To see the other types of publications on this topic, follow the link: Granulite facies metamorphism.

Journal articles on the topic 'Granulite facies metamorphism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Granulite facies metamorphism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ENGVIK, A. K., and B. BINGEN. "Granulite-facies metamorphism of the Palaeoproterozoic – early Palaeozoic gneiss domains of NE Mozambique, East African Orogen." Geological Magazine 154, no. 3 (April 13, 2016): 491–515. http://dx.doi.org/10.1017/s0016756816000145.

Full text
Abstract:
AbstractGranulite-facies metamorphism recorded in NE Mozambique is attributed to three main tectonothermal events, covering more than 1400 Ma from Palaeoproterozoic – early Palaeozoic time. (1) Usagaran–Ubendian high-grade metamorphism of Palaeoproterozoic age is documented in the Ponta Messuli Complex by Grt-Sil-Crd-bearing metapelites, estimated to pressure (P) 0.75 ± 0.08 GPa and temperature (T) 765 ± 96°C. The post-peak P-T path is characterized by decompression followed by near-isobaric cooling. (2) Irumidian medium- to high-pressure granulite-facies metamorphism is evident in the Unango and Marrupa complexes of late Mesoproterozoic – early Neoproterozoic age. High-pressure granulite-facies is documented by Grt-Cpx-Pl-Rt-bearing mafic granulites in the northwestern part of the Unango Complex, with peak conditions up to P = 1.5 GPa and T = 850°C. Medium-pressure granulite-facies conditions recording P of c. 1.15 GPa and T of 875°C are documented by Grt-Opx-Cpx-Pl assemblage in mafic granulites and charnockitic gneisses of the central part of the Unango Complex. (3) Tectonothermal activity during the Ediacaran–Cambrian Kuunga Orogeny is recorded in the Mesoproterozoic gneiss complexes as amphibolite facies to medium-pressure granulite-facies metamorphism. Granulite facies are documented by Grt-Opx-Cpx-Pl-bearing mafic granulites and charnockitic gneisses, reporting P = 0.99 ± 13 GPa at T = 738 ± 84°C in the Unango Complex and P = 0.92 ± 18 GPa at T = 841 ± 135°C in the Marrupa Complex. This metamorphism is attributed to crustal thickening related to overriding of the Cabo Delgado Nappe Complex, and shorthening along the Lurio Belt during the early Palaeozoic Kuunga Orogeny.
APA, Harvard, Vancouver, ISO, and other styles
2

Timmermann, Hilke, Rebecca A. Jamieson, Randall R. Parrish, and Nicholas G. Culshaw. "Coeval migmatites and granulites, Muskoka domain, southwestern Grenville Province, Ontario." Canadian Journal of Earth Sciences 39, no. 2 (February 1, 2002): 239–58. http://dx.doi.org/10.1139/e01-076.

Full text
Abstract:
We present new field observations and petrologic and geochronological data from the Muskoka domain in the southwestern Grenville Province of Ontario in an attempt to constrain the relationship between amphibolite-facies and granulite-facies gneisses in areas of transitional metamorphic grade, and to examine their implication for tectonometamorphic models for the Grenville Province of Ontario. The predominant medium-grained amphibolite-facies migmatitic orthogneisses of the Muskoka domain contain several generations of leucosome, some of which are related to southeast-directed extensional structures. The amphibolite-facies granitoid gneisses contain numerous mafic enclaves with granulite-facies assemblages recrystallized from anhydrous precursors during Grenvillian metamorphism. Other associated granulites are characterized by their patchy occurrence and gradational contacts, similar to the charnockites in southern India. Patchy granulites, leucocratic vein networks in mafic enclaves, and crosscutting leucocratic granulite veins are interpreted to have formed as a result of local differences in reaction sequences and (or) fluid compositions. The U–Pb zircon lower intercept age of the patchy granulites overlaps with the previously determined range of 1080–1060 Ma for high-grade metamorphism in the Muskoka domain, while zircon and titanite from a crosscutting granulite vein crystallized at about 1065–1045 Ma, supporting a Grenvillian age for granulite formation. Peak metamorphic conditions of 750–850°C and 10–11.5 kbar (1 kbar = 100 MPa) were determined from the mafic enclaves, whereas the more felsic migmatites reequilibrated at somewhat lower temperatures. The high temperatures caused extensive migmatization and facilitated rheological weakening of the Muskoka domain 10–25 million years after the start of the Ottawan orogeny in the Central Gneiss Belt.
APA, Harvard, Vancouver, ISO, and other styles
3

Campos, José C. S., Maurício A. Carneiro, and Miguel A. S. Basei. "U-Pb evidence for late Neoarchean crustal reworking in the Southern São Francisco Craton (Minas Gerais, Brazil)." Anais da Academia Brasileira de Ciências 75, no. 4 (December 2003): 497–511. http://dx.doi.org/10.1590/s0001-37652003000400008.

Full text
Abstract:
The Passa Tempo Metamorphic Complex is one of several metamorphic complexes that form the Archean sialic crust of the southern São Francisco Craton. It encompasses hypersthene-bearing gneissic rocks, with subordinateNW- or EW-trending mafic-ultramafic bodies and granodioritic to alkali-granitic, weakly foliated, and light-colored granitoids. These granitoids are the product of generalized migmatization that followed granulite-facies metamorphism. To determine the ages of the granulite-facies metamorphism and granitoid genesis, we obtained U-Pb ages on zircon extracted from the mesosome and leucosome of the migmatitic gneisses. For the mesosome, a discordia that intercepts Concordia at 2622 ± 18 Ma is interpreted as a minimum age for granulite-facies metamorphism. For the leucosome, the upper intercept of discordia at 2599 ± 45 Ma corresponds to migmatization and granitoid genesis. Contemporaneous metamorphism and magmatism have been documented elsewhere in the São Francisco Craton, especially in the southern portion, demonstrating vast and vigorous reworking of sialic crust by the end of the Neoarchean.
APA, Harvard, Vancouver, ISO, and other styles
4

Dasgupta, Somnath, Pulak Sengupta, A. Mondal, and M. Fukuoka. "Mineral chemistry and reaction textures in metabasites from the Eastern Ghats belt, India and their implications." Mineralogical Magazine 57, no. 386 (March 1993): 113–20. http://dx.doi.org/10.1180/minmag.1993.057.386.11.

Full text
Abstract:
AbstractThree types of mafic granulites, namely two pyroxene-plagioclase granutite (MG), two pyroxeneplagioclase-garnet granulite (GMG) and spinel-olivine-plagioclase-two pyroxene granulite (SMG) are exposed at Sunkarimetta, Eastern Ghats belt, India. The marie granulites exhibit a foliation concordant with that in associated granulite facies quartzofeldspathic gneisses. Textural characteristics and mineral chemical data suggest the following mineral reactions: olivine + plagioclase = spinel + orthopyroxene + clinopyroxene (SMG), orthopyroxene + plagioclase = garnet + quartz (GMG), clinopyroxene + plagioclase = garnet + quartz (GMG) and plagioclase + hemoilmenite + quartz = garnet + ilmenite + 02 (GMG). Geothermobarometry indicates maximum P-T conditions of metamorphism at c. 8.5 kbar, 950°C The marie granulites later suffered nearly isobaric cooling to c. 7.5 kbar, 750°C Bulk compositional characteristics suggest that SMG is of cumulate origin. The protoliths of the mafic granulites, emplaced at c. 32 km depth, are probably responsible for thermal perturbation causing granulite facies metamorphism of the enclosing rocks.
APA, Harvard, Vancouver, ISO, and other styles
5

PRAKASH, DIVYA, DEEPAK, PRAVEEN CHANDRA SINGH, CHANDRA KANT SINGH, SUPARNA TEWARI, MAKOTO ARIMA, and HARTWIG E. FRIMMEL. "Reaction textures and metamorphic evolution of sapphirine–spinel-bearing and associated granulites from Diguva Sonaba, Eastern Ghats Mobile Belt, India." Geological Magazine 152, no. 2 (August 14, 2014): 316–40. http://dx.doi.org/10.1017/s0016756814000399.

Full text
Abstract:
AbstractThe Diguva Sonaba area (Vishakhapatnam district, Andhra Pradesh, South India) represents part of the granulite-facies terrain of the Eastern Ghats Mobile Belt. The Precambrian metamorphic rocks of the area predominantly consist of mafic granulite (±garnet), khondalite, leptynite (±garnet, biotite), charnockite, enderbite, calc-granulite, migmatic gneisses and sapphirine–spinel-bearing granulite. The latter rock type occurs as lenticular bodies in khondalite, leptynite and calc-granulite. Textural relations, such as corroded inclusions of biotite within garnet and orthopyroxene, resorbed hornblende within pyroxenes, and coarse-grained laths of sillimanite, presumably pseudomorphs after kyanite, provide evidence of either an earlier episode of upper-amphibolite-facies metamorphism or they represent relics of the prograde path that led to granulite-facies metamorphism. In the sapphirine–spinel-bearing granulite, osumilite was stable in addition to sapphirine, spinel and quartz during the thermal peak of granulite-facies metamorphism but the assemblage was later replaced by Crd–Opx–Qtz–Kfs-symplectite and a variety of reaction coronas during retrograde overprint. Variable amounts of biotite or biotite+quartz symplectite replaced orthopyroxene, cordierite and Opx–Crd–Kfs–Qtz-symplectite at an even later retrograde stage. Peak metamorphic conditions of c. 1000°C and c. 12 kbar were computed by isopleths of XMg in garnet and XAl in orthopyroxene. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid and pseudosection modelling, records a clockwise P–T evolution. The P–T path is characteristically T-convex suggesting an isothermal decompression path and reflects rapid uplift followed by cooling of a tectonically thickened crust.
APA, Harvard, Vancouver, ISO, and other styles
6

BHATTACHARYA, S., RAJIB KAR, S. MISRA, and W. TEIXEIRA. "Early Archaean continental crust in the Eastern Ghats granulite belt, India: isotopic evidence from a charnockite suite." Geological Magazine 138, no. 5 (September 2001): 609–18. http://dx.doi.org/10.1017/s0016756801005702.

Full text
Abstract:
The Eastern Ghats granulite belt of India has traditionally been described as a Proterozoic mobile belt, with probable Archaean protoliths. However, recent findings suggest that synkinematic development of granulites took place in a compressional tectonic regime and that granulite facies metamorphism resulted from crustal thickening. The field, petrological and geochemical studies of a charnockite massif of tonalitic to trondhjemitic composition, and associated rocks, document granulite facies metamorphism and dehydration partial melting of basic rocks at lower crustal depths, with garnet granulite residues exposed as cognate xenoliths within the charnockite massif. The melting and generation of the charnockite suite under granulite facies conditions have been dated c. 3.0 Ga by Sm–Nd and Rb–Sr whole rock systematics and Pb–Pb zircon dating. Sm–Nd model dates between 3.4 and 3.5 Ga and negative epsilon values provide evidence of early Archaean continental crust in this high-grade terrain.
APA, Harvard, Vancouver, ISO, and other styles
7

ROY, A. B., ALFRED KRÖNER, P. K. BHATTACHAYA, and SANJEEV RATHORE. "Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India." Geological Magazine 142, no. 3 (May 2005): 287–302. http://dx.doi.org/10.1017/s0016756805000804.

