Academic literature on the topic 'Graph algorithmic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Graph algorithmic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Graph algorithmic"
Möhring, Rolf H. "Algorithmic graph theory and perfect graphs." Order 3, no. 2 (June 1986): 207–8. http://dx.doi.org/10.1007/bf00390110.
Full textWilson, B. J. "ALGORITHMIC GRAPH THEORY." Bulletin of the London Mathematical Society 18, no. 6 (November 1986): 630–31. http://dx.doi.org/10.1112/blms/18.6.630.
Full textChen, Jianer. "Algorithmic graph embeddings." Theoretical Computer Science 181, no. 2 (July 1997): 247–66. http://dx.doi.org/10.1016/s0304-3975(96)00273-3.
Full textde Werra, D. "Algorithmic graph theory." European Journal of Operational Research 26, no. 1 (July 1986): 179. http://dx.doi.org/10.1016/0377-2217(86)90177-3.
Full textLavrik, V. N. "Graph algorithmic algebra." Cybernetics 24, no. 5 (September 1988): 548–54. http://dx.doi.org/10.1007/bf01255666.
Full textKHOUSSAINOV, BAKHADYR, JIAMOU LIU, and MIA MINNES. "Unary automatic graphs: an algorithmic perspective." Mathematical Structures in Computer Science 19, no. 1 (February 2009): 133–52. http://dx.doi.org/10.1017/s0960129508007342.
Full textBakonyi, Mihály, and Erik M. Varness. "Algorithmic aspects of bipartite graphs." International Journal of Mathematics and Mathematical Sciences 18, no. 2 (1995): 299–304. http://dx.doi.org/10.1155/s0161171295000378.
Full textKorpelainen, Nicholas, Vadim V. Lozin, Dmitriy S. Malyshev, and Alexander Tiskin. "Boundary properties of graphs for algorithmic graph problems." Theoretical Computer Science 412, no. 29 (July 2011): 3545–54. http://dx.doi.org/10.1016/j.tcs.2011.03.001.
Full textCicerone, Serafino, and Gabriele Di Stefano. "Getting new algorithmic results by extending distance-hereditary graphs via split composition." PeerJ Computer Science 7 (July 7, 2021): e627. http://dx.doi.org/10.7717/peerj-cs.627.
Full textKhalid Hamad Alnafisah, Khalid Hamad Alnafisah. "An Algorithmic Solution for the “Hair Ball” Problem in Data Visualization." Journal of engineering sciences and information technology 2, no. 4 (December 30, 2018): 86–66. http://dx.doi.org/10.26389/ajsrp.k220918.
Full textDissertations / Theses on the topic "Graph algorithmic"
Bessy, Stéphane. "Some problems in graph theory and graphs algorithmic theory." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00806716.
Full textKanté, Mamadou Moustapha. "Graph structurings : some algorithmic applications." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13693/document.
Full textEvery property definable in onadic second order logic can be checked in polynomial-time on graph classes of bounded clique-width. Clique-width is a graph parameter defined in an algebraical way, i.e., with operations ``concatenating graphs'' and that generalize concatenation of words.Rank-width, defined in a combinatorial way, is equivalent to the clique-width of undirected graphs. We give an algebraic characterization of rank-width and we show that rank-width is linearly bounded in term of tree-width. We also propose a notion of ``rank-width'' of directed graphs and a vertex-minor inclusion for directed graphs. We show that directed graphs of bounded ``rank-width'' are characterized by a finite list of finite directed graphs to exclude as vertex-minor. Many graph classes do not have bounded rank-width, e.g., planar graphs. We are interested in labeling schemes on these graph classes. A labeling scheme for a property P in a graph G consists in assigning a label, as short as possible, to each vertex of G and such that we can verify if G satisfies P by just looking at the labels. We show that every property definable in first order logic admit labeling schemes with labels of logarithmic size on certain graph classes that have bounded local clique-width. Bounded degree graph classes, minor closed classes of graphs that exclude an apex graph as a minor have bounded local clique-width. If x and y are two vertices and X is a subset of the set of vertices and Y is a subset of the set of edges, we let Conn(x,y,X,Y) be the graph property x and y are connected by a path that avoids the vertices in X and the edges in Y. This property is not definable by a first order formula. We show that it admits a labeling scheme with labels of logarithmic size on planar graphs. We also show that Conn(x,y,X,0) admits short labeling schemes with labels of logarithmic size on graph classes that are ``planar gluings'' of graphs of small clique-width and with limited overlaps
Rocha, Leonardo Sampaio. "Algorithmic aspects of graph colouring heuristics." Nice, 2012. https://tel.archives-ouvertes.fr/tel-00759408.
