Academic literature on the topic 'Granular neuron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Granular neuron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Granular neuron"
Alloway, K. D., M. J. Johnson, and M. B. Wallace. "Thalamocortical interactions in the somatosensory system: interpretations of latency and cross-correlation analyses." Journal of Neurophysiology 70, no. 3 (September 1, 1993): 892–908. http://dx.doi.org/10.1152/jn.1993.70.3.892.
Full textSajjad, Hassan, Nadir Durrani, and Fahim Dalvi. "Neuron-level Interpretation of Deep NLP Models: A Survey." Transactions of the Association for Computational Linguistics 10 (2022): 1285–303. http://dx.doi.org/10.1162/tacl_a_00519.
Full textCollins, Christine E., Emily C. Turner, Eva Kille Sawyer, Jamie L. Reed, Nicole A. Young, David K. Flaherty, and Jon H. Kaas. "Cortical cell and neuron density estimates in one chimpanzee hemisphere." Proceedings of the National Academy of Sciences 113, no. 3 (January 4, 2016): 740–45. http://dx.doi.org/10.1073/pnas.1524208113.
Full textMedini, Chaitanya, Bipin Nair, Egidio D'Angelo, Giovanni Naldi, and Shyam Diwakar. "Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles." Computational Intelligence and Neuroscience 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/359529.
Full textZhang, Mengliang, and Kevin D. Alloway. "Stimulus-Induced Intercolumnar Synchronization of Neuronal Activity in Rat Barrel Cortex: A Laminar Analysis." Journal of Neurophysiology 92, no. 3 (September 2004): 1464–78. http://dx.doi.org/10.1152/jn.01272.2003.
Full textConrad, Rachel, and Mia C. N. Perez. "Congenital Granular Cell Epulis." Archives of Pathology & Laboratory Medicine 138, no. 1 (January 1, 2014): 128–31. http://dx.doi.org/10.5858/arpa.2012-0306-rs.
Full textCavaliere, Antonio, Angelo Sidoni, Ivana Ferri, and Brunangelo Falini. "Granular Cell Tumor: An Immunohistochemical Study." Tumori Journal 80, no. 3 (June 1994): 224–28. http://dx.doi.org/10.1177/030089169408000312.
Full textHowarth, Clare, Claire M. Peppiatt-Wildman, and David Attwell. "The Energy Use Associated with Neural Computation in the Cerebellum." Journal of Cerebral Blood Flow & Metabolism 30, no. 2 (November 4, 2009): 403–14. http://dx.doi.org/10.1038/jcbfm.2009.231.
Full textRosso, Renato, Mario Scelsi, and Luciano Carnevali. "Granular Cell Traumatic Neuroma." Archives of Pathology & Laboratory Medicine 124, no. 5 (May 1, 2000): 709–11. http://dx.doi.org/10.5858/2000-124-0709-gctn.
Full textArtuković, Branka, Andrea Gudan Kurilj, Ivana Mihoković Buhin, Lidija Medven Zagradišnik, Ivan-Conrado Šoštarić-Zuckermann, and Marko Hohšteter. "Granular cell tumor in the central nervous system of a ferret (Mustela putorius furo) - a case report." Veterinarski arhiv 92, no. 2 (April 29, 2022): 205–12. http://dx.doi.org/10.24099/vet.arhiv.1705.
Full textDissertations / Theses on the topic "Granular neuron"
Mortessagne, Pierre. "Characterization of the different populations of granular neurons in the dentate gyrus of the hippocampus : from morphology to function." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0402.
Full textIn the dentate gyrus (DG) of the hippocampus, the generation of dentate granule neurons(DGNs) starts during late embryogenesis, peaks around birth and continues at low levels during adulthood. This continuous neurogenesis makes the DG a unique structure, composed of DGNs from distinct temporal origins, which form subpopulations potentially bearing unique anatomical characteristics and functional roles in hippocampal physiology. Surprisingly, this hypothesis has received limited attention. In this context, our research aimed to elucidate the morphological, electrophysiological, and behavioral characteristics of DGNs subpopulations based on their temporal origin. Building on prior findings from our team that high lighted dendritic differences between these populations, we focused on examining the features of their axons, called mossy fibers (MFs). Using sparse labeling strategies — electroporation to targetembryonically-born (E14.5) and neonatally-born (P0) DGNs, and retroviral injections foradolescent-born (P21) and adult-born (P84) DGNs — we uncovered that DGNs generated laterin life develop larger MF boutons with more filopodia, and exhibit a shorter axon initialsegment. Additionally, using the Osteocalcin-Cre and Ascl1CreERT2 mouse lines to selectivelylabel large cohorts of embryonically-born and adult-born DGNs, respectively, we found thatearlier-born neurons project further onto the CA2 compared to later-born neurons. Following these morphological findings, we further investigated the functional characteristics of temporally distinct DGNs at both the electrophysiological and behavioral levels. The electrophysiological studies revealed similar intrinsic properties between neonatally- and adult born DGNs, and higher basal transmission in neonatally-born DGNs, potentially reflecting alarger number of active sites. Finally, we examined the role of embryonic-born DGNs in socialbehavior, and showed that acute inhibition of these neurons delayed the expression of social preference. However, these functional data remain preliminary and need further investigation.Altogether, this PhD work highlights the significant impact of the birthdate of DGNs on their anatomical and potentially functional characteristics, and emphasizes the importance of considering their precise temporal origin in any structural or functional analysis of the DG
Čurilla, Matej. "Neuronové sítě a hrubé množiny." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-264945.