Full text
Abstract:
Granulites including a charnockite suite, mafic granulites, pelitic granulites, metanorite dykes and their retrograde varieties occur as discontinuous shear zone-bounded bodies within the Archaean basement comprising a granite gneiss–amphibolite–metasedimentary rock association in the central part of the Aravalli Mountains, northwest India. The entire suite, named the Sandmata Complex, preserves a complex history of tectonothermal evolution. Except for their strongly foliated margins, the granulite bodies are largely massive. Partial melting in the ‘country rocks’ led to the development of migmatite gneisses close to the contact of the granulite, a feature not as common in the rocks further away from the granulite contact. Geothermobarometry of massive granulites indicates Tmax>900°C and Pmax∼7.5 kbar. The retrograde granulites, which formed at lower amphibolite/upper greenschist-facies conditions, experienced channelized hydration reactions concomitant with shearing. These rocks locally appear as hornblende–biotite-bearing foliated granulite with or without Cpx or Opx. The rocks seem to have followed an inverse PTt path and have undergone an earlier phase of near-isobaric cooling. Our single zircon Pb–Pb ages indicate that the exhumation of granulites to the shallower amphibolite-facies levels with concomitant melting in the country rocks took place between 1690 Ma and 1621 Ma. Assuming that the granulite-facies metamorphism took place at around 1725 Ma, we relate the entire process of granulite metamorphism and exhumation covering an age range between 1725 and 1621 Ma to the rift basin opening stages of the Delhi Orogenic cycle that culminated at c. 1450 Ma.
APA, Harvard, Vancouver, ISO, and other styles
8

Kepezhinskas, Nikita. "Fluid-induced metamorphism and anatexis of refractory Ni-Co-Cu sulphides in subduction-related rocks." E3S Web of Conferences 98 (2019): 08008. http://dx.doi.org/10.1051/e3sconf/20199808008.

Full text
Abstract:
The role of metamorphism on refractory sulfides is not well constrained. Although experiments have displayed the effectiveness of high grade metamorphism, namely granulite facies metamorphism, on sulfide anatexis, its role in the presence of other variables is still poorly understood. Rocks from the Bay Islands Accretionary Complex in Honduras and the Ildeus-Lucha Complex in Russia exhibit extensive metamorphism. Sulfide mineralization is prolific in these rocks suggesting that metamorphism has played an important role in re-concentrating these sulfides during amphibolite and granulite facies metamorphism.
APA, Harvard, Vancouver, ISO, and other styles
9

Skublov, Sergey G., Aleksey V. Berezin, and Laysan I. Salimgaraeva. "Comment on Volodichev et al. Archean Zircons with Omphacite Inclusions from Eclogites of the Belomorian Province, Fennoscandian Shield: The First Finding. Minerals 2021, 11, 1029." Minerals 12, no. 2 (January 25, 2022): 141. http://dx.doi.org/10.3390/min12020141.

Full text
Abstract:
Volodichev et al. (Volodichev et al., 2021) reported on the first finding of omphacite (23%–25% Jd) inclusions in 2.68 Ga metamorphic zircons from Gridino eclogites and presented it as evidence for Archean eclogite-facies metamorphism in the Belomorian Mobile Belt. We believe that the Archean age of the garnets referred to by the above authors was estimated incorrectly. Our interpretation is that omphacite origin is related to Archean high-pressure granulite-facies metamorphism.
APA, Harvard, Vancouver, ISO, and other styles
10

Pan, Y., M. E. Fleet, and F. J. Longstaffe. "Melt-related metasomatism in mafic granulites of the Quetico subprovince, Ontario: constraints from O-Sr-Nd isotopic and fluid inclusion data." Canadian Journal of Earth Sciences 36, no. 9 (September 1, 1999): 1449–62. http://dx.doi.org/10.1139/e99-041.

Full text
Abstract:
Mafic granulites in the Archean Quetico subprovince, north of Manitouwadge, Ontario, occur as isolated lenses or discontinuous layers in spatial association with tonalitic leucosomes in metasedimentary rocks and exhibit concentric zoning from a biotite-rich margin to an orthopyroxene-rich outer zone and a clinopyroxene-rich central zone, with internal orthopyroxene-bearing leucosomes and, rarely, patches of relict amphibolites within the clinopyroxene-rich zone. Microstructural and microchemical evidence suggests that the mafic granulites formed from amphibolites by combined infiltration-diffusion processes in the presence of a P-F-bearing silicate melt ((P2O5)melt = 0.24-0.28 wt.%) and a CO2-rich (hypersaline?) fluid. The whole-rock and mineral δ18O values of the mafic granulites (8-9‰ V-SMOW) indicate oxygen-isotope equilibration between amphibolites (6.6-6.9‰) and associated tonalitic leucosomes (9.5-10‰) at 700-800°C. Strontium- and Nd-isotope data and U-Pb zircon ages confirm isotopic homogenization at the leucosome-amphibolite boundaries during the peak granulite-facies metamorphism at about 2650 Ma. Texturally, early CO2-rich fluid inclusions in quartz and garnet yield P-T conditions similar to those of the peak granulite-facies metamorphism. Hypersaline fluid inclusions occur in textural coexistence with the early CO2-rich inclusions, but are invariably low in homogenization temperatures (178-234°C). This study shows that silicate melts not only provide a conduit for CO2-rich fluids but also interact directly with country rocks for the formation of granulites. Also, the O-Sr-Nd isotope data show that the documented mobility of rare-earth elements in the Quetico granulite zone is localized in scale and related to anatexis of local metasedimentary rocks during the granulite-facies metamorphism.
APA, Harvard, Vancouver, ISO, and other styles
11

Korstgård, John A., Bo Møller Stensgaard, and Thorkild M. Rasmussen. "Magnetic anomalies and metamorphic boundaries in the southern Nagssugtoqidian orogen, West Greenland." Geological Survey of Denmark and Greenland (GEUS) Bulletin 11 (December 5, 2006): 179–84. http://dx.doi.org/10.34194/geusb.v11.4930.

Full text
Abstract:
Within the southern Nagssugtoqidian orogen in West Greenland metamorphic terrains of both Archaean and Palaeoproterozoic ages occur with metamorphic grade varying from low amphibolite facies to granulite facies. The determination of the relative ages of the different metamorphic terrains is greatly aided by the intrusion of the 2 Ga Kangâmiut dyke swarm along a NNE trend. In Archaean areas dykes cross-cut gneiss structures, and the host gneisses are in amphibolite to granulite facies. Along Itilleq strong shearing in an E–W-oriented zone caused retrogression of surrounding gneisses to low amphibolite facies. Within this Itivdleq shear zone Kangâmiut dykes follow the E–W shear fabrics giving the impression that dykes were reoriented by the shearing. However, the dykes remain largely undeformed and unmetamorphosed, indicating that the shear zone was established prior to dyke emplacement and that the orientation of the dykes here was governed by the shear fabric. Metamorphism and deformation north of Itilleq involve both dykes and host gneisses, and the metamorphic grade is amphibolite facies increasing to granulite facies at the northern boundary of the southern Nagssugtoqidian orogen. Here a zone of strong deformation, the Ikertôq thrust zone, coincides roughly with the amphibolite–granulite facies transition. Total magnetic field intensity anomalies from aeromagnetic data coincide spectacularly with metamorphic boundaries and reflect changes in content of the magnetic minerals at facies transitions. Even the nature of facies transitions is apparent. Static metamorphic boundaries are gradual whereas dynamic boundaries along deformation zones are abrupt.
APA, Harvard, Vancouver, ISO, and other styles
12

Andersen, T., H. Austrheim, and E. A. J. Burke. "Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W. Norway." Mineralogical Magazine 54, no. 375 (June 1990): 145–58. http://dx.doi.org/10.1180/minmag.1990.054.375.02.

Full text
Abstract:
AbstractThe Grenvillian granulite-facies complex on Holsnøy island, Bergen Arcs, W. Norway, has been metamorphosed at eclogite-facies conditions during the Caledonian orogeny (ca. 425 Ma). The granulite-eclogite facies transition takes place along shear zones and fluid pathways. Mineral thermobarometry indicates PT conditions of 800–900°C and 8–10 kbar for the Proterozoic granulite facies metamorphism and 700–800°C and 16–19 kbar for the eclogite-forming event. Quartz in the granulite facies complex contains CO2 fluid inclusions with less than 2.5 mole percent N2; the molar volumes are compatible with the PT conditions of the Proterozoic granulite metamorphism. Quartz in pegmatitic quartz + omphacite and quartz + phengite/paragonite veins coeval with shear-zone eclogites contain N2 ± CO2 fluid inclusions. Combined laser Raman microanalysis and microthermometry show that the least disturbed inclusions have XCO2 = 0.1–0.3, and molar volumes less than 40 cm3/mole, which may agree with the PT conditions during Caledonian high-pressure metamorphism. Younger, low-density N2 and N2-H2O fluid inclusions are the results of decrepitation and redistribution of early inclusions during the retrograde PT evolution of the eclogites.
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yunshuai, Jianxin Zhang, Shengyao Yu, Yanguang Li, Hu Guo, Jian Zhang, Changlei Fu, Hui Cao, Mengqi Jin, and Zhihui Cai. "Petrological, geochronological, and geochemical potential accounting for continental subduction and exhumation: A case study of felsic granulites from South Altyn Tagh, northwestern China." GSA Bulletin 132, no. 11-12 (April 22, 2020): 2611–30. http://dx.doi.org/10.1130/b35459.1.

