2547.2021.106.22-40.
Full textBischi, Gian-Italo, Laura Gardini, and Fabio Tramontana. "Bifurcation curves in discontinuous maps." Discrete & Continuous Dynamical Systems - B 13, no. 2 (2010): 249–67. http://dx.doi.org/10.3934/dcdsb.2010.13.249.
Full textPavlovic, Branka. "Discontinuous Maps from Lipschitz Algebras." Journal of Functional Analysis 155, no. 2 (June 1998): 436–54. http://dx.doi.org/10.1006/jfan.1997.3232.
Full textDissertations / Theses on the topic "Graph of discontinuous maps"
Tealdi, Lucia. "The relaxed area of maps from the plane to the plane with a line discontinuity, and the role of semicartesian surfaces." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4846.
Full textPring, Stephen Robert. "Discontinuous maps with applications to impacting systems." Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518113.
Full textMcCall, Kevin J. "3-Maps And Their Generalizations." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5581.
Full textOLIVEIRA, CARLOS VINICIUS SOUSA DE. "DISPARITY MAPS USING GRAPH CUTS WITH MULTI-RESOLUTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16430@1.
Full textReconstruir a informação 3D de uma cena é uma tarefa bastante comum em Visão Computacional. Uma das técnicas mais utilizadas para realizar esta tarefa é a correspondência por estéreo, que consiste basicamente em, dadas duas imagens referentes a uma mesma cena vista de pontos diferentes, determinar os pontos correspondentes entre essas duas imagens e armazenar essa informação em um mapa de disparidades. Até hoje diversos métodos foram propostos para resolver o problema de estéreo com esforço computacional viável e mantendo a qualidade dos resultados. Essa, entretanto, é uma tarefa bastante árdua e que difícilmente alcança resultados precisos com pouco esforço computacional. Nesse âmbito, uma técnica que tem sido muito estudada são os Cortes de Grafo (Graph Cuts), que almeja resolver o problema de minimização de energia em tempo polinomial. Nesse caso o problema de estéreo é mapeado como um problema de minimização de energia e desta forma solucionado utilizando cortes de grafo. Neste trabalho estudamos as técnicas de cortes de grafo mais recentes e eficientes e propomos um método para a determinação de correspondências entre duas imagens num contexto de multi-resolução, no qual uma pirâmide Gaussiana para as imagens é construída e a técnica de cortes de grafo é aplicada em níveis menores, otimizando a performance e obtendo resultados mais precisos através da utilização do algoritmo de expansão-alfa. São revisadas as técnicas de cortes de grafo e de multi-resolução e os resultados obtidos são apresentados e avaliados em relação a métodos semelhantes.
Reconstructing the 3D information of a scene is a common task in Computer Vision. Stereo matching is one of the most investigated techniques used to perform this task, which basically consists of, given two images of a scene seen from different view points, determining corresponding pixels in these two images and store this information in a disparity map. Several methods have been proposed to solve the stereo problem keeping good performance and giving good quality results. This is however a very arduos task which hardly achieves precise results with low computational power. In this context, the Graph Cuts method has been very much considered, which aims to solve the energy minimization problem in polinomial time. In this case the stereo problem can be modelled as an energy minimization problem and, thus solved using the Graph Cuts technique. In this work we investigate the most recent and efficient Graph Cuts methods and propose a method for establishing the correspondences between two images in the context of multi-resolution, in which a Gaussian pyramid for the input images is built and the Graph Cuts methods is applied in coarser levels, optimizing the performance and getting more precise results through the use of the alfa-expansion algorithm. The Graph Cuts and multi-resolution techniques are reviewed and the results of the proposed method are presented and evaluated compared to similar methods.
Fu, Xin-Chu. "Dynamical behaviour of a class of discontinuous maps and related topics." Thesis, University of Exeter, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366618.
Full textČukić, Sonja. "Topology of discrete structures : graph maps and Bier spheres /." Zürich : ETH, 2006. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16744.
Full textBolelli, Maria Virginia. "Diffusion Maps for Dimensionality Reduction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18246/.
Full textSadikhov, Teymur. "Stability, dissipativity, and optimal control of discontinuous dynamical systems." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53635.
