Academic literature on the topic 'GPU1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GPU1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GPU1"
Nakada, Yuji, and Yoshifumi Itoh. "Pseudomonas aeruginosa PAO1 genes for 3-guanidinopropionate and 4-guanidinobutyrate utilization may be derived from a common ancestor." Microbiology 151, no. 12 (December 1, 2005): 4055–62. http://dx.doi.org/10.1099/mic.0.28258-0.
Full textGuo, Sen, San Feng Chen, and Yong Sheng Liang. "Global Shared Memory Design for Multi-GPU Graphics Cards on Personal Supercomputer." Applied Mechanics and Materials 263-266 (December 2012): 1236–41. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.1236.
Full textPalmer, Daniel A., Jill K. Thompson, Lie Li, Ashton Prat, and Ping Wang. "Gib2, A Novel Gβ-like/RACK1 Homolog, Functions as a Gβ Subunit in cAMP Signaling and Is Essential in Cryptococcus neoformans." Journal of Biological Chemistry 281, no. 43 (September 1, 2006): 32596–605. http://dx.doi.org/10.1074/jbc.m602768200.
Full textHarashima, Toshiaki, and Joseph Heitman. "Gα Subunit Gpa2 Recruits Kelch Repeat Subunits That Inhibit Receptor-G Protein Coupling during cAMP-induced Dimorphic Transitions in Saccharomyces cerevisiae." Molecular Biology of the Cell 16, no. 10 (October 2005): 4557–71. http://dx.doi.org/10.1091/mbc.e05-05-0403.
Full textLai, Jianqi, Hua Li, Zhengyu Tian, and Ye Zhang. "A Multi-GPU Parallel Algorithm in Hypersonic Flow Computations." Mathematical Problems in Engineering 2019 (March 17, 2019): 1–15. http://dx.doi.org/10.1155/2019/2053156.
Full textWang, Ping, John R. Perfect, and Joseph Heitman. "The G-Protein β Subunit GPB1 Is Required for Mating and Haploid Fruiting in Cryptococcus neoformans." Molecular and Cellular Biology 20, no. 1 (January 1, 2000): 352–62. http://dx.doi.org/10.1128/mcb.20.1.352-362.2000.
Full textZhou, Chao, and Tao Zhang. "High Performance Graph Data Imputation on Multiple GPUs." Future Internet 13, no. 2 (January 31, 2021): 36. http://dx.doi.org/10.3390/fi13020036.
Full textMITTAL, SPARSH. "A SURVEY OF TECHNIQUES FOR MANAGING AND LEVERAGING CACHES IN GPUs." Journal of Circuits, Systems and Computers 23, no. 08 (June 18, 2014): 1430002. http://dx.doi.org/10.1142/s0218126614300025.
Full textOden, Lena, and Holger Fröning. "InfiniBand Verbs on GPU: a case study of controlling an InfiniBand network device from the GPU." International Journal of High Performance Computing Applications 31, no. 4 (June 25, 2015): 274–84. http://dx.doi.org/10.1177/1094342015588142.
Full textGaurav and Steven F. Wojtkiewicz. "Use of GPU Computing for Uncertainty Quantification in Computational Mechanics: A Case Study." Scientific Programming 19, no. 4 (2011): 199–212. http://dx.doi.org/10.1155/2011/730213.
Full textDissertations / Theses on the topic "GPU1"
Stodůlka, Martin. "Akcelerace ultrazvukových simulací pomocí multi-GPU systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445538.
Full textMa, Wenjing. "Automatic Transformation and Optimization of Applications on GPUs and GPU clusters." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1300972089.
Full textTanasić, Ivan. "Towards multiprogrammed GPUs." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405796.