Full text
Abstract:
Abstract Deciphering the formation and geodynamic evolution of high-pressure (HP) granulites in a collisional orogeny can provide crucial constraints on the geodynamic evolution of subduction-exhumation. To fully exploit the geodynamic potential of metamorphic rocks, it is necessary to constrain the metamorphic ages, although it is difficult to link zircon and monazite ages to metamorphic evolution. A good case study for understanding these geodynamic processes is felsic granulites in the Bashiwake area, South Altyn Tagh. Petrographic observations suggest that the studied felsic granulites have suffered multi-stage metamorphism, and the distinct metamorphic events were documented by compositional zoning and high Y + heavy rare earth element (HREE) concentrations in the large garnet porphyroblast. Zircon U-Pb dating yielded two major age clusters: one age cluster at ca. 900 Ma represents the age of the protolith for the felsic granulite, and another age cluster at ca. 500 Ma represents the post-UHT (ultrahigh temperature) stage based on the rare earth element distribution coefficients between zircon and garnet. Meanwhile, in situ monazites U-Pb dating yielded a weighted mean 206Pb/238U age of 482 ± 3.5 Ma, and the monazite U-Pb age was interpreted to be in agreement with the metamorphic zircon rims data, which together with zircon recorded the cooling time after the UHT stage. Whole-rock major and trace elements as well as Sr-Nd isotopes suggest that the protolith of the felsic granulite derived from partial melting of ancient crustal materials with the addition of mantle materials. Integrating these results along with previous studies, we propose that the felsic granulites metamorphosed from the Neoproterozoic granitic rocks, and the granitic rocks with associated mafic-ultramafic rocks suffered a common high-pressure–ultrahigh temperature (HP-UHT) metamorphism and subsequent granulite-facies metamorphism. A tentative model of subduction-relamination was proposed for the geodynamic evolution of the Bashiwake unit, South Altyn Tagh.
APA, Harvard, Vancouver, ISO, and other styles
14

Janák, Marian, Tomáš Mikuš, Pavel Pitoňák, and Ján Spišiak. "Eclogites overprinted in the granulite facies from the Ďumbier Crystalline Complex (Low Tatra Mountains, Western Carpathians)." Geologica Carpathica 60, no. 3 (June 1, 2009): 193–204. http://dx.doi.org/10.2478/v10096-009-0013-4.

Full text
Abstract:
Eclogites overprinted in the granulite facies from the Ďumbier Crystalline Complex (Low Tatra Mountains, Western Carpathians)Metabasites with evidence for breakdown of former eclogites and recrystallization under granulite facies conditions occur in the Ďumbier Crystalline Complex of the Low Tatra Mountains, Central Western Carpathains. Textural relationships, phase equilibrium modelling and thermobarometry have been used to determine theP-Tevolution of these rocks. Omphacite diagnostic for the eclogites facies stage is absent but its former presence is inferred from the symplectitic intergrowths of clinopyroxene + plagioclase. The re-equilibration in high-pressure granulite facies conditions is demonstrated by the assemblage garnet + clinopyroxene (< 10 % Jd) + plagioclase + quartz. The phase equilibrium modelling using THERIAK-DOMINO program and conventional geothermobarometry suggest theP-Tconditions of 750-760 °C and 1.1-1.5 GPa for the high-pressure granulite stage. Orthopyroxene formed in the clinopyroxene + plagioclase symplectites and kelyphites and coronas around garnet atP-Tconditions of ca. 0.7-1.0 GPa and 650-700 °C.P-Tevolution of granulitized eclogites is interpreted as the result of two metamorphic events; early Variscan eclogite facies metamorphism was followed by granulite facies thermal overprint in the Carboniferous time. The second metamorphic event was crucial for breakdown of eclogites, these are only seldom preserved in the pre-Alpine basement of the Western Carpathians.
APA, Harvard, Vancouver, ISO, and other styles
15

Gilotti, Jane A., and Synnøve Elvevold. "Extensional exhumation of a high-pressure granulite terrane in Payer Land, Greenland Caledonides: structural, petrologic, and geochronologic evidence from metapelites." Canadian Journal of Earth Sciences 39, no. 8 (August 1, 2002): 1169–87. http://dx.doi.org/10.1139/e02-019.

Full text
Abstract:
The Payer Land gneiss complex is unique among the mostly amphibolite-facies, mid-crustal gneiss complexes in the East Greenland Caledonides due to its well-preserved, regional high-pressure (HP) granulite-facies metamorphism. High-pressure – high-temperature (HP–HT) assemblages are recognized in mafic, ultramafic, granitic, and metasedimentary lithologies. Anatectic metapelites contain the assemblage garnet + kyanite + K-feldspar + antiperthite (exsolved ternary feldspar) + quartz ± biotite ± rutile and record approximately the same peak metamorphic conditions (pressure (P) = 1.4–1.5 GPa, temperature (T) = 800–850°C) as those of the neighboring mafic HP granulites. The HP granulite-facies metamorphism is Caledonian based on in situ U–Th–Pb electron microprobe dating of monazite from two samples of the aluminous paragneiss. The monazites are found along garnet–kyanite phase boundaries, as inclusions in garnet and kyanite, and within small leucocratic melt pods (K-feldspar + plagioclase + kyanite ± garnet) within the HP–HT paragneisses. Mylonitic equivalents of the metapelites contain a detrital monazite age signature that suggests the Payer Land paragneisses correlate with other Mesoproterozoic metasedimentary sequences in the area. The gneisses form a metamorphic core complex that is separated from the overlying low-grade sedimentary rocks of the Neoproterozoic Eleonore Bay Supergroup by an extensional detachment. This newly recognized Payer Land detachment is part of a system of prominent extensional faults located in the southern half of the Greenland Caledonides (i.e., south of 76°N). The HP granulites preserve the deepest level of crust exposed in this southern segment of the orogen and attest to significant crustal thickening.
APA, Harvard, Vancouver, ISO, and other styles
16

Cuney, Michel, and Pierre Barbey. "Uranium, rare metals, and granulite-facies metamorphism." Geoscience Frontiers 5, no. 5 (September 2014): 729–45. http://dx.doi.org/10.1016/j.gsf.2014.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

AOKI, K., B. F. WINDLEY, S. MARUYAMA, and S. OMORI. "Metamorphic P–T conditions and retrograde path of high-pressure Barrovian metamorphic zones near Cairn Leuchan, Caledonian orogen, Scotland." Geological Magazine 151, no. 3 (August 13, 2013): 559–71. http://dx.doi.org/10.1017/s0016756813000514.

Full text
Abstract:
AbstractThe metamorphic P–T conditions and associated relationships of the Barrovian zones near Glen Muick were re-examined by focusing on the petrology and thermodynamics of rocks at Cairn Leuchan, where garnetite lenses and layers occur in surrounding garnet amphibolite in the highest-grade sillimanite zone. The representative mineral assemblages in the garnet-rich lenses and garnet amphibolite are garnet + quartz + clinopyroxene + plagioclase + amphibole ± epidote, and garnet + amphibole + quartz + plagioclase ± clinopyroxene ± epidote, respectively. The chemical compositions of constituent minerals are the same in both garnetite and garnet amphibolite. The metamorphic P–T conditions of these rocks were estimated by thermodynamic calculations. The results show that the rocks underwent high-pressure granulite facies metamorphism at P = c. 1.2–1.4 GPa and T = c. 770–800°C followed by amphibolite facies metamorphism at P = c. 0.5–0.8 GPa and T = c. 580–700°C. Integration of our new results with previously published data suggests that the retrograde P–T trajectory of the highest-grade Barrovian metamorphic rocks marks a temperature decrease during decompression from a crustal depth of the high-pressure granulite facies, which is much deeper than previously considered.
APA, Harvard, Vancouver, ISO, and other styles
18

Kong, Xu, Xueyuan Qi, Wentian Mi, and Xiaoxin Dong. "Zircon U–Pb Dating and Lu-Hf Isotope of the Retrograded Eclogite from Chicheng, Northern Hebei Province, China." Shock and Vibration 2021 (June 16, 2021): 1–11. http://dx.doi.org/10.1155/2021/1445653.

Full text
Abstract:
We report zircon U–Pb ages and Lu-Hf isotopic data from two sample of the retrograded eclogite in the Chicheng area. Two groups of the metamorphic zircons from the Chicheng retrograded eclogite were identified: group one shows characteristics of depletion in LREE and flat in HREE curves and exhibit no significant Eu anomaly, and this may imply that they may form under eclogite facies metamorphic condition; group two is rich in HREE and shows slight negative Eu anomaly indicated that they may form under amphibolite facies metamorphic condition. Zircon Lu-Hf isotopic of εHf from the Chicheng eclogite has larger span range from 6.0 to 18.0, which suggests that the magma of the eclogite protolith may be mixed with partial crustal components. The peak eclogite facies metamorphism of Chicheng eclogite may occur at 348.5–344.2 Ma and its retrograde metamorphism of amphibolite fancies may occur at ca. 325.0 Ma. The Hongqiyingzi Complex may experience multistage metamorphic events mainly including Late Archean (2494–2448 Ma), Late Paleoproterozoic (1900–1734 Ma, peak age = 1824.6 Ma), and Phanerozoic (495–234 Ma, peak age = 323.7 Ma). Thus, the metamorphic event (348.5–325 Ma) of the Chicheng eclogite is in accordance with the Phanerozoic metamorphic event of the Hongqiyingzi Complex. The eclogite facies metamorphic age of the eclogite is in accordance with the metamorphism (granulite facies or amphibolite facies) of its surrounding rocks, which implied that the tectonic subduction and exhumation of the retrograded eclogite may cause the regional metamorphism of garnet biotite plagioclase gneiss.
APA, Harvard, Vancouver, ISO, and other styles
19

Pan, Yuanming, Michael E. Fleet, and Howard R. Williams. "Granulite-facies metamorphism in the Quetico Subprovince, north of Manitouwadge, Ontario." Canadian Journal of Earth Sciences 31, no. 9 (September 1, 1994): 1427–39. http://dx.doi.org/10.1139/e94-126.

Full text
Abstract:
A zone of granulites, defined by an orthopyroxene-in isograd and extending more than 100 km in length and about 10 km in width, occurs near the southern margin of the Quetico Subprovince, north of Manitouwadge, Ontario. Mineral assemblages in metasedimentary rocks and associated migmatites consist of quartz, plagioclase, garnet, orthopyroxene, biotite, cordierite, sillimanite, K-feldspar, hercynite, magnetite, ilmenite, and other accessory phases. Minor mafic gneisses and calc-silicate pods or lenses are also present. From equilibrium phase relations and thermobarometry, the granulites experienced a thermal-peak event (4–6 kbar (1 bar = 100 kPa), 680–770 °C, a(H2O) of 0.15–0.25 and fO2 of 1–2 log units above the FMQ buffer) in association with D2 deformation, followed by a retrogression (550–660 °C and 3–4 kbar) and a later hydrothermal alteration (1–2 kbar and 200–400 °C). The distribution and calculated peak metamorphic conditions of the granulite zone in the Quetico Subprovince are similar to those of granulites in the English River Subprovince and other proposed accretionary terranes. The low-pressure, high-temperature metamorphism in the Quetico Subprovince is interpreted to be related to both crustal thickening and addition of heat from subduction-related magmatism.
APA, Harvard, Vancouver, ISO, and other styles
20

MAPEO, R. B. M., R. A. ARMSTRONG, and A. B. KAMPUNZU. "SHRIMP U–Pb zircon geochronology of gneisses from the Gweta borehole, northeast Botswana: implications for the Palaeoproterozoic Magondi Belt in southern Africa." Geological Magazine 138, no. 3 (May 2001): 299–308. http://dx.doi.org/10.1017/s001675680100526x.