Full textJuher, Barrot David. "Set of periods, topological entropy and combinatorial dynamics for tree and graph maps." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/3078.
Full textEl problema central és la caracterització del conjunt de períodes de totes les òrbites periòdiques d'una aplicació contínua d'un arbre en ell mateix. El teorema de Sharkovskii (1964) fou el primer resultat remarcable en aquest sentit. Aquest bonic teorema estableix que el conjunt de períodes d'una aplicació de l'interval és un segment inicial d'un ordre lineal (ordre de Sharkovskii). Recíprocament, donat qualsevol segment inicial d'aquest ordre, existeix una aplicació de l'interval que el té com a conjunt de períodes.
Durant les darreres dècades hi ha hagut diversos intents de trobar resultats similars al de Sharkovskii per a altres espais 1-dimensionals. Recentment, el cas d'arbres ha estat tractat especialment. El Teorema de Baldwin (1991) resol el problema en el cas de les n-estrelles i ha estat un dels avenços més significatius en aquesta direcció. Aquest resultat estableix que el conjunt de períodes per a una aplicació de la n-estrella és unió finita de segments inicials de n ordres parcials (ordres de Baldwin), i recíprocament.
El nostre objectiu principal és descriure l'estructura del conjunt de períodes de qualsevol aplicació contínua d'un arbre T en termes de les propietats combinatòries i topològiques de T: quantitat i disposició d'extrems, vèrtexs i arestes. En el capítol 1 discutim detalladament la manera més natural d'atacar el problema, i proposem una estratègia consistent en tres etapes consecutives. L'eina principal d'aquesta estratègia són els models minimals de patrons. Aquestes nocions es van desenvolupar i utilitzar durant les darreres dècades en el context de l'interval. En canvi, no es disposava de definicions operatives equivalents per a arbres, fins que al 1997 Alseda, Guaschi, Los, Manyosas i Mumbru proposaren de definir el patró d'un conjunt finit invariant P essencialment com una classe d'homotopia d'aplicacions relativa a P, i provaren (constructivament) que sempre existeix un model P-canònic amb propietats de minimalitat dinàmica.
L'objectiu del capítol 2 és implementar completament el programa proposat, duent a terme les etapes 2 i 3. El resultat principal d'aquest capítol diu que, donada una aplicació g definida en un arbre T, existeix un conjunt S de successions finites d'enters positius tal que el conjunt de períodes de g és (excepte un conjunt finit explícitament acotat) una unió finita de segments inicials d'ordres de Baldwin donats en termes del conjunt S, que depèn de les propietats combinatòries de l'arbre T. També provem el recíproc.
En el capítol 3 duem a terme experiments informàtics sobre la minimalitat dinàmica dels models canònics. En un esperit de programació modular, hem dissenyat moltes funcions autocontingudes que poden ser usades per implementar una gran varietat d'aplicacions d'ús divers. Entre altres, tenim funcions que calculen el model canònic d'un patró donat per l'usuari, calculen la matriu de Markov associada a un model monòton a trossos i extreuen tots els llaços simples d'una matriu de transició de Markov.
Finalment, en el capítol 4 generalitzem alguns resultats de Block i Coven, Misiurewicz i Nitecki i Takahashi, en els quals l'entropia topològica d'una aplicació de l'interval s'aproxima per les entropies de les seves òrbites periòdiques. Hem provat relacions anàlogues en el context de les aplicacions de grafs.
This memoir deals with one-dimensional discrete dynamical systems, from both a topological and a combinatorial point of view. We are interested in the periodic orbits and topological entropy of continuous self-maps defined on trees and graphs.
The central problem is the characterisation of the set of periods of all periodic orbits exhibited by any continuous map from a tree into itself. The Sharkovskii's Theorem (1964) was the first remarkable result in this setting. This theorem states that the set of periods of any interval map is an initial segment of a linear ordering (the so-called Sharkovskii ordering). Conversely, given any initial segment of the Sharkovskii ordering, there exists an interval map whose set of periods coincides with it.