Full textLas Unidades de Procesamiento de Gráficos Programables (GPU, por sus siglas en inglés) se han convertido recientemente en los procesadores masivamente paralelos más difundidos. Han recorrido un largo camino desde ASICs de función fija diseñados para acelerar tareas gráficas, hasta una arquitectura programable que también puede ejecutar cálculos de propósito general. Debido a su rendimiento y eficiencia, una cantidad creciente de software se basa en ellas para acelerar las secciones de código computacionalmente intensivas que disponen de paralelismo de datos. Se han ganado un lugar en muchos sistemas, desde dispositivos móviles de baja potencia hasta los centros de datos más grandes del mundo. Sin embargo, las GPUs siguen plagadas por el hecho de que esencialmente no tienen soporte de multiprogramación, lo que resulta en un bajo rendimiento del sistema si la GPU se comparte entre múltiples programas. En esta disertación nos centramos en proporcionar soporte de multiprogramación para GPUs mediante la mejora de las capacidades de multitarea y del soporte de memoria virtual. El principal problema que dificulta el soporte multitarea en las GPUs es la ejecución no apropiativa de los núcleos de la GPU. Proponemos dos mecanismos de apropiación con diferentes filosofías de diseño, que pueden ser utilizados por un planificador para apropiarse de los núcleos de la GPU y asignarlos a otros procesos. También abogamos por la división espacial de la GPU y proponemos una implementación concreta de un planificador hardware que divide dinámicamente los núcleos de la GPU entre los kernels en ejecución, de acuerdo con sus prioridades establecidas. Oponiéndose a las suposiciones hechas por otros en trabajos relacionados, demostramos que la ejecución apropiativa es factible y el enfoque deseado para la multitarea en GPUs. Además, mostramos una mayor equidad y capacidad de respuesta del sistema con nuestra política de asignación de núcleos de la GPU. También señalamos que la causa principal del insuficiente soporte de la memoria virtual en las GPUs es el mecanismo de manejo de excepciones utilizado por las GPUs modernas. En la actualidad, las GPUs descargan el manejo de las excepciones a la CPU, mientras que la instrucción que causo la fallada se encuentra esperando en el núcleo de la GPU. Este modelo de bloqueo en fallada impide algunas de las funciones y optimizaciones de la memoria virtual y es especialmente perjudicial en entornos multiprogramados porque evita el cambio de contexto de la GPU a menos que se resuelvan todas las fallas pendientes. En esta disertación, proponemos tres implementaciones del pipeline de los núcleos de la GPU que ofrecen distintos balances de rendimiento-complejidad y permiten la apropiación del núcleo aunque haya excepciones pendientes (es decir, la instrucción que produjo la fallada puede ser reiniciada más tarde). Basándonos en esta nueva funcionalidad, implementamos dos casos de uso para demostrar su utilidad. El primero es un planificador que asigna el núcleo a otros subprocesos cuando hay una fallada para tratar de hacer trabajo útil mientras esta se resuelve, ocultando así la latencia de la fallada y mejorando el rendimiento del sistema. El segundo permite que el código de manejo de las falladas se ejecute localmente en la GPU, en lugar de descargar el manejo a la CPU, mostrando que el manejo local de falladas también puede mejorar el rendimiento.
Hong, Changwan. "Code Optimization on GPUs." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557123832601533.
Full textWang, Kaibo. "Algorithmic and Software System Support to Accelerate Data Processing in CPU-GPU Hybrid Computing Environments." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1447685368.
Full textPedersen, Stian Aaraas. "Progressive Photon Mapping on GPUs." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22995.
Full textHarb, Mohammed. "Quantum transport modeling with GPUs." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114417.
Full textDans cette thèse, nous présentons un logiciel qui effectue des calculs de transport quantique en utilisant conjointement la théorie des fonctions de Green hors équilibre (non equilibrium Green function, NEGF) et le modèle des liens étroits (tight-binding model, TB). Notre logiciel tire avantage du parallélisme inhérent aux algorithmes utilisés en plus d'être accéléré grâce à l'utilisation de processeurs graphiques (GPU). Nous abordons également les problèmes théoriques, géométriques et numériques qui se posent lors de l'implémentation du code NEGF-TB. Nous démontrons ensuite qu'une implémentation hétérogène utilisant des CPU et des GPU est supérieure aux implémentations à processeur unique, à celles à processeurs multiples, et même aux implémentations massivement parallèles n'utilisant que des CPU. Le GPU-Matlab Interface (GMI) présenté dans cette thèse fut développé pour des fins de calculs de transport quantique NEGF-TB. Néanmoins, les capacités de GMI ne se limitent pas à l'utilisation que nous en faisons ici et GMI peut être utilisé par des chercheurs de tous les domaines n'ayant pas de connaissances préalables de la programmation GPU ou de la programmation "multi-thread". Nous démontrons également que GMI compétitionne avantageusement avec des logiciels commerciaux similaires.Enfin, nous utilisons notre logiciel NEGF-TB pour étudier certaines propriétés de transport électronique de nanofils de Si et de Nanobeams. Nous examinons l'effet de plusieurs sortes de lacunes sur la conductance de ces structures et démontrons que notre méthode peut étudier des systèmes de plus de 200 000 atomes en un temps raisonnable en utilisant de un à quatre GPU sur un seul poste de travail.