Full text
Abstract:
This paper presents new U–Pb zircon analyses from garnet–sillimanite paragneisses from the Gweta borehole in northeast Botswana. Concordant to near-concordant analyses of zircon from these rocks reveal a billion year history from 3015 ± 21 Ma for the oldest detrital grain measured, to the age of high-grade metamorphism, 2027 ± 8 Ma. The maximum age of sedimentation in the Magondi belt is constrained by the age of the youngest concordant detrital zircon at 2125 ± 6 Ma. This contrasts with the age of sedimentation in the Central Zone of the Limpopo belt which is Archaean. The comparison of our results with U–Pb zircon data from the Magondi belt in Zimbabwe suggests that the granulite-facies metamorphism in this belt extended between c. 2027–1960 Ma. Granulite-facies rocks with U–Pb zircon ages in this interval are also known in the Ubendian belt and lend support to the correlation of these two segments of Palaeoproterozoic belts in southern and central–eastern Africa. The granulite facies metamorphism in the Magondi belt is coeval with the high-grade metamorphism and granitoids documented further south in the Central Zone of the Limpopo Belt.
APA, Harvard, Vancouver, ISO, and other styles
21

Tettelaar, Tanya, and Aphrodite Indares. "Granulite-facies regional and contact metamorphism of the Tasiuyak paragneiss, northern Labrador: textural evolution and interpretation." Canadian Journal of Earth Sciences 44, no. 10 (October 1, 2007): 1413–37. http://dx.doi.org/10.1139/e07-029.

Full text
Abstract:
The Tasiuyak paragneiss at the western margin of the Nain Plutonic Suite has been subjected to two granulite-facies metamorphic events: (i) regional metamorphism during the Paleoproterozoic Torngat orogeny, and (ii) contact metamorphism due to emplacement of the Mesoproterozoic Nain Plutonic Suite. Regional metamorphism led to partial melting of pelitic rocks and the development of a locally well-preserved sequence of prograde and retrograde textures. These textures are partly controlled by bulk composition and formed in the pressure–temperature (P–T) field of the continuous reaction: biotite + sillimanite + plagioclase + quartz = garnet + K-feldspar + melt, along a hairpin P–T path with peak conditions of ~8–10 kbar (0.8–1.0 GPa) and up to 870 °C in the NaKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O) system. These textures controlled the development of the contact metamorphic assemblages. Contact metamorphism of the pelitic rocks between the Tessiarsuyungoakh intrusion and the Makhavinekh Lake pluton led to growth of orthopyroxene-cordierite symplectite after garnet–biotite, and cordierite–spinel symplectite after garnet–sillimanite. These phase associations attest to reactions in specific microtextural settings, some of which produced a second generation of partial melt. Maximum temperatures were above ~750 °C and pressures were lower than those of the regional metamorphism. The aureole around the Makhavinekh Lake pluton is ~4 km wide and shows a progressive development of the contact metamorphic assemblages toward the pluton. In contrast, the contact metamorphic overprint is incipient around the Tessiarsuyungoakh intrusion, which developed a ~20 m wide contact aureole and is most prominent in screens of paragneiss within that intrusion.
APA, Harvard, Vancouver, ISO, and other styles
22

Lasalle, Stephanie, Greg Dunning, and Aphrodite Indares. "In situ LA–ICP–MS dating of monazite from aluminous gneisses: insights on the tectono-metamorphic history of a granulite-facies domain in the central Grenville Province." Canadian Journal of Earth Sciences 51, no. 6 (June 2014): 558–72. http://dx.doi.org/10.1139/cjes-2013-0170.

Full text
Abstract:
In situ U–Pb dating of monazite from granulite-facies anatectic aluminous gneisses of the hinterland of the Grenville Province (Manicouagan area) is used to constrain the age of metamorphic events. Matrix grains in these rocks show complex internal textures consistent with extensive corrosion and overgrowths which are attributed to partial dissolution of earlier monazite in anatectic melt followed by new growth during melt crystallization or subsequent fluid infiltration. The new monazite data show the following: (i) inherited “pre-Grevillian” ages up to ca. 1400 Ma in some rocks; (ii) “main Grenvillian” ages in the general range of ca. 1070–1020 Ma, with a variable spread in individual samples and a general cluster at 1070–1050 Ma; and (iii) “late Grenvillian” ages at ca. 1010–990 Ma, mostly restricted to backscatter electron (BSE)-bright rims of matrix grains. The wide age range of the main Grenvillian metamorphism suggests episodic growth of monazite over a wide time span, consistent with protracted residence of the host rocks under high-temperature conditions. The clusters in the age distribution likely represent major episodes of melt crystallization in the respective rocks, following the granulite-facies metamorphism. In contrast, the growth of the late Grenvillian monazite at ca. 1000 Ma is attributed to late fluid infiltration of the host rocks under greenschist-facies conditions, coeval with ultrapotassic magmatism. It is the first report of a late Grenvillian metamorphic overprint on granulite-facies mineral assemblages in the hinterland and is consistent with the model of extensional collapse of the orogen.
APA, Harvard, Vancouver, ISO, and other styles
23

Samuel, Vinod O., Daniel E. Harlov, Sanghoon Kwon, and K. Sajeev. "Silicate, Oxide and Sulphide Trends in Neo-Archean Rocks from the Nilgiri Block, Southern India: the Role of Fluids During High-grade Metamorphism." Journal of Petrology 60, no. 5 (May 1, 2019): 1027–62. http://dx.doi.org/10.1093/petrology/egz023.

Full text
Abstract:
Abstract The Nilgiri Block, southern India represents an exhumed section of lower, late Archean (2500 Ma) crust. The northern highlands of the Nilgiri Block are characterized by metagabbros with pyroxenite inlayers. A two-pyroxene granulite zone acts as a transition between the metagabbros and charnockites, which are exposed in the central and southern part of the Nilgiri highlands. Thermobarometry results indicate a SW–NE regional trend both in temperature (∼650–800°C) and in pressure (700–1100 MPa) over the Nilgiri highlands. In the charnockites, composite rutile–ilmenite grains are the dominant oxide assemblage. In the two-pyroxene granulites, hemo-ilmenite–magnetite is dominant with coexisting rutile–ilmenite composite grains in a few samples in the vicinity of the boundary with the charnockites. In the metagabbros, hemo-ilmenite–magnetite is the dominant oxide assemblage. The principal sulphide mineral in the charnockite is pyrrhotite with minor pyrite–chalcopyrite exsolution lamellae or blebs. In the two-pyroxene granulites and the metagabbros, the principal sulphide assemblage consists of discrete pyrite grains with magnetite rims and pyrite–pyrrhotite–chalcocopyrite associations. From these observations, a specific oxidation trend is seen. The northern granulite-facies metagabbros and two-pyroxene granulites of the Nilgiri highlands are highly oxidized compared with the charnockites from the central and southern regions. This higher oxidation state is proposed to be the result of highly oxidizing agents (probably as SO3) in low H2O activity grain boundary NaCl saline fluids with a dissolved CaSO4 component present during granulite-facies metamorphism of the metagabbros and two-pyroxene granulites. Eventually these agents became more reducing, owing to the inherent buffering of the original tonalite–granodiorite granitoids at the graphite–CO2 buffer, such that S took the form of H2S during the granulite-facies metamorphism of the charnockites. At the same time, these saline fluids were also responsible the solid-state conversion of biotite and amphibole to orthopyroxene and clinopyroxene in the metagabbro, two-pyroxene granulite, and charnockite.
APA, Harvard, Vancouver, ISO, and other styles
24

de Maesschalck, A. A., and I. S. Oen. "Fluid and mineral inclusions in corundum from gem gravels in Sri Lanka." Mineralogical Magazine 53, no. 373 (December 1989): 539–45. http://dx.doi.org/10.1180/minmag.1989.053.373.04.

Full text
Abstract:
AbstractMineral and fluid inclusions were studied in seven gem corundums from gravels of three areas in Sri Lanka. All fluid inclusions are pure CO2. Microthermometry results on primary fluid inclusions suggest formation of corundum under granulite facies metamorphism (>630°C, 5.5 kbar). Secondary fluid inclusions indicate different retrograde events of post-metamorphic cooling and uplift for different source areas.
APA, Harvard, Vancouver, ISO, and other styles
25

Downes, P. J., and A. W. R. Bevan. "Chrysoberyl, beryl and zincian spinel mineralization in granulite-facies Archaean rocks at Dowerin, Western Australia." Mineralogical Magazine 66, no. 6 (December 2002): 985–1002. http://dx.doi.org/10.1180/0026461026660072.

Full text
Abstract:
Abstract A deposit of chrysoberyl (BeAl2O4), including the variety alexandrite, occurs near Dowerin, in the southwestern region of the Archaean Yilgarn Craton, Western Australia. The deposit is situated in the northern part of the Lake Grace Terrain, a crustal component of the southwestern Yilgarn Craton, in granulite-facies gneisses (2640–2649 Ma; T = 700°C, P <6 kbar) adjacent to the margin of the Kellerberrin Batholith (2587±25 Ma). Beryllium mineralization at Dowerin occurs in plagioclase-quartz-biotite-garnet gneiss and cross-cutting tourmaline-plagioclase veins situated adjacent to lenses of actinolite-cummingtonite-phlogopite schist. Crystals of chrysoberyl (0.15–1.74 wt.% Cr2O3; 2.25–3.23 wt.% FeO; trace–0.13 wt.% ZnO; SiO2 <0.05 wt.%) are found embedded in almandine or plagioclase, and closely intergrown with biotite and/or zincian hercynite in the host-rock gneiss. Minor Cr and Fe in the alexandrite variety of chrysoberyl were possibly derived from associated zincian hercynite and/or almandine. Trace beryl (0.04–0.20 wt.% Cr2O3; 0.54–0.71 wt.% FeO; trace– 0.22 wt.% Na2O; 0.1–0.71 wt.% MgO) occurs as anhedral interstital grains between crystals of chrysoberyl, plagioclase and biotite, and as rare inclusions in chrysoberyl. Textural and mineral chemical evidence suggests that chrysoberyl and zincian spinels (chromite to hercynite containing from 2–8 wt.% ZnO) formed during granulite-facies regional metamorphism and probably pre-dated the formation of metamorphic tourmaline-plagioclase veins during the same metamorphic episode. The Be, B and Zn required to form chrysoberyl, beryl, tourmaline and zincian spinels may have been released by metamorphic reactions in host-rock metapelites during prograde granulite-facies metamorphism.
APA, Harvard, Vancouver, ISO, and other styles
26

Förster, H. J., and D. E. Harlov. "Monazite-(Ce)-huttonite solid solutions in granulite-facies metabasites from the Ivrea-Verbano Zone, Italy." Mineralogical Magazine 63, no. 4 (August 1999): 587–94. http://dx.doi.org/10.1180/minmag.1999.063.4.11.