Full textA proper coloring of a graph is a function that assigns a color to each vertex with the restriction that adjacent vertices are assigned with distinct colors. Proper colorings are a natural model for many problems, like scheduling, frequency assignment and register allocation. The problem of finding a proper coloring of a graph with the minimum number of colors is a well-known NP-hard problem. In this thesis we study the Grundy number and the b-chromatic number of graphs, two parameters that evaluate some heuristics for finding proper colorings. We start by giving the state of the art of the results about these parameters. Then, we show that the problem of determining the Grundy Number of bipartite or chordal graphs is NP-hard, but it is solvable in polynomial time for P5-free bipartite graphs. After, we show that the problem of determining the b-chromatic number or a chordal distance-hereditary graph is NP-hard, and we give polynomial-time algorithms for some subclasses of block graphs, complement of bipartite graphs and p4-sparse graphs. We also consider the fixed-parameter tractability of determining the Grundy number and the b-chromatic number, and in particular we show that deciding if the Grundy number (or the b-chromatic number) of a graph G is at least V(G)-k admits an FPT algorithm when k is the parameter. Finally, we consider the computational complexity of many problems related to comparing the b-chromatic number and the Grundy number with various other related parameter of a graph
De, Lara Nathan. "Algorithmic and software contributions to graph mining." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT029.
Full textSince the introduction of Google's PageRank method for Web searches in the late 1990s, graph algorithms have been part of our daily lives. In the mid 2000s, the arrival of social networks has amplified this phenomenon, creating new use-cases for these algorithms. Relationships between entities can be of multiple types: user-user symmetric relationships for Facebook or LinkedIn, follower-followee asymmetric ones for Twitter or even user-content bipartite ones for Netflix or Amazon. They all come with their own challenges and the applications are numerous: centrality calculus for influence measurement, node clustering for knowledge discovery, node classification for recommendation or embedding for link prediction, to name a few.In the meantime, the context in which graph algorithms are applied has rapidly become more constrained. On the one hand, the increasing size of the datasets with millions of entities, and sometimes billions of relationships, bounds the asymptotic complexity of the algorithms for industrial applications. On the other hand, as these algorithms affect our daily lives, there is a growing demand for explanability and fairness in the domain of artificial intelligence in general. Graph mining is no exception. For example, the European Union has published a set of ethics guidelines for trustworthy AI. This calls for further analysis of the current models and even new ones.This thesis provides specific answers via a novel analysis of not only standard, but also extensions, variants, and original graph algorithms. Scalability is taken into account every step of the way. Following what the Scikit-learn project does for standard machine learning, we deem important to make these algorithms available to as many people as possible and participate in graph mining popularization. Therefore, we have developed an open-source software, Scikit-network, which implements and documents the algorithms in a simple and efficient way. With this tool, we cover several areas of graph mining such as graph embedding, clustering, and semi-supervised node classification
Wolff, Tanya Layng. "Cayley networks, group, graph theoretic and algorithmic properties." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq22426.pdf.
Full textTamura, Takeyuki. "Graph Algorithmic Approaches for Structure Inferences in Bioinformatics." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/68893.
Full textJaeger, Mordechai. "An algorithmic approach to center location and related problems." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185767.
Full textPandey, Arti. "Algorithmic aspects of domination and its variations." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7038.
Full textThiebaut, Jocelyn. "Algorithmic and structural results on directed cycles in dense digraphs." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS059.
Full textIn this thesis, we are interested in some algorithmic and structural problems of (oriented) cycle packing in dense digraphs. These problems are mainly motivated by understanding the structure of such graphs, but also because many algorithmic problems are easy (i.e. resolvable in polynomial time) on acyclic digraphs while they are NP-difficult in the general case.More specifically, we first study the packing of cycles and the packing of triangles in tournaments. These problems are the two dual problems (from a linear programming point of view) of feedback arc/vertex set that have received a lot of attention in literature. Among other things, we show that there is no polynomial algorithm to find a maximum collection of cycles (respectively triangles) vertex or arc-disjoint in tournaments, unless P = NP. We are also interested in algorithms of approximations and parameterized complexity of these different problems.Then, we study these problems in the specific case where the tournament admits a feedback arc set which is a matching. Such tournaments are said to be sparse. Surprisingly, the problem remains difficult in the case of vertex-disjoint triangles, but the packing of triangles and the packing of arc-disjoint cycles become polynomial. Thus, we explore the approximation and parameterized complexity of the vertex-disjoint case in sparse tournaments.Finally, we answer positively to a structural conjecture on k-regular bipartite tournaments by Manoussakis, Song and Zhang from 1994. Indeed, we show that all digraphs of this non-isomorphic class to a particular digraph have for every p even with 4 leq p leq |V(D)| - 4 a C cycle of size p such that D V(C) is Hamiltonian
Kalzi, Hasan. "Graph Complexity Based on a Heuristic That Involves the Algorithmic Complexity Behaviour of Multiplex Networks on Graphs." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302104.