Full textLeite, Daniel Furtado. "Evolving granular systems = Sistemas granulares evolutivos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260761.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-21T02:35:33Z (GMT). No. of bitstreams: 1 Leite_DanielFurtado_D.pdf: 12632242 bytes, checksum: f537e4a24d7322d87dc0aca9ba758b48 (MD5) Previous issue date: 2012
Resumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. Métodos e algoritmos têm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princípio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinâmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação é uma técnica natural para dispensar atenção a detalhes desnecessários e enfatizar transparência, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepções ou descrições imprecisas do valor de uma variável. De maneira geral, vários fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele está sendo usado para representar. Neste trabalho são considerados dados numéricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares é baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parâmetros do modelo sempre que necessário. Este paradigma de aprendizagem é particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de séries temporais e controle usando dados sintéticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados não-estacionários com mudanças graduais e abruptas de regime é também analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluções aproximadas de alta qualidade e sumário de regras de conjuntos de dados de entrada e saída. As abordagens e o paradigma introduzidos constituem uma extensão natural de sistemas inteligentes evolutivos para processamento de dados numéricos a sistemas granulares evolutivos para processamento de dados granulares
Abstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streams
Doutorado
Automação
Doutor em Engenharia Elétrica
Mahoney, Sally-Ann. "A role for tissue transglutaminase in neuron / glial interaction and development of cerebellar granule neurons." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361111.
Full textPushpalatha, Kavya Vinayan. "Remodelage des condensats RNP neuronaux au cours du vieillissement chez la drosophile." Electronic Thesis or Diss., Université Côte d'Azur, 2021. http://theses.univ-cotedazur.fr/2021COAZ6007.
Full textNascent mRNAs complex with RNA binding proteins (RBPs) to form highly dynamic, phase-separated organelles termed ribonucleoprotein (RNP) granules. These macromolecular assemblies can regulate gene expression by controlling the transport, decay and/or translation of associated RNA molecules. As mostly shown in vitro, RNP granule assembly and function rely on the interaction networks established by individual components and on their stoichiometry. To date, how the properties of constitutive RNP granules are regulated in different physiological context is unclear. In particular, the impact of physiological aging is unclear. My PhD project aimed at addressing this question by analyzing in vivo in long-lived neuronal cells the properties of RNP granules. To this end, I have analysed in flies of increasing age RNP granules characterized by the presence of the conserved RBP Imp/ZBP1 and DEAD-box RNA helicase Me31B/DDX6. Strikingly, a progressive increase in the condensation of Imp and Me31B into granules was observed upon aging. The large granules observed in aged flies were dynamic, contained profilin mRNA, and did not colocalize with Ubiquitin or aggregation markers, suggesting that they do not correspond to static protein aggregates. Increased condensation also associated with the loss of Me31B+ Imp- granules observed in young brains and the collapse of RNP component into a unique class of Me31B+ Imp+ granule. Furthermore, it was accompanied by a specific inhibition of the translation of granule-associated mRNAs, among which the Imp RNA target profilin. Through functional analysis, I uncovered that changes in Me31B stoichiometry trigger Me31B condensation in aged flies. While an increase in Me31B protein levels was observed upon aging, decreasing the dosage of Me31B suppressed its age-dependent condensation. As Imp condensation was only partially suppressed in this context, I performed a selective screen to identify regulators of this process. This revealed that downregulating PKA activity by different genetic means both drastically reduced Imp recruitment and prevented the age-dependent translational repression of granule-associated mRNAs. Taken together, my work thus showed for the first time in vivo that the properties of neuronal RNP granules change upon aging, a phenomenon that does not reflect general alterations in RNA homeostasis but rather specific modulation of RNP component stoichiometry and kinase activity. These results demonstrate how biological systems can modulate key parameters initially defined based on in vitro framework, and also open new perspectives in the field of age-dependent regulation of gene expression
Kerloch, Thomas. "Etude du développement des neurones granulaires du gyrus denté : morphogénèse et régulation par Rnd2." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0254.