Full text
Abstract:
AbstractComposite populations of monazite-group minerals of both metamorphic and metasomatic origin have been discovered in thin layers of granulite-facies metabasites interlayered with metapelites, located in the Val Strona di Omegna region of the Ivrea-Verbano Zone, Italy. In addition to monazite-(Ce), which is uncommonly poor in Th and is probably formed by incongruent dissolution of apatite, these populations include members of the monazite-huttonite series. The latter minerals contain between 13 and 30.1 mol.% ThSiO4 [= huttonitic monazite-(Ce)], and are known from only half a dozen other occurrences worldwide. We propose that breakdown of primary monazite-(Ce) in the metapelites during granulite-facies metamorphism mobilized Th and the REEs, which were then transported by high-grade metamorphic fluids into the metabasite layers to form the Th-rich minerals of the monazite-huttonite series.
APA, Harvard, Vancouver, ISO, and other styles
27

Peck, William H., Michael T. DeAngelis, Michael T. Meredith, and Etienne Morin. "Polymetamorphism of marbles in the Morin terrane, Grenville Province, Quebec." Canadian Journal of Earth Sciences 42, no. 10 (October 1, 2005): 1949–65. http://dx.doi.org/10.1139/e05-070.

Full text
Abstract:
The Morin terrane (Grenville Province, Quebec) is dominated by the 1.15 Ga Morin Anorthosite Massif and related granitic intrusions, all of which exhibit granulite-facies mineral assemblages. Anorthosite-suite rocks are deformed both in shear zones and in the interior of the terrane and show intrusive contact relations with marble along road cuts near the village of St. Jovite. Intrusive rocks exposed in these road cuts have well-developed skarns, which were deformed with the intrusions after emplacement. Skarn minerals are consumed by garnet-forming reactions (e.g., An + Wo = Gr + Qtz) that preserve granulite-facies temperatures and pressures. Calcite–graphite thermometry of Morin terrane marbles records temperatures of 755 ± 38 °C (n = 21), independent of proximity to anorthosite-suite plutons. Preserved metamorphic conditions and the retrograde pressure–temperature (P–T) path in the Morin terrane are very similar to conditions during the 1.07 Ga Ottawan orogeny in the Adirondack Highlands. Metamorphism and deformation of anorthosite-suite rocks and marbles of the Morin terrane are consistent with anorthosite intrusion followed by a distinct granulite-facies overprint.
APA, Harvard, Vancouver, ISO, and other styles
28

Bose, Sankar, Kaushik Das, Junji Torimoto, and Daniel Dunkley. "Origin of orthopyroxene-bearing felsic gneiss from the perspective of ultrahigh-temperature metamorphism: an example from the Chilka Lake migmatite complex, Eastern Ghats Belt, India." Mineralogical Magazine 84, no. 5 (September 17, 2020): 712–37. http://dx.doi.org/10.1180/mgm.2020.71.

Full text
Abstract:
AbstractOrthopyroxene-bearing felsic gneiss occurs as foliation-parallel layers and bands together with aluminous granulite, mafic granulite, and quartzofeldspathic granulite in the Chilka Lake migmatite complex of the Proterozoic Eastern Ghats Belt, India. The rock was classified previously as charnockite which underwent granulite-facies metamorphism. Field and textural features of this rock show evidence of the partial melting of a biotite-bearing greywacke protolith. Orthopyroxene with/without garnet and cordierite were produced with K-feldspar as peritectic phases of incongruent melting of presumed metaluminous sediments. Fluid-inclusion data suggest the presence of high-density CO2-rich fluids during peak metamorphism, which are similar to those found in associated aluminous granulite. Whole-rock major and trace element data show wide variability of the source materials whereas REE distributions show enriched LREE and flat HREE patterns. Zircon grains from representative samples show the presence of inherited cores having spot dates (SHRIMP) in the range c. 1790–3270 Ma. The overgrowth on zircon was formed predominantly during c. 780–730 Ma and sporadically during c. 550–520 Ma. Some neoblastic zircons with c. 780–730 Ma ages are also present. U-rich dark zones surrounding cores appear partially metamictised, but spot ages from this zone vary within c. 1000–900 Ma. The <1000 Ma ages represent metamorphism that mirrors the events in associated aluminous granulite. The sources of metaluminous sediments are speculative as the rock compositions are largely modified under granulite-facies metamorphism and partial melting. Considering the accretionary tectonic setting of the Eastern Ghats Belt during the c. 1000–900 Ma time frame, a greywacke-type protolith for the migmatite complex has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
29

Couëslan, Chris G., and David R. M. Pattison. "Low-pressure regional amphibolite-facies to granulite-facies metamorphism of the Paleoproterozoic Thompson Nickel Belt, Manitoba." Canadian Journal of Earth Sciences 49, no. 10 (October 2012): 1117–53. http://dx.doi.org/10.1139/e2012-029.

Full text
Abstract:
The Thompson Nickel Belt is a ca. 35 km × 400 km northeast-trending segment of the northwest margin of the Archean Superior craton in Manitoba, bounded to the west by the Paleoproterozoic Reindeer Zone. The belt was metamorphosed and deformed during the Trans-Hudson orogeny (ca. 1.9–1.7 Ga). Mineral assemblages in metamorphosed pelite, aluminous greywacke, mafic igneous rock, iron formation, and ferruginous wacke define regional metamorphic domains, separated by mineral isograds, that are subparallel to the strike of the belt and to regional-scale D3 structures. An elongate, ca. 5 km × 73 km, central zone of middle amphibolite-facies rocks is characterized by the following: muscovite-bearing mineral assemblages in pelites containing combinations of staurolite, andalusite, and sillimanite; muscovite-free, staurolite + cordierite + garnet-bearing mineral assemblages in greywackes; hornblende-bearing mineral assemblages in mafic metaigneous rocks; and grunerite-bearing mineral assemblages in iron formation. Pressure–temperature (P–T) conditions of the middle amphibolite-facies zone are ca. 550–620 °C and 3.0–5.0 kbar (1 kbar = 100 MPa), with pressure increasing to the northeast. The middle amphibolite-facies zone is bordered to the east and west by an upper amphibolite-facies zone, ca. 5 km wide on the east and ca. 3–5 km on the west. The upper amphibolite-facies zone is characterized by variably migmatitic K-feldspar + sillimanite-bearing mineral assemblages in pelites; migmatitic, garnet + cordierite + sillimanite-bearing mineral assemblages in greywackes; orthopyroxene-free, hornblende-bearing mineral assemblages in mafic rocks; and orthopyroxene-bearing mineral assemblages in iron formations. Pressure–temperature conditions of the upper amphibolite-facies zone are ca. 640–710 °C and 3.0–5.5 kbar in the southeast, and 675–755 °C and 4.5–6.0 kbar in the northwest. The outermost metamorphic zone is of the granulite facies, characterized by migmatitic garnet + cordierite + K-feldspar-bearing assemblages in pelites and greywackes, orthopyroxene + clinopyroxene ± garnet-bearing mineral assemblages in mafic rocks, and orthopyroxene + K-feldspar-bearing mineral assemblages in iron formation in which biotite is unstable. Pressure–temperature conditions of the granulite-facies zone are ca. 775–830 °C and 5.0–7.0 kbar. The P–T paths in the Thompson Nickel Belt appear to be broadly clockwise, except for some domains where they are close to isobaric. The peak P–T conditions, combined with local but widespread development of andalusite, imply relatively steep geothermal gradients of ca. 33–51 °C/km during metamorphism. Regional bathozones (domains of uniform peak-metamorphic pressure) correspond in general but not in detail with the metamorphic-facies zones. They reveal an increase in pressure towards the northeast, suggesting greater degrees of postmetamorphic exhumation in that region. Microstructural analysis suggests that peak metamorphism coincided with, and possibly outlasted, the D2 deformation event. Metamorphic isograds were deformed by D3–D4 structures. These features are consistent with a tectonic model in which the Superior craton moved in a northwest or west-northwest direction relative to the Reindeer Zone, with greatest convergence and tectonic burial occurring at the Thompson promontory.
APA, Harvard, Vancouver, ISO, and other styles
30

Aoki, K., B. F. Windley, S. Maruyama, and S. Omori. "Discussion of ‘Metamorphic P–T and retrograde path of high-pressure Barrovian metamorphic zones near Cairn Leuchan, Caledonian orogen, Scotland’." Geological Magazine 151, no. 4 (March 4, 2014): 758–63. http://dx.doi.org/10.1017/s0016756813001106.

Full text
Abstract:
K. Aoki, B. F. Windley, S. Maruyama & S. Omori reply: First, we thank Viete, Oliver & Wilde for their interesting and thought-provoking comments on the timing of the high-pressure granulite facies (HGR) metamorphism recorded in metamorphic rocks at Cairn Leuchan, Scotland, published by Aoki et al. (2013). Based on new metamorphic data of garnetites and garnet-amphibolites at Cairn Leuchan and new zircon U–Pb ages of amphibolitized eclogite at Tomatin, we suggested in our publication that the HGR metamorphism was retrograde after eclogite facies before the c. 470 Ma ‘Barrovian metamorphism’. Viete, Oliver & Wilde however speculate that the HGR metamorphism at Cairn Leuchan may have occurred at c. 1000 Ma, as a result of their new U–Pb zircon age of the Cowhythe Gneiss at Portsoy and from previous studies of the geological structure and geochronology. We are grateful for this opportunity to describe, albeit in a preliminary manner, our new understanding and tectonic model of the Caledonian orogen in Scotland and western Ireland of which the Barrovian metamorphism is a key component. A reply to a comment is not the correct place to propose an entirely new paradigm for such a classic orogen, but we will present our model more fully in a future publication.
APA, Harvard, Vancouver, ISO, and other styles
31

BRÖCKER, MICHAEL, REINER KLEMD, ELLEN KOOIJMAN, JASPER BERNDT, and ALEXANDER LARIONOV. "Zircon geochronology and trace element characteristics of eclogites and granulites from the Orlica-Śnieżnik complex, Bohemian Massif." Geological Magazine 147, no. 3 (November 6, 2009): 339–62. http://dx.doi.org/10.1017/s0016756809990665.