During the last decades there have been several attempts to find results similar to that of Sharkovskii for other one-dimensional spaces. Recently, the case of maps defined on general trees has been specially treated. Baldwin's Theorem (1991), which solves the problem in the case of n-stars for any n, has been one of the most significant advances in this direction. This result states that the set of periods of any n-star map is a finite union of initial segments of n-many partial orderings (the Baldwin orderings). The converse is also true.
Our main purpose is to describe the generic structure of the set of periods of any continuous self-map defined on a tree T in terms of the combinatorial and topological properties of T: amount and arrangement of endpoints, vertices and edges. In Chapter 1 we make a detailed discussion about which is the more natural approach to this problem, and we propose a strategy consisting on three consecutive stages and using minimal models of patterns as the main tool. These notions were developed in the context of interval maps and widely used in a number of papers during the last two decades. However, equivalent operative definitions for tree maps were not available until 1997, when Alseda, Guaschi, Los, Manosas and Mumbru proposed to define the pattern of a finite invariant set P essentially as a homotopy class of maps relative to the points of P, and proved (constructively) that there always exists a P-canonical model displaying dynamic minimality properties.
The goal of Chapter 2 is to implement in full the above programme by completing stages 2 and 3. The main result of Chapter 2 tells us that for each tree map g defined on a tree T there exists a finite set S of sequences of positive integers such that the set of periods of g is (up to an explicitly bounded finite set) a finite union of initial segments of Baldwin orderings, given in terms of the set S, which depends on the combinatorial properties of the tree T. We also prove the converse result.
In Chapter 3 we report some computer experiments on the minimality of the dynamics of canonical models. In a spirit of modular programming, we have designed lots of self-contained functions which can be used to implement a wide variety of several-purpose software. Among other, we have functions that: compute the canonical model of a pattern provided by the user, calculate the Markov transition matrix associated to a piecewise monotone tree map and extract all the simple loops of a given length from a Markov transition matrix.
Finally, in Chapter 4 we generalize some results of Block & Coven, Misiurewicz & Nitecki and Takahashi, where the topological entropy of an interval map was approximated by the entropies of its periodic orbits. We prove analogous relations in the setting of graph maps.
Zhang, Cheng. "Continuous and quad-graph integrable models with a boundary : reflection maps and 3D-boundary consistency." Thesis, City University London, 2013. http://openaccess.city.ac.uk/3016/.
Full textBooks on the topic "Graph of discontinuous maps"
Institute, SAS, ed. SAS/GRAPH user's guide, release 6.03 edition. Cary, N.C: SAS Institute, 1991.
Find full textInstitute, SAS, ed. SAS/GRAPH software, map data sets: Release 6.06. Cary, NC: SAS Institute, 1990.
Find full textYap, H. P. Total colourings of graphs. Berlin: Springer, 1996.
Find full textI, Visentin Terry, ed. An atlas of the smaller maps in orientable and nonorientable surfaces. Boca Raton, FL: Chapman & Hall/CRC, 2001.
Find full textSchurz, Henri, Philip J. Feinsilver, Gregory Budzban, and Harry Randolph Hughes. Probability on algebraic and geometric structures: International research conference in honor of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea, June 5-7, 2014, Southern Illinois University, Carbondale, Illinois. Edited by Mohammed Salah-Eldin 1946- and Mukherjea Arunava 1941-. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textHarley, Eric Richard. Graph algorithms for assembling integrated genome maps. 2003.
Find full textGardini, Laura, Viktor Avrutin, Michael Schanz, and Irina Sushko. Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures. World Scientific Publishing Co Pte Ltd, 2017.
Find full textPress, Midori No Me. Fantasy Maps: 150 Page 5x5 Grid Graph Paper. Independently Published, 2018.
Find full textSmoothing point data into maps using SAS/GRAPH software. [Ogden, UT]: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1996.
Find full textMontes, J. Dungeons Maps: Graph Paper for Tabletop Games and Adventures. Independently Published, 2021.
Find full textBook chapters on the topic "Graph of discontinuous maps"
Bonnington, C. Paul, and Charles H. C. Little. "Maps." In The Foundations of Topological Graph Theory, 23–37. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2540-9_2.
Full textBies, Sandra, and Marc van Kreveld. "Time-Space Maps from Triangulations." In Graph Drawing, 511–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_45.