Full textEftersom problemet med att bestämma komplexiteten hos flerfaldiga nätverk är ett NP-svårt problem, bestämde jag mig för att beräkna komplexiteten hos grafer med hjälp av heuristik. Jag är den första på den här vägen som gjorde den här typen av beräkningar. Jag ville alltid definiera komplexitet som en matematisk egenskap i diagramstrukturen. Denna uppsats undersöker beteendet hos den algoritmiska komplexiteten av flerfaldiga nätverk i grafer för att upptäcka om det är möjligt att extrahera ett matematiskt uttryck som kan representera det. Om vi får en matematisk representation för grafkomplexitet, hanterar vi detta problem från det NP- hårda problemområdet. Den kan också användas som en av diagrammets egenskaper, såsom antalet noder, kanter eller motiv av en viss storlek. Den algoritmiska komplexiteten av flerfaldiga nätverk definieras av Santoro och Nicosia i deras forskningspapper [1]. Således kan ett tillvägagångssätt som använder en heuristisk strategi vara det enklaste sättet att komma nära en optimal matematisk definition av komplexiteten i grafer. I denna avhandling introducerar jag den senaste representationen av den algoritmiska komplexiteten [2] för flerfaldiga nätverk ur ett algoritmiskt perspektiv för informationsteori [3]. Denna definition beror främst på Kolmogorov-komplexiteten [4, 5 ]. Jag studerade resultaten av de heuristiska algoritmiska komplexitetsmätningarna på olika och slumpmässiga nätverk som skiljer sig åt i storlek-4-motivnummer. Jag hittade imponerande resultat som visar en logaritmisk trendlinje (eller kanske krafttrendlinje) för den algoritmiska komplexiteten med att öka antalet lager. Den algoritmiska komplexiteten minskar också när antalet motiv ökar. Således kan det finnas en matematisk koppling mellan den algoritmiska komplexiteten, antalet motiv, antalet lager, antalet kanter och antalet noder. Dessutom krävs mer forskning för att undersöka och uppfinna ett matematiskt uttryck mellan dessa egenskaper. Dessutom behövs mer forskning för att hävda riktigheten av dessa slutsatser på andra olika typer av nätverk.
Books on the topic "Graph algorithmic"
Golumbic, Martin Charles. Algorithmic graph theory and perfect graphs. 2nd ed. Amsterdam: North Holland, 2004.
Find full textAlgorithmic graph theory. London: Prentice-Hall, 1990.
Find full textAlgorithmic graph theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textMcHugh, James A. Algorithmic graph theory. Englewood Cliffs, N.J: Prentice Hall, 1990.
Find full textGolumbic, Martin Charles. Algorithmic graph theory and perfect graphs. Amsterdam: Elsevier, 2004.
Find full textNagamochi, Hiroshi. Algorithmic aspects of graph connectivity. New York: Cambridge University Press, 2008.
Find full textToshihide, Ibaraki, ed. Algorithmic aspects of graph connectivity. New York: Cambridge University Press, 2008.
Find full textChartrand, G. Applied and algorithmic graph theory. New York: McGraw-Hill, 1993.
Find full textChartrand, G. Applied and algorithmic graph theory. London: McGraw-Hill, 1993.
Find full textChartrand, Gary. Applied and algorithmic graph theory. New York: McGraw-Hill, 1993.
Find full textBook chapters on the topic "Graph algorithmic"
Hougardy, Stefan, and Jens Vygen. "Simple Graph Algorithms." In Algorithmic Mathematics, 85–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39558-6_7.
Full textHenning, Michael A., and Jan H. van Vuuren. "Algorithmic complexity." In Graph and Network Theory, 55–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03857-0_3.
Full textChen, Jianer. "Algorithmic graph embeddings." In Lecture Notes in Computer Science, 151–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0030829.