Full text
Abstract:
AbstractU–Pb zircon geochronology and trace element analysis was applied to eclogites and (ultra)high-pressure granulites that occur as volumetrically subordinate rock bodies within orthogneisses of the Orlica-Śnieżnik complex, Bohemian Massif. Under favourable circumstances such data may help to unravel protolith ages and yet-undetermined aspects of the metamorphic evolution, for example, the time span over which eclogite-facies conditions were attained. By means of ion-probe and laser ablation techniques, a comprehensive database was compiled for samples collected from prominent eclogite and granulite occurrences. The 206Pb/238U dates for zircons of all samples show a large variability, and no single age can be calculated. The protolith ages remain unresolved due to the lack of coherent age groups at the upper end of the zircon age spectra. The spread in apparent ages is interpreted to be mainly caused by variable and possibly multi-stage Pb-loss. Further complexities are added by metamorphic zircon growth and re-equilibration processes, the unknown relevance of inherited components and possible mixing of different aged domains during analysis. A reliable interpretation of igneous crystallization ages is not yet possible. Previous studies and the new data document the importance of a Carboniferous metamorphic event at c. 340 Ma. The geological significance of this age group is controversial. Such ages have previously either been related to peak (U)HP conditions, the waning stages of eclogite-facies metamorphism or the amphibolite-facies overprint. This study provides new arguments for this discussion because, in both rock types, metamorphic zircon is characterized by very low total REE abundances, flat HREE patterns and the absence of an Eu anomaly. These features strongly suggest contemporaneous crystallization of zircon and garnet and strengthen interpretations proposing that the Carboniferous ages document late-stage eclogite-facies metamorphism, and not amphibolite-facies overprinting.
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Shan-Shan, Richard M. Palin, M. Santosh, E. Shaji, and T. Tsunogae. "Extreme thermal metamorphism associated with Gondwana assembly: Evidence from sapphirine-bearing granulites of Rajapalayam, southern India." GSA Bulletin 132, no. 5-6 (October 10, 2019): 1013–30. http://dx.doi.org/10.1130/b35378.1.

Full text
Abstract:
Abstract The Madurai block is the largest composite crustal block in the Southern Granulite terrane of India, where granulite-facies rocks metamorphosed at ultrahigh-temperature (UHT) conditions occur in several localities. Here, we investigated UHT rocks from Rajapalayam, in the southern domain of the Southern Granulite terrane, using integrated thermobarometry and in situ monazite geochronology to precisely constrain the nature and timing of this extreme metamorphism and its implications for regional tectonics. Conventional thermobarometry and petrological phase equilibrium modeling reveal prograde pressure-temperature (P-T) conditions at 0.75–1.2 GPa and &lt;900 °C, followed by peak/postpeak UHT metamorphism at 0.72–0.82 GPa and 1025–1050 °C, and retrograde reequilibration at 0.72–0.80 GPa and 875–895 °C. The granulites thus record a clockwise P-T path defining geothermal gradients of 1200–1500 °C/GPa at peak metamorphism, indicating the presence of an extreme thermal perturbation in the middle to lower continental crust. In situ monazite dating indicates prograde metamorphism at 607–585 Ma, peak metamorphism at 546–543 Ma, and retrograde cooling and exhumation at 539–483 Ma. As such, the entire tectonothermal cycle was complete within ∼120 m.y., although temperatures exceeding 900 °C were likely sustained for at least 30 m.y. Such extreme thermal events preserved in geological terranes worldwide are commonly associated with lithospheric extension, although our data show that prolonged heating can occur during continental convergence instead, supporting inferences made by thermomechanical models. Thus, supercontinent formation may act as a driver for spatially distributed UHT tectonometamorphism, as shown by the episodic records in geological history. The age of peak metamorphism constrained here was synchronous with UHT metamorphism in other localities in the Southern Granulite terrane, Sri Lanka, Madagascar, and Antarctica, indicating their correlation with the final amalgamation of eastern Gondwana at ca. 550 Ma.
APA, Harvard, Vancouver, ISO, and other styles
33

NEWTON, R. C. "Charnockitic alteration: evidence for CO2infiltration in granulite facies metamorphism." Journal of Metamorphic Geology 10, no. 3 (May 1992): 383–400. http://dx.doi.org/10.1111/j.1525-1314.1992.tb00091.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tholt, Andrew, Sean R. Mulcahy, William C. McClelland, Sarah M. Roeske, Vinícius T. Meira, Patricia Webber, Emily Houlihan, Matthew A. Coble, and Jeffrey D. Vervoort. "Metamorphism of the Sierra de Maz and implications for the tectonic evolution of the MARA terrane." Geosphere 17, no. 6 (October 12, 2021): 1786–806. http://dx.doi.org/10.1130/ges02268.1.

Full text
Abstract:
Abstract The Mesoproterozoic MARA terrane of western South America is a composite igneous-metamorphic complex that is important for Paleozoic paleogeographic reconstructions and the relative positions of Laurentia and Gondwana. The magmatic and detrital records of the MARA terrane are consistent with a Laurentian origin; however, the metamorphic and deformation records lack sufficient detail to constrain the correlation of units within the MARA terrane and the timing and mechanisms of accretion to the Gondwana margin. Combined regional mapping, metamorphic petrology, and garnet and monazite geochronology from the Sierra de Maz of northwest Argentina suggest that the region preserves four distinct litho-tectonic units of varying age and metamorphic conditions that are separated by middle- to lower-crustal ductile shear zones. The Zaino and Maz Complexes preserve Barrovian metamorphism and ages that are distinct from other units within the region. The Zaino and Maz Complexes both record metamorphism ca. 430–410 Ma and show no evidence of the regional Famatinian orogeny (ca. 490–455 Ma). In addition, the Maz Complex records an earlier granulite facies event at ca. 1.2 Ga. The Taco and Ramaditas Complexes, in contrast, experienced medium- and low-pressure upper amphibolite to granulite facies metamorphism, respectively, between ca. 470–460 Ma and were later deformed at ca. 440–420 Ma. The Maz shear zone that bounds the Zaino and Maz Complexes records sinistral oblique to sinistral deformation between ca. 430–410 Ma. The data suggest that at least some units in the MARA terrane were accreted by translation, and the Gondwana margin of northwest Argentina transitioned from a dominantly convergent margin to a highly oblique margin in the Silurian.
APA, Harvard, Vancouver, ISO, and other styles
35

Morel, S. W. "Petrology and geothermometry of the Little Michiru Complex, Malawi." Mineralogical Magazine 53, no. 371 (June 1989): 285–91. http://dx.doi.org/10.1180/minmag.1989.053.371.02.

Full text
Abstract:
AbstractThe Little Michiru complex is a composite intrusion of pyroxenite and pyroxene syenite which is located at the boundary between amphibolite and granulite facies gneisses in the Shire rift valley. Pyroxene and feldspar chemistry shows that the intrusion consolidated from two magmatic fractions, one a pyroxenite cumulate that equilibrated at 870–1000 °C, the other a partly anatectic pyroxene syenite magma which metasomatized the surrounding gneisses during granulite-facies metamorphism and equilibrated at a temperature of 730–830 °C at 7 kbar.
APA, Harvard, Vancouver, ISO, and other styles
36

Owen, J. V., and J. D. Greenough. "Petrology of the Cormacks Lake Complex, Newfoundland: decompressional reaction relations in cordierite+orthoamphibole-bearing gneisses and associated rocks." Mineralogical Magazine 64, no. 4 (August 2000): 711–24. http://dx.doi.org/10.1180/002646100549562.

Full text
Abstract:
AbstractCordierite+orthoamphibole (Crd+Oam)-bearing gneisses in the Cormacks Lake complex are regionally associated with metapelites containing prismatic sillimanite and K-feldspar, metabasites that locally contain metamorphic orthopyroxene, and other high-grade rocks in the Central Gneiss (Dashwoods) subzone, in the southwestern Newfoundland Appalachians. Retrograde features formed at the expense of the granulite-facies assemblages are ubiquitous. For example, in some migmatitic rocks, garnet is resorbed by Crd+Oam, and in metapelites, cordierite separates corroded garnet and sillimanite. Mineral thermobarometry suggests that, following granulite-facies metamorphism (T<785°C, P<7.5 kbar), retrogression occurred as the Cormacks Lake gneisses cooled through Mg-Fe diffusional blocking temperatures as they decompressed to a pressure of ∼3–4 kbar. Given the absence of Barrovian (or higher pressure) mineral assemblages in the metapelites, regional tectonic reconstructions involving the thrusting of a neighbouring terrane (Notre Dame subzone) over the Central Gneiss subzone appear to be supported only by the moderate pressure determined for the granulite facies event. Although scarcely discernible given re-equilibration effects and the imprecision of thermobarometers, subsequent decompression nonetheless had a marked impact on the mineralogy of the gneisses.
APA, Harvard, Vancouver, ISO, and other styles
37

Krogh, T. E., and D. E. Moser. "U–Pb zircon and monazite ages from the Kapuskasing uplift: age constraints on deformation within the Ivanhoe Lake fault zone." Canadian Journal of Earth Sciences 31, no. 7 (July 1, 1994): 1096–103. http://dx.doi.org/10.1139/e94-098.

Full text
Abstract:
A decade of U–Pb dating of zircon and monazite from high-grade metamorphic rocks in the Kapuskasing uplift has identified a series of magmatic and metamorphic events between 2700 and 2585 Ma, and indicates that the onset of regional granulite metamorphism took place at mid-crustal levels of the southern Superior craton ca. 2660 Ma. New U–Pb ages for zircon and monazite have been used to constrain the age of ductile deformation fabrics at two sites in the Ivanhoe Lake fault zone, the structure along which the granulite-facies Kapuskasing structural zone was uplifted. These results suggest that the fault zone was probably active in the late Archean (as young as 2630 Ma) and again at approximately 2500 Ma.
APA, Harvard, Vancouver, ISO, and other styles
38

Mills, A. J., R. G. Berman, W. J. Davis, S. Tella, S. Carr, C. Roddick, and S. Hanmer. "Thermobarometry and geochronology of the Uvauk complex, a polymetamorphic Neoarchean and Paleoproterozoic segment of the Snowbird tectonic zone, Nunavut, Canada." Canadian Journal of Earth Sciences 44, no. 2 (February 1, 2007): 245–66. http://dx.doi.org/10.1139/e06-080.