Full textHayman, Jonathan, and Tobias Heindel. "On Pushouts of Partial Maps." In Graph Transformation, 177–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09108-2_12.
Full textGansner, Emden R., Yifan Hu, and Stephen G. Kobourov. "GMap: Drawing Graphs as Maps." In Graph Drawing, 405–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_38.
Full textMilea, Tal, Okke Schrijvers, Kevin Buchin, and Herman Haverkort. "Shortest-Paths Preserving Metro Maps." In Graph Drawing, 445–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_45.
Full textGronemann, Martin, and Michael Jünger. "Drawing Clustered Graphs as Topographic Maps." In Graph Drawing, 426–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_38.
Full textFink, Martin, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann, and Alexander Wolff. "Drawing Metro Maps Using Bézier Curves." In Graph Drawing, 463–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_41.
Full textFischer, Ingrid. "Modeling Discontinuous Constituents with Hypergraph Grammars." In Applications of Graph Transformations with Industrial Relevance, 163–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25959-6_12.
Full textGansner, Emden R., Yifan Hu, and Stephen North. "Visualizing Streaming Text Data with Dynamic Graphs and Maps." In Graph Drawing, 439–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_39.
Full textBekos, Michael A., Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. "Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps." In Graph Drawing, 49–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31843-9_7.
Full textConference papers on the topic "Graph of discontinuous maps"
Garzón, J., J. Galeano, C. López, and D. Duque. "Correction of discontinuous phase maps in structured light perfilometry." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.jsua18.
Full textPapoutsakis, Andreas, Sergei Sazhin, Steven Begg, Ionut Danaila, and Francky Luddens. "A new approach to modelling the two way coupling for momentum transfer in a hollow-cone spray." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4671.
Full textMoll, S. "Some remarks providing discontinuous maps on some Cp(X) spaces." In Function Spaces VIII. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-10.
Full textZouaq, Amal, Dragan Gasevic, and Marek Hatala. "Ontologizing concept maps using graph theory." In the 2011 ACM Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1982185.1982537.
Full textJackson, B. N., S. Aluru, and P. S. Schnable. "Consensus genetic maps: a graph theoretic approach." In 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05). IEEE, 2005. http://dx.doi.org/10.1109/csb.2005.26.
Full textYANG, HANBIAO, and LIU YANG. "A TOPOLOGICAL POSITION OF THE SET OF STRONGLY DISCONTINUOUS MAPS IN THE SET OF UPPER SEMI-CONTINUOUS MAPS." In Proceedings of the QL&SC 2012. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814401531_0082.
Full textDerrow-Pinion, Austin, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc Nunkesser, et al. "ETA Prediction with Graph Neural Networks in Google Maps." In CIKM '21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459637.3481916.
Full textAldibaja, Mohammad, Ryo Yanase, Tae Hyon Kim, Akisue Kuramoto, Keisuke Yoneda, and Noaki Suganuma. "Accurate Elevation Maps based Graph-Slam Framework for Autonomous Driving*." In 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019. http://dx.doi.org/10.1109/ivs.2019.8814007.
Full textCarter, Andrew, Andrew Rodriguez, Yiming Yang, and Scott Meyer. "Nanosecond Indexing of Graph Data With Hash Maps and VLists." In SIGMOD/PODS '19: International Conference on Management of Data. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3299869.3314044.
Full textLin, Zhixing, Chundi Xiu, Wei Yang, and Dongkai Yang. "A Graph-Based Topological Maps Generation Method for Indoor Localization." In 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS). IEEE, 2018. http://dx.doi.org/10.1109/upinlbs.2018.8559830.
Full textReports on the topic "Graph of discontinuous maps"
Baader, Franz. Least common subsumers, most specific concepts, and role-value-maps in a description logic with existential restrictions and terminological cycles. Technische Universität Dresden, 2002. http://dx.doi.org/10.25368/2022.125.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 18. Hilbert Press, 2018. http://dx.doi.org/10.56441/hilbertpress.1818.9585.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 20. Hilbert Press, 2020. http://dx.doi.org/10.56441/hilbertpress.2048.3738.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 19. Hilbert Press, 2019. http://dx.doi.org/10.56441/hilbertpress.1927.9364.
Full text