Full textGelfand, Natasha, and Roberto Tamassia. "Algorithmic Patterns for Orthogonal Graph Drawing." In Graph Drawing, 138–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-37623-2_11.
Full textCastelló, R., R. Mili, and I. G. Tollis. "An Algorithmic Framework for Visualizing Statecharts." In Graph Drawing, 139–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44541-2_13.
Full textZhang, Zhongyi, and Jiong Guo. "Colorful Graph Coloring." In Frontiers of Algorithmic Wisdom, 141–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20796-9_11.
Full textTaillard, Éric D. "Elements of Graphs and Complexity Theory." In Design of Heuristic Algorithms for Hard Optimization, 3–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13714-3_1.
Full textGrohe, Martin. "Algorithmic Meta Theorems." In Graph-Theoretic Concepts in Computer Science, 30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92248-3_3.
Full textKouroupas, Georgios, Evangelos Markakis, Christos Papadimitriou, Vasileios Rigas, and Martha Sideri. "The Web Graph as an Equilibrium." In Algorithmic Game Theory, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48433-3_16.
Full textLin, Tao, and Peter Eades. "Integration of declarative and algorithmic approaches for layout creation." In Graph Drawing, 376–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58950-3_392.
Full textConference papers on the topic "Graph algorithmic"
Klobas, Nina, and Matjaž Krnc. "Fast Recognition of Some Parametric Graph Families." In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.7.
Full textBei, Xiaohui, Youming Qiao, and Shengyu Zhang. "Networked Fairness in Cake Cutting." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/508.
Full textBonani, Andrea, Vincenzo Del Fatto, Gabriella Dodero, and Rosella Gennari. "Tangibles for Graph Algorithmic Thinking." In SIGCSE '18: The 49th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159450.3162267.
Full textEiben, Eduard, Robert Ganian, Dušan Knop, and Sebastian Ordyniak. "Unary Integer Linear Programming with Structural Restrictions." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/179.
Full textRehman, Akif, Masab Ahmad, and Omer Khan. "Exploring accelerator and parallel graph algorithmic choices for temporal graphs." In PPoPP '20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3380536.3380540.
Full textVajapeyam, Sridhar, and Michael Keefe. "Triangulated Surface Construction From Scattered 3-D Points." In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0087.
Full textGrande, Daniel, Felice Mancini, and Pradeep Radhakrishnan. "An Automated Graph Grammar Based Tool to Automatically Generate System Bond Graphs for Dynamic Analysis." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59941.
Full textHarshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchwerger. "An Algorithmic Approach to Communication Reduction in Parallel Graph Algorithms." In 2015 International Conference on Parallel Architecture and Compilation (PACT). IEEE, 2015. http://dx.doi.org/10.1109/pact.2015.34.
Full textSchidler, André, and Stefan Szeider. "Computing Twin-width with SAT and Branch & Bound." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/224.
Full textBorowiecki, Piotr. "Algorithmic bounds on the chromatic number of a graph." In 2008 1st International Conference on Information Technology (IT 2008). IEEE, 2008. http://dx.doi.org/10.1109/inftech.2008.4621642.
Full textReports on the topic "Graph algorithmic"
Grossman, Max, Howard Porter Pritchard Jr., Zoran Budimlic, and Vivek Sarkar. Graph 500 on OpenSHMEM: Using a Practical Survey of Past Work to Motivate Novel Algorithmic Developments. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1338682.
Full textHrebeniuk, Bohdan V. Modification of the analytical gamma-algorithm for the flat layout of the graph. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2882.
Full textParekh, Ojas, Yipu Wang, Yang Ho, Cynthia Phillips, Ali Pinar, James Aimone, and William Severa. Neuromorphic Graph Algorithms. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1829422.
Full textWerner, Eric, and Jonathan Chu. Graph Algorithms on Future Architectures. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada611678.
Full textStriuk, Andrii, Olena Rybalchenko, and Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4462.
Full textMcLendon, William Clarence, III, and Brian Neil Wylie. Graph algorithms in the titan toolkit. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/1001014.
Full textGEORGIA INST OF TECH ATLANTA. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada266033.
Full textThomas, Robin. Graph Minors: Structure Theory and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271851.
Full textGil, Oliver Fernández, and Anni-Yasmin Turhan. Answering Regular Path Queries Under Approximate Semantics in Lightweight Description Logics. Technische Universität Dresden, 2020. http://dx.doi.org/10.25368/2022.261.
Full textPlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada292630.
Full text