Full text
Abstract:
The Uvauk complex is an ultramylonite-bounded, granulite-facies suite of anorthosite–gabbro that forms part of the Chesterfield Inlet segment of the Snowbird tectonic zone. Following initial anorthosite–gabbro magmatism at ca. 2.71 Ga and a cryptic 2.62–2.60 Ga event marked by zircon and monazite growth, the Uvauk complex experienced two high-grade tectonometamorphic events at 2.56–2.50 and 1.91–1.90 Ga. Similar to the 2.56–2.50 Ga development of other shear zones in the region, the upper-amphibolite-facies to granulite-facies, moderately high-pressure (8.4–11.0 kbar and 705–760 °C) (1 kbar = 100 MPA) M1 event is interpreted to have involved the structural emplacement of ca. 2.71 Ga Uvauk complex rocks on ca. 2.68 Ga tonalitic rocks to the south. Granulite-facies, high-pressure (11.2–14.7 kbar and 695–865 °C) M2 metamorphism, gabbroic magmatism, and mylonite development within the complex at ca. 1.9 Ga culminated with ~3.5 kbar decompression at high temperature. Clockwise pressure–temperature–time (P–T–t) paths reflect crustal thickening, thought to be related to the early accretionary history of the Trans-Hudson Orogen. A thermal overprint at ca. 1.85–1.75 Ga resulted in retrograde metamorphism (5.8–6.0 kbar and 625–695 °C) associated with post-tectonic granitoid plutonism.
APA, Harvard, Vancouver, ISO, and other styles
39

Zheng, Yong-Fei, and Ren-Xu Chen. "Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics." Geosphere 17, no. 6 (November 1, 2021): 1647–85. http://dx.doi.org/10.1130/ges02334.1.

Full text
Abstract:
Abstract Crustal metamorphism under extreme pressure-temperature conditions produces characteristic ultrahigh-pressure (UHP) and ultrahigh-temperature (UHT) mineral assemblages at convergent plate boundaries. The formation and evolution of these assemblages have important implications, not only for the generation and differentiation of continental crust through the operation of plate tectonics, but also for mountain building along both converging and converged plate boundaries. In principle, extreme metamorphic products can be linked to their lower-grade counterparts in the same metamorphic facies series. They range from UHP through high-pressure (HP) eclogite facies to blueschist facies at low thermal gradients and from UHT through high-temperature (HT) granulite facies to amphibolite facies at high thermal gradients. The former is produced by low-temperature/pressure (T/P) Alpine-type metamorphism during compressional heating in active subduction zones, whereas the latter is generated by high-T/P Buchan-type metamorphism during extensional heating in rifting zones. The thermal gradient of crustal metamorphism at convergent plate boundaries changes in both time and space, with low-T/P ratios in the compressional regime during subduction but high-T/P ratios in the extensional regime during rifting. In particular, bimodal metamorphism, one colder and the other hotter, would develop one after the other at convergent plate boundaries. The first is caused by lithospheric subduction at lower thermal gradients and thus proceeds in the compressional stage of convergent plate boundaries; the second is caused by lithospheric rifting at higher thermal gradients and thus proceeds in the extensional stage of convergent plate boundaries. In this regard, bimodal metamorphism is primarily dictated by changes in both the thermal state and the dynamic regime along plate boundaries. As a consequence, supercontinent assembly is associated with compressional metamorphism during continental collision, whereas supercontinent breakup is associated with extensional metamorphism during active rifting. Nevertheless, aborted rifts are common at convergent plate boundaries, indicating thinning of the previously thickened lithosphere during the attempted breakup of supercontinents in the history of Earth. Therefore, extreme metamorphism has great bearing not only on reworking of accretionary and collisional orogens for mountain building in continental interiors, but also on supercontinent dynamics in the Wilson cycle.
APA, Harvard, Vancouver, ISO, and other styles
40

Stephens, Michael B., and Carl-Henric Wahlgren. "Chapter 15 Polyphase (1.9–1.8, 1.5–1.4 and 1.0–0.9 Ga) deformation and metamorphism of Proterozoic (1.9–1.2 Ga) continental crust, Eastern Segment, Sveconorwegian orogen." Geological Society, London, Memoirs 50, no. 1 (2020): 351–96. http://dx.doi.org/10.1144/m50-2018-57.

Full text
Abstract:
AbstractThe Eastern Segment in the Sveconorwegian orogen comprises Paleoproterozoic–Mesoproterozoic magmatic suites, which formed along an active continental margin, and Mesoproterozoic suites emplaced during intracratonic extension. Zn–Pb sulphide and Fe oxide mineralizations in 1.9 Ga metavolcanic rocks form a significant mineral resource cluster in the northeastern part. Deformation and metamorphism under low-pressure (≤5 kbar) and variable-temperature conditions, including anatexis and granulite facies, prevailed during 1.9–1.8 Ga (Svecokarelian) and 1.5–1.4 Ga (Hallandian) accretionary orogenies. Sveconorwegian tectonothermal reworking initiated at c. 0.99–0.98 Ga in structurally lower levels. Crustal shortening, underthrusting with eclogite facies metamorphism (18 kbar), exhumation by eastwards thrusting (D1) during continued shortening and high-pressure granulite (8–12 kbar) to upper amphibolite facies metamorphism prevailed. Anatexis and folding around east–west axial surfaces with west-northwesterly constrictional strain (D2) followed at c. 0.98–0.95 Ga, being consanguineous with crustal extension. Structurally higher levels, northwards and eastwards, consist of high-pressure (10–12 kbar) orthogneisses, not affected by anatexis but also showing polyphase deformation. Sveconorwegian convergence ceased with upright folding along north–south axial surfaces and, in the uppermost frontal part, greenschist facies shearing with top-to-the-foreland normal followed by reverse displacement after 0.95 Ga. The normal shearing detached the upper compartment from the underlying gneisses.
APA, Harvard, Vancouver, ISO, and other styles
41

Gintov, O. B. "What happened to the Early Precambrian granulite complexes of the Bug region (Ukrainian shield) and the Limpopo belt (South Africa) and how to stratify them? A tectonist’s view." Geofizicheskiy Zhurnal 44, no. 1 (April 3, 2022): 55–82. http://dx.doi.org/10.24028/gzh.v44i1.253711.

Full text
Abstract:
The author reviews two alternative approaches (stratigenic-metamorphogenic and deformation-metamorphogenic) to the geology and mapping of the Earth’s oldest crust rocks that were metamorphized in РТ-conditions of the granulite facies, on the examples of two granulite belts — the Bug area complex (Ukrainian shield) and Limpopo belt (Southern Africa). There was shown a fairly good correlation of the composition and metamorphism (including the dynamometamorphism) of the rock complexes of both belts and their at least three-stage origin and transformation. The granulitic metamorphism processes within both belts happened before 3,0 b.y.a., 2,6—2,8, and c. 2,0 b.y.a. The structural-metamorphic transformations of the granulitic complexes, formation of their new structural plans with the destruction of the former (archean) by the following (proterozoan) do not allow falsifiably stratifying the archean granulitic complexes within the stratigenic-metamorphogenic approach already at the facies level. For the Bug area granulitic belt it is feasible only to isolate the Dniester-Bug and Bug series. Two of the important processes of the belt development are rock deformation in the compression and slip conditions and formation within the granulitic complexes of the sub-vertically-layered medium, slip folds with sub-vertical folds’ joints and wings. In both belts these processes began in the Neoarchean. This shows that in that time the tectonic processes were already to some significant degree propelled by plate tectonics mechanisms. Both belts had in common the formation of the linear-typeshearzonesat micro- to macroscale and their superimposition onto the deformation structures of the granulitic complexes of the preceding developmental stages. On their basis there formed the internal structure of the belts’ and their interconnections with the adjacent blocks of crust. Presumably, the archean charnokitoids and TTG-granitoids form the same structural layer of the crust, given their geochemical similarity and close age, and this layer is the base for the greenstone belts. The mineral composition, РТ-metamorphism conditions and age of granulitic belt rocks based on their U-Pb, Lu-Hf, Sm-Nd isotope systems compositions andoxygen isotope composition in Zirconium grains suggest that in the eo- and paleoarchean mantle and crust there should have already been amassed large quantities of medium-acidic matter which gave rise to the TTG complexes.
APA, Harvard, Vancouver, ISO, and other styles
42

SEARLE, MICHAEL P., and JON COX. "Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains." Geological Magazine 139, no. 3 (May 2002): 241–55. http://dx.doi.org/10.1017/s0016756802006532.

Full text
Abstract:
The metamorphic sole along the base of the Semail ophiolite in Oman records the earliest thrust slice subducted and accreted to the base of the ophiolite mantle sequence. In the Bani Hamid area (United Arab Emirates) a c. 870 m thick thrust slice of granulite facies rocks includes garnet+ diopside amphibolites, enstatite+cordierite+sillimanite+spinel±sapphirine quartzites, alkaline mafic granulites (meta-jacupirangites) quartzo-feldspathic gneisses and calc-silicates. The latter contain garnet+diopside+scapolite+plagioclase±wollastonite. P–T conditions of granulite facies metamorphism are in the range 800–860°C and 10.5±1.1 kbar to 14.7±2.8 kbar. Garnet+clinopyroxene+hornblende+plagioclase amphibolites from the metamorphic sole record peak P–T conditions of 840±70°C and 11.6±1.6 kbar (THERMOCALC average P–T mode) and 840–870°C and 13.9–11.8 kbar (conventional thermobarometry) with low degrees of partial melting producing very small melt segregations of tonalitic material. Pressure estimates are equivalent to depths of 57–46 km beneath oceanic crust, much deeper than can be accounted for by the thickness of the ophiolite. 40Ar39Ar hornblende ages from the amphibolites range from 95–93 Ma, synchronous with formation of the plagiogranites in the ophiolite crustal sequence (95 Ma), eruption of the Lasail (V2) volcanic sequence and deposition of Cenomanian–Turonian radiolaria in metalliferous sediments between the Geotimes (V1) and Lasail (V2) lavas. Protoliths of the metamorphic sole were Triassic–Jurassic and early Cretaceous Haybi volcanic rocks, Exotic limestones and quartzites and were clearly not equivalent to the Semail ophiolite rocks, showing that initiation of subduction could not have occurred at the ridge axis. Heat for metamorphism was derived from the mantle sequence harzburgites and dunites which were at or around 1100–1500°C. All data from the sub-ophiolite metamorphic sole in Oman and the United Arab Emirates indicate that the ophiolite was formed in a Supra-Subduction zone setting and that obduction occurred along a NE-dipping high-temperature subduction zone during Late Cretaceous times.
APA, Harvard, Vancouver, ISO, and other styles
43

Bogomolov, A. H., and Sv A. Sidorenko. "PECULIAVITIES OF TRANSFORMATION OF ORGANIC MATTERIN CARBONACEOUS ROCKS OF THE UKRAINIAN CRYSTAL SHILD." Moscow University Bulletin. Series 4. Geology, no. 1 (February 28, 2018): 44–53. http://dx.doi.org/10.33623/0579-9406-2018-1-44-53.

Full text
Abstract:
The main features of the transformation of organic matter (OM) of three facies of metamorphism (the facies of green shales, amphibolite and granulite facies) on the example of the Ukrainian crystal shield are discussed. The area of distribution and content of OM in high-carbon ancient rocks is characterized, the composition of primary sedimentary rocks, the processes of accumulation of biophilic elements during the transformation of OM are reconstructed.
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Hailin, Wenbin Zhu, and Rongfeng Ge. "Late Paleoproterozoic granulite-facies metamorphism in the North Altyn Tagh area, southeastern Tarim craton: Pressure-temperature paths, zircon U-Pb ages, and tectonic implications." GSA Bulletin 131, no. 9-10 (March 29, 2019): 1591–606. http://dx.doi.org/10.1130/b35085.1.