Hovland, Rune Johan. "Throughput Computing on Future GPUs." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9893.
Full textThe general-purpose computing capabilities of the Graphics Processing Unit (GPU) have recently been given a great deal of attention by the High-Performance Computing (HPC) community. By allowing massively parallel applications to run efficiently on commodity graphics cards, personal supercomputers are now available in desktop versions at a low price. For some applications, speedups of 70 times that of a single CPU implementation have been achieved. Among the most popular GPUs are those based on the NVIDIA Tesla Architecture which allows relatively easy development of GPU applications using the NVIDIA CUDA programming environment. While the GPU is gaining interest in the HPC community, others are more reluctant to embrace the GPU as a computational device. The focus on throughput and large data volumes separates Information Retrieval (IR) from HPC, since for IR it is critical to process large amounts of data efficiently, a task which the GPU currently does not excel at. Only recently has the IR community begun to explore the possibilities, and an implementation of a search engine for the GPU was published recently in April 2009. This thesis analyzes how GPUs can be improved to better suit large data volume applications. Current graphics cards have a bottleneck regarding the transfer of data between the host and the GPU. One approach to resolve this bottleneck is to include the host memory as part of the GPUs memory hierarchy. We develop a theoretical model, and based on this model, the expected performance improvement for high data volume applications are shown for both computationally-bound and data transfer-bound applications. The performance improvement for an existing search engine is also given based on the theoretical model. For this case, the improvements would result in a speedup between 1.389 and 1.874 for the various query-types supported by the search engine.
Kim, Jinsung. "Optimizing Tensor Contractions on GPUs." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563237825735994.
Full textTadros, Rimon. "Accelerating web search using GPUs." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54722.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Books on the topic "GPU1"
Kindratenko, Volodymyr, ed. Numerical Computations with GPUs. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06548-9.
Full textGPU computing gems. Boston, MA: Morgan Kaufmann, 2011.
Find full textEngel, Wolfgang. GPU Pro 360. Edited by Wolfgang Engel. First edition. j Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. j Includes bibliographical references and index.: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/9781351052108.
Full textEngel, Wolfgang. GPU Pro 360. Edited by Wolfgang Engel. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/9781351208352.
Full textEngel, Wolfgang. GPU Pro 360. Edited by Wolfgang Engel. Boca Raton : Taylor & Francis, CRC Press, 2018: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/9781351261524.
Full textEngel, Wolfgang, ed. GPU Pro 360. Boca Raton : Taylor & Francis, CRC Press, [2018]: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/b22483.
Full textDesigning scientific applications on GPUs. Boca Raton, [Florida]: CRC/Taylor & Francis, 2014.
Find full textRodengen, Jeffrey L. The legacy of GPU. Fort Lauderdale, FL: Write Stuff Enterprises, 2000.
Find full textCai, Yiyu, and Simon See, eds. GPU Computing and Applications. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-134-3.
Full textGPU Pro2: Advanced rendering techniques. Natick, Mass: AK Peters, 2011.
Find full textBook chapters on the topic "GPU1"
Reinders, James, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, and Xinmin Tian. "Programming for GPUs." In Data Parallel C++, 353–85. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5574-2_15.
Full textOsama, Muhammad, Anton Wijs, and Armin Biere. "SAT Solving with GPU Accelerated Inprocessing." In Tools and Algorithms for the Construction and Analysis of Systems, 133–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_8.
Full textAndrzejewski, Witold, and Robert Wrembel. "GPU-WAH: Applying GPUs to Compressing Bitmap Indexes with Word Aligned Hybrid." In Lecture Notes in Computer Science, 315–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15251-1_26.
Full textLombardi, Luca, and Piercarlo Dondi. "GPU." In Encyclopedia of Systems Biology, 844. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1308.
Full textKetkar, Nikhil. "Introduction to GPUs." In Deep Learning with Python, 149–58. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2766-4_10.
Full textKalé, Laxmikant V., Abhinav Bhatele, Eric J. Bohm, James C. Phillips, David H. Bailey, Ananth Y. Grama, Joseph Fogarty, et al. "NVIDIA GPU." In Encyclopedia of Parallel Computing, 1339–45. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_276.
Full textUelschen, Michael. "GPU-Programmierung." In Software Engineering Paralleler Systeme, 313–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25343-1_6.
Full textRauber, Thomas, and Gudula Rünger. "GPU-Programmierung." In Parallele Programmierung, 387–416. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13604-7_7.
Full textRanta, Sunil Mohan, Jag Mohan Singh, and P. J. Narayanan. "GPU Objects." In Computer Vision, Graphics and Image Processing, 352–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_32.
Full textVázquez, Fransisco, José Antonio Martínez, and Ester M. Garzón. "GPU Computing." In Encyclopedia of Systems Biology, 845–49. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_998.
Full textConference papers on the topic "GPU1"
Tarashima, Shuhei, Satoshi Someya, and Koji Okamoto. "Acceleration of Recursive Cross-Correlation PIV Using Multiple GPUs." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44442.
Full textFerro, Mariza, André Yokoyama, Vinicius Klõh, Gabrieli Silva, Rodrigo Gandra, Ricardo Bragança, Andre Bulcão, and Bruno Schulze. "Analysis of GPU Power Consumption Using Internal Sensors." In XVI Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/wperformance.2017.3360.
Full textSantos, Ricardo, Rhayssa Sonohata, Casio Krebs, Daniela Catelan, Liana Duenha, Diego Segovia, and Mateus Tostes Santos. "Exploração do Projeto de Sistemas Baseados em GPU ciente de Dark Silicon." In XX Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação, 2019. http://dx.doi.org/10.5753/wscad.2019.8682.
Full textGisbert, Fernando, Roque Corral, and Guillermo Pastor. "Implementation of an Edge-Based Navier-Stokes Solver for Unstructured Grids in Graphics Processing Units." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46224.
Full textKonobrytskyi, Dmytro, Thomas Kurfess, Joshua Tarbutton, and Tommy Tucker. "GPGPU Accelerated 3-Axis CNC Machining Simulation." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1096.
Full textGajjar, Mrugesh, Christian Amann, and Kai Kadau. "High-Performance Computing Probabilistic Fracture Mechanics Implementation for Gas Turbine Rotor Disks on Distributed Architectures Including Graphics Processing Units (GPUs)." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59295.
Full textRomanelli, G., L. Mangani, E. Casartelli, A. Gadda, and M. Favale. "Implementation of Explicit Density-Based Unstructured CFD Solver for Turbomachinery Applications on Graphical Processing Units." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43396.
Full textBergmann, Ryan M., and Jasmina L. Vujić. "Monte Carlo Neutron Transport on GPUs." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30148.
Full textBreder, Bernardo, Eduardo Charles, Rommel Cruz, Esteban Clua, Cristiana Bentes, and Lucia Drummond. "Maximizando o Uso dos Recursos de GPU Através da Reordenação da Submissão de Kernels Concorrentes." In XVII Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação - SBC, 2016. http://dx.doi.org/10.5753/wscad.2016.14264.
Full textBrandvik, Tobias, and Graham Pullan. "An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-60052.
Full textReports on the topic "GPU1"
Holladay, Daniel. Non-LTE Opacity Computation on GPUs. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1148954.
Full textLong, Alex Roberts. Jayenne GPU Strategy Update. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1634935.
Full textHughes, Clayton, Simon Hammond, Mengchi Zhang, Yechen Liu, Tim Rogers, and Robert Hoekstra. SST-GPU: A Scalable SST GPU Component for Performance Modeling and Profiling. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1762830.
Full textGong, Qian, Wenji Wu, and Phil DeMar. GoldenEye:Stream-Based Network Packet Inspection using GPUs. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1508017.
Full textCawkwell, Marc J., Anders M. Niklasson, and Susan M. Mniszewski. Quantum molecular dynamics on parallel GPUs: w13_qmdgpu. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1131015.
Full textMonroe, Laura Marie, Sarah E. Michalak, and Joanne R. Wendelberger. Randomized selection on the GPU. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1090658.
Full textMonroe, Laura Marie, Sarah E. Michalak, and Joanne R. Wendelberger. Randomized selection on the GPU. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1090659.
Full textKennedy, Liz Sexton, and Philippe Canal. Geant Exascale / GPU Pilot Project. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1599619.
Full textMonroe, Laura M. GPGPU Computing and Visualization on GPUs at LANL. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053889.
Full textBoggan, Sha'Kia, and Daniel M. Pressel. GPUs: An Emerging Platform for General-Purpose Computation. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada471188.
Full text