Full textIn most areas of the brain, neurons are born during embryogenesis. In contrast, the majority of granule neurons in the dentate gyrus (DG) of the hippocampus are born postnatally and their generation continues throughout adulthood. This finding that new neurons are generated in the adult mammalian brain has opened novel avenues for brain repair and has initiated, in the last 20 years, tremendous efforts to characterize how new neurons differentiate and integrate into adult neural circuitries. However, further studies are needed to better understand the mechanisms and signaling cascades involved in this process. In this context, we focused on Rnd2, a RhoGTPase particularly enriched in the adult neurogenic DG and described as a key player in the regulation of embryonic cortical neurogenesis. We found, in vivo, that the deletion of Rnd2 specifically in adult-born hippocampal neurons decreases the survival of these cells, and in the surviving ones, leads to soma hypertrophy, increases dendritic arborization and induces mispositioning. Importantly, this deletion also increases anxiety-like behavior in mice, thus identifying Rnd2 as a critical regulator of adult newborn neuron development and function. In addition, our data show that Rnd2 does not play the same functions in granule neurons born at P0, highlighting a differential regulation of developmental and adult neurogenesis in the DG. In the same vein, we also demonstrate that perinatally-born granule neurons, especially the embryonic ones, are morphologically distinct compared with later-born neurons. Altogether, this PhD work provides new insights into the development of the different populations of granule neurons in the DG, further emphasizing the peculiarity of this brain structure
Landeira, Bruna Soares. "Elimina??o de neur?nios infragranulares afeta a especifica??o de neur?nios granulares e supragranulares do c?rtex cerebral em desenvolvimento." PROGRAMA DE P?S-GRADUA??O EM NEUROCI?NCIAS, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/23364.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-06-01T22:19:30Z (GMT) No. of bitstreams: 1 BrunaSoaresLandeira_TESE.pdf: 8601965 bytes, checksum: a68be4513e6834f5aaf48800f8ea90d7 (MD5)
Made available in DSpace on 2017-06-01T22:19:30Z (GMT). No. of bitstreams: 1 BrunaSoaresLandeira_TESE.pdf: 8601965 bytes, checksum: a68be4513e6834f5aaf48800f8ea90d7 (MD5) Previous issue date: 2017-04-11
O c?rtex cerebral de mam?feros ? histologicamente organizado em diferentes camadas de neur?nios excitat?rios que possuem diversos padr?es de conex?o com alvos corticais e subcorticais. Durante o desenvolvimento, essas camadas corticais se estabelecem sequencialmente atrav?s de uma intrincada combina??o de especifica??o neuronal e migra??o em um padr?o radial conhecida como ?de dentro para fora?: neur?nios infragranulares s?o gerados primeiro do que os neur?nios granulares e supragranulares. Nas ?ltimas d?cadas, diversos genes codificando fatores de transcri??o envolvidos na especifica??o de neur?nios destinados a diferentes camadas corticais foram identificados. Todavia, a influ?ncia dos neur?nios infragranulares sobre a especifica??o das coortes neuronais subsequentes permanece pouco entendida. Para investigar os poss?veis efeitos da abla??o de neur?nios infragranulares sobre a especifica??o de neur?nios supragranulares, n?s induzimos a morte seletiva de neur?nios corticais das camadas V e VI antes da gera??o dos neur?nios destinados ?s camadas II-IV. Nossos dados revelam que um dia ap?s a abla??o, progenitores continuaram a gerar neur?nios destinados a camada VI que expressam o fator de transcri??o TBR1, enquanto praticamente nenhum neur?nio expressando TBR1 foi gerado na mesma etapa do desenvolvimento em controles com a mesma idade. Curiosamente, alguns neur?nios TBR1-positivos gerados ap?s a abla??o de neur?nios infragranulares se estabeleceram em camadas corticais superficiais, como esperado para neur?nios supragranulares gerados neste est?gio, sugerindo que a migra??o de neur?nios corticais pode ser controlada independentemente da sua especifica??o molecular. Al?m disso, n?s observamos um aumento em neur?nios de camada V que expressam CTIP2 e neur?nios calosos que expressam SATB2 ? custa da diminui??o neur?nios de camada IV em animais P0. Quando estes animais se tornam adultos jovens (P30) o aumento de neur?nios SATB2 e CTIP2 n?o existe mais, todavia encontramos esses neur?nios distribu?dos de forma diferente na ?rea somatossensorial dos animais que sofreram abla??o. Experimentos in vitro revelaram que a organiza??o citoarquitet?nica laminar do c?rtex ? necess?ria para gerar novamente os neur?nios TBR1+ que foram eliminados anteriormente. Al?m disso, experimentos in vitro indicam que em condi??o de baixa densidade celular os neur?nios tem seu fen?tipo alterado, expressando v?rios fatores de transcri??o ao mesmo tempo. Em conjunto, nossos dados indicam a exist?ncia de um mecanismo regulat?rio entre neur?nios infragranulares e progenitores envolvidos na gera??o de neur?nios supragranulares e/ou entre neur?nios infragranulares e neur?nios p?s-mit?ticos gerados em seguida. Este mecanismo poderia ajudar a controlar o n?mero de neur?nios em diferentes camadas e contribuir para o estabelecimento de diferentes ?reas corticais.