Full text
Abstract:
Abstract Granulite occupies the root of orogenic belts, and understanding its formation and evolution may provide critical information on orogenic processes. Previous studies have mainly focused on garnet-bearing high-pressure and medium-pressure granulites, whereas the metamorphic evolution and pressure-temperature (P-T) paths of garnet-absent, low-pressure granulites are more difficult to constrain. Here, we present zircon U-Pb ages and mineral chemistry for a suite of newly discovered two-pyroxene granulites in the North Altyn Tagh area, southeastern Tarim craton, northwestern China. Conventional geothermobarometry and phase equilibrium modeling revealed that these rocks experienced a peak granulite-facies metamorphism at T = 790–890 °C and P = 8–11 kbar. The mineral compositions and retrograde symplectites record a clockwise cooling and exhumation path, possibly involving near-isothermal decompression followed by near-isobaric cooling. Zircon U-Pb dating yielded a ca. 1.97 Ga metamorphic age, which likely represents the initial cooling age, based on Ti-in-zircon thermometry. Combined with regional geological records, we interpret that these granulites originated from the basement rocks of a late Paleoproterozoic magmatic arc that was subsequently involved in a collisional orogen in the southern Tarim craton, presumably related to the assembly of the Columbia/Nuna supercontinent. The clockwise P-T paths of the granulites record crustal thickening and burial followed by crustal thinning and exhumation in the upper plate of the collisional orogen. Our data indicate that the initial exhumation of this orogen probably occurred no later than ca. 1.97 Ga, which is supported by widespread 1.93–1.85 Ga postorogenic magmatism in this area.
APA, Harvard, Vancouver, ISO, and other styles
45

McLelland, James M. "Pre-granulite-facies metamorphism in the Adirondack Mountains, New York." Geological Society, London, Special Publications 43, no. 1 (1989): 315–17. http://dx.doi.org/10.1144/gsl.sp.1989.043.01.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Schulmann, Karel, and Richard W. White. "Granulite facies metamorphism and the rheology of the lower crust." Lithos 124, no. 1-2 (May 2011): vii—ix. http://dx.doi.org/10.1016/j.lithos.2011.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Collerson, Kenneth D., Malcolm T. McCulloch, and Allan P. Nutman. "Sr and Nd isotope systematics of polymetamorphic Archean gneisses from southern West Greenland and northern Labrador." Canadian Journal of Earth Sciences 26, no. 3 (March 1, 1989): 446–66. http://dx.doi.org/10.1139/e89-039.

Full text
Abstract:
Sr and Nd isotopic data for middle to late Archean polymetamorphic felsic gneisses from localities in the Nuuk area, West Greenland, are compared and contrasted with new isotopic results for early Archean Amîtsoq gneisses and with data for isotopically reworked Kiyuktok gneisses from the Saglek area, Labrador. Sr isotopic data for individual suites of felsic gneisses record the time-integrated effect of variable Rb–Sr fractionation during prograde and retrograde events as well as the effect of source inhomogeneity.Contrasting petrologic and Sr–Nd isotopic characteristics are the result of differences in level of exposure, caused partially by juxtaposition of terranes of different metamorphic character by movement on ductile shear zones and post-shearing folding deformation. Sm–Nd systematics of felsic gneisses from Nordafar, Ikerasakitsup akornga, Tinissaq, and Kangimut sammisoq – Qasigianguit define a geologically meaningless ca. 3280 Ma Nd "isochron", which is the result of mixing of samples from unrelated suites and the effect of open-system behaviour. Gneisses lying on this pseudoisochron were variably affected by ca. 2800–2900 Ma prograde granulite-facies metamorphism and structurally controlled retrogression under amphibolite- to greenschist-facies conditions.The study shows that Sr–Nd isotope systematics of geologically identifiable units may be modified by open-system behaviour during prograde and retrograde metamorphism. Isotopic data from gneiss complexes metamorphosed under granulite-facies conditions may therefore yield equivocal information concerning isochron interpretation, significance of model ages, and estimates of crustal residence time.
APA, Harvard, Vancouver, ISO, and other styles
48

ENGVIK, A. K., and S. ELVEVOLD. "Pan-African extension and near-isothermal exhumation of a granulite facies terrain, Dronning Maud Land, Antarctica." Geological Magazine 141, no. 6 (November 2004): 649–60. http://dx.doi.org/10.1017/s0016756804009859.

Full text
Abstract:
The Mühlig-Hofmann- and Filchnerfjella in central Dronning Maud Land, Antarctica, consist of series of granitoid igneous rocks emplaced in granulite and upper amphibolite facies metamorphic rocks. The area has experienced high-temperature metamorphism followed by near-isothermal decompression, partial crustal melting, voluminous magmatism and extensional exhumation during the later phase of the late Neoproterozoic to Cambrian Pan-African event. Remnants of kyanite–garnet–ferritschermakite–rutile assemblages indicate an early higher-pressure metamorphism and crustal overthickening. The gneisses experienced peak granulite facies temperatures of 800–900 °C at intermediate pressures. Breakdown of garnet + sillimanite + spinel-bearing assemblages to cordierite shows subsequent re-equilibration to lower pressures. An E–W foliation dominating the gneisses illustrates transposition of migmatites and leucocratic melts which evolved during the near-isothermal decompression. Occurrence of extensional shear bands and shear zones evolving from the ductile partial melting stage through semiductile towards brittle conditions, shows that the uplift persisted towards brittle crustal conditions under tectonic W/SW-vergent extension. Late-orogenic Pan-African quartz syenites intruded after formation of the main gneiss fabric contain narrow semiductile to brittle shear zones, illustrating that the extensional exhumation continued also after their emplacement. The latest record of the Pan-African event is late-magmatic fluid infiltration around 350–400 °C and 2 kbar. At this stage the Pan-African crust had undergone 15–20 km exhumation from the peak granulite facies conditions. We conclude that the later phase of the Pan-African event in central Dronning Maud Land is characterized by a near-isothermal decompression P–T path and extensional structures indicating tectonic exhumation, which is most likely related to a late-orogenic collapsing phase of the Pan-African orogen.
APA, Harvard, Vancouver, ISO, and other styles
49

Carson, C. J., M. Hand, and P. H. G. M. Dirks. "Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism." Mineralogical Magazine 59, no. 395 (June 1995): 327–39. http://dx.doi.org/10.1180/minmag.1995.059.395.16.

Full text
Abstract:
AbstractPetrological and mineral chemical data are presented for two new occurrences of co-existing borosilicate minerals in the Larsemann Hills, East Antarctica. The assemblages contain kornerupine and the rare borosilicate, grandidierite (Mg,Fe)A13BSiO9. Two distinct associations occur: (1) At McCarthy Point, 1–10 mm thick tourmaline-kornerupine-grandidierite layers are hosted within quartzofeldspathic gneiss; and (2) Seal Cove, where coexisting kornerupine and grandidierite occur within coarse-grained, metamorphic segregations with Mg-rich cores of cordierite-garnet-spinel-biotite-ilmenite and variably developed plagioclase halos. The segregations are hosted within biotite-bearing, plagio-feldspathic gneiss. Textural relationships from these localities indicate the stability of co-existing kornerupine and grandidierite.The grandidierite- and kornerupine-bearing segregations from Seal Cove largely postdate structures developed during a crustal thickening event (D2) which was coeval with peak metamorphism. At McCarthy Point, grandidierite, kornerupine and late-tourmaline growth predates, or is synchronous, with F3 fold structures developed during a extensive granulite grade, normal shearing event (D3) which occurred prior to, and synchronous with, near-isothermal decompression. Average pressure calculations on assemblages that coexist with the borosilicates at Seal Cove, indicate the prevailing conditions were 5.2–5.5 kbar at ∼ 750°C for formation of the grandidierite-kornerupine assemblage.
APA, Harvard, Vancouver, ISO, and other styles
50

Kyrylyuk, V. P., and O. V. Gaiovskyi. "REGIONAL METAMORPHISM AND STRATIGRAPHY OF THE BASEMENT OF UKRAINIAN SHIELD." Geological Journal, no. 4 (December 28, 2022): 3–30. http://dx.doi.org/10.30836/igs.1025-6814.2022.4.261979.

Full text
Abstract:
Stratigraphic complexes of the Lower Precambrian are everywhere metamorphosed. That is why the stratigraphic dismemberment of the Lower Precambrian has always been inextricably linked with the study of metamorphism. For some time, metamorphism was even used as a sign of the relative age of stratigenic metamorphic complexes according to the principle – “the higher the degree of metamorphism, the older the complex”. The high-temperature complexes of granulite and amphibolite facies belonged to the Archean, while the less metamorphosed complexes belonged to the Proterozoic. But already at the beginning of the widespread use of methods of isotope dating of metamorphic shield complexes, the most ancient age determinations were obtained from weakly metamorphosed complexes. After that, the degree of metamorphism was no longer taken into account in the stratigraphic dismemberment of the shield basement. The degree of metamorphism of the complexes has not been taken into account for a long ago when compiling official stratigraphic schemes of the Precambrian of the Ukrainian Shield, in which isotope dating plays a leading role. This led, according to many geologists, to distortions in the schemes of the real stratigraphy of the basement of the region. The authors of the article believe that the degree of metamorphism can still be used in the development of the stratigraphy of the Ukrainian Shield and, above all, in the stratigraphic study of individual megablocks. The possibility of such use of metamorphism is considered in the cycle of publications in which this is the first article. The article presents the characteristics of stratigraphy and metamorphism of all megablocks of the Ukrainian Shield. In the structure of the megablocks of the Ukrainian Shield, as well as all the shields of ancient platforms, the following stratigenic metamorphic complexes of the Lower Precambrian have been established, differing in the type and degree of metamorphism: a) granulite-gneiss, b) amphibolite-gneiss, c) greenstone (metavolcanogenic), d) ferruginoussiliceous- shale (metavolcanogenic-chemogenic-terrigenous), e) gneiss-shale (metacarbonate-terrigenous). It has been established that in all megablocks granulite-gneiss complexes are represented and are the most ancient, and all younger complexes are always less metamorphosed than the previous ones. Thus, the relationship between the degree of metamorphism and relative age in individual megablocks is preserved, but this feature cannot be extended to the entire shield. Coeval complexes of neighboring megablocks may have different degrees of metamorphism, and younger complexes of one of the megablocks are sometimes more intensely metamorphosed than older ones in the neighboring megablock.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography