Academic literature on the topic 'GPU Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GPU Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GPU Systems"
Jararweh, Yaser, Moath Jarrah, and Abdelkader Bousselham. "GPU Scaling." International Journal of Information Technology and Web Engineering 9, no. 4 (October 2014): 13–23. http://dx.doi.org/10.4018/ijitwe.2014100102.
Full textDematte, L., and D. Prandi. "GPU computing for systems biology." Briefings in Bioinformatics 11, no. 3 (March 7, 2010): 323–33. http://dx.doi.org/10.1093/bib/bbq006.
Full textBan, Zhihua, Jianguo Liu, and Jeremy Fouriaux. "GMMSP on GPU." Journal of Real-Time Image Processing 17, no. 2 (March 17, 2018): 245–57. http://dx.doi.org/10.1007/s11554-018-0762-3.
Full textGeorgii, Joachim, and Rüdiger Westermann. "Mass-spring systems on the GPU." Simulation Modelling Practice and Theory 13, no. 8 (November 2005): 693–702. http://dx.doi.org/10.1016/j.simpat.2005.08.004.
Full textHuynh, Huynh Phung, Andrei Hagiescu, Ong Zhong Liang, Weng-Fai Wong, and Rick Siow Mong Goh. "Mapping Streaming Applications onto GPU Systems." IEEE Transactions on Parallel and Distributed Systems 25, no. 9 (September 2014): 2374–85. http://dx.doi.org/10.1109/tpds.2013.195.
Full textDeniz, Etem, and Alper Sen. "MINIME-GPU." ACM Transactions on Architecture and Code Optimization 12, no. 4 (January 7, 2016): 1–25. http://dx.doi.org/10.1145/2818693.
Full textBraak, Gert-Jan Van Den, and Henk Corporaal. "R-GPU." ACM Transactions on Architecture and Code Optimization 13, no. 1 (April 5, 2016): 1–24