The cerebral cortex of mammals is histologically organized into in different layers of excitatory neurons that have distinct patterns of connections with cortical or subcortical targets. During development, these cortical layers are sequentially established through an intricate combination of neuronal specification and migration in a radial pattern known as "inside-out": deep-layer neurons are generated prior to upper-layer neurons. In the last few decades, several genes encoding transcription factors involved in the specification of neurons destined to different cortical layers have been identified. However, the influence of early-generated neurons in to the specification of subsequent neuronal cohorts remains unclear. To investigate the possible effects early born neurons ablation on the specification of late born neurons, we induced the selective death of cortical neurons from layers V and VI neurons before the generation of neurons destined to layers II, III and IV. Our data shows that oneday after ablation, progenitors resumed generation of layer VI neurons expressing the transcription factor TBR1, whereas virtually no TBR1-expressing neuron was generated at the same developmental stage in age-matched controls. Interestingly, many TBR1-positive neurons generated after deep-layer ablation settled within superficial cortical layers, as expected for upper-layer neurons generated at that stage, suggesting that migration post-mitotic neurons is independent of fate-specification. Furthermore, we observed an increase in layer V neurons expressing CTIP2 and cortico-cortical neurons expressing SATB2 at the expense of layer IV neurons in P0 animals. When these animals became young adults (P30) the increase os SATB2 and CTIP2 neurons is no longer observed, however these neurons are distributed in a different way in somatosensory areas from ablated animals. In vitro experiments show that the laminar cytoarchitectural organization of the cortex is necessary to regenerate the previously deleted TBR1 + neurons. In addition, in vitro experiments indicate that in a condition of low cell density the neurons phnotype is altered, they express several transcription factors at the same time. Together, our data indicate the existence of feedback mechanism either from early-generated neurons to progenitors involved in the generation of upper-layer neurons or from deep-layer neurons to postmitotic neurons generated subsequently. This mechanism could help to control the number of neurons in different layers and contribute to the establishment of different cortical areas.
Al-Shammaa, Mohammed. "Granular computing approach for intelligent classifier design." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13686.
Full textPekanovic, Ana. "Aging of cerebellar granule neurons in vitro." [S.l. : s.n.], 2006.
Find full textLee, Bongjoon. "Analysis of the Kinetics of Filler Segregation in Granular Block copolymer Microstructure." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/705.
Full textBooks on the topic "Granular neuron"
Pal, Sankar K., Shubhra S. Ray, and Avatharam Ganivada. Granular Neural Networks, Pattern Recognition and Bioinformatics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57115-7.
Full textSanchez, Daniela, and Patricia Melin. Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28862-8.
Full textPal, Sankar K., Shubhra S. Ray, and Avatharam Ganivada. Granular Neural Networks, Pattern Recognition and Bioinformatics. Springer, 2018.
Find full textPal, Sankar K., Shubhra S. Ray, and Avatharam Ganivada. Granular Neural Networks, Pattern Recognition and Bioinformatics. Springer, 2017.
Find full textMelin, Patricia, and Daniela Sanchez. Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation. Springer London, Limited, 2016.
Find full textMelin, Patricia, and Daniela Sanchez. Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation. Springer, 2016.
Find full textGugel, Karl S. Partitioning artificial neural networks onto coarse granular parallel systems. 1993.
Find full textBarasch, Jonathan Matthew. Secretory granules and neural characteristics of a serotonergic endocrine cell. 1987.
Find full textLuca, Ariane Myriam de. Modulation of cell death in cultured cerebellar granule neurons by cytokines and growth factors. 1996.
Find full textBook chapters on the topic "Granular neuron"
Apolloni, B., D. Iannizzi, D. Malchiodi, and W. Pedrycz. "Granular Regression." In Neural Nets, 147–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11731177_22.
Full textAvatharam, G., and Sankar K. Pal. "Robust Granular Neural Networks, Fuzzy Granules and Classification." In Lecture Notes in Computer Science, 220–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16248-0_34.
Full textAkers, Lex A. "Neural and Constrained Interconnect Automata." In Granular Nanoelectronics, 441–61. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_28.
Full textDick, Scott, and Abraham Kandel. "Granular Computing in Neural Networks." In Granular Computing, 275–305. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1823-9_12.
Full textZhang, Yan-Qing. "Granular Neural Networks." In Encyclopedia of Complexity and Systems Science, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27737-5_261-2.
Full textZhang, Yan-Qing. "Granular Neural Network." In Computational Complexity, 1455–63. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1800-9_93.
Full textZhang, Yan-Qing. "Granular Neural Networks." In Encyclopedia of Complexity and Systems Science Series, 265–77. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2628-3_261.
Full textZhang, Yan-Qing. "Granular Neural Network." In Encyclopedia of Complexity and Systems Science, 4402–11. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_261.
Full textMaravall, Darío, and Javier de Lope. "ANLAGIS: Adaptive Neuron-Like Network Based on Learning Automata Theory and Granular Inference Systems with Applications to Pattern Recognition and Machine Learning." In Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy, 97–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02264-7_11.
Full textPedrycz, Witold. "Knowledge-Based Networking in Granular Worlds." In Rough-Neural Computing, 109–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18859-6_5.
Full textConference papers on the topic "Granular neuron"
Bai, Xiujun, Ying Miao, Lin Wu, and Yuhao Long. "The News Delivery Channel Recommendation Based on Granular Neural Network." In 2024 International Conference on Culture-Oriented Science & Technology (CoST), 71–76. IEEE, 2024. http://dx.doi.org/10.1109/cost64302.2024.00023.
Full textJiali Feng. "Qualitative Mapping, Criterion Trasformation and Artificial Neuron." In 2005 IEEE International Conference on Granular Computing. IEEE, 2005. http://dx.doi.org/10.1109/grc.2005.1547330.
Full textQun Liu, Lanfen Wang, and Yu Wu. "Bifurcating periodic solutions for a single delayed neuron model under periodic excitation." In 2008 IEEE International Conference on Granular Computing (GrC-2008). IEEE, 2008. http://dx.doi.org/10.1109/grc.2008.4664652.
Full textLiu, Qun, Xiaofeng Liao, Degang Yang, and Songtao Guo. "The Research for Hopf Bifurcation in a Single Inertial Neuron Model with External Forcing." In 2007 IEEE International Conference on Granular Computing (GRC 2007). IEEE, 2007. http://dx.doi.org/10.1109/grc.2007.4403155.
Full textLiu, Qun, Xiaofeng Liao, Degang Yang, and Songtao Guo. "The Research for Hopf Bifurcation in a Single Inertial Neuron Model with External Forcing." In 2007 IEEE International Conference on Granular Computing (GRC 2007). IEEE, 2007. http://dx.doi.org/10.1109/grc.2007.85.
Full textNair, Manjusha, Nidheesh Melethadathil, Bipin Nair, and Shyam Diwakar. "Information processing via post-synaptic EPSP-spike complex and model-based predictions of induced changes during plasticity in cerebellar granular neuron." In the 1st Amrita ACM-W Celebration. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1858378.1858383.
Full textFortunato, Danielle, Márcio Santana, Jader Gomes, and Daniel Leite. "Modelagem Granular Neuro-Fuzzy Evolutiva para Classificação de Distúrbios em Sistemas de Distribuição de Potência." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1666.
Full textLeite, Daniel F., Pyramo Costa, and Fernando Gomide. "Evolving granular classification neural networks." In 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178895.
Full textDick, S., A. Tappenden, Curtis Badke, and O. Olarewaju. "A Novel Granular Neural Network Architecture." In NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2007. http://dx.doi.org/10.1109/nafips.2007.383808.
Full textDing, Zejin, and Yan-Qing Zhang. "Granular Neural Networks with Decision Fusion." In 2010 IEEE International Conference on Granular Computing (GrC-2010). IEEE, 2010. http://dx.doi.org/10.1109/grc.2010.56.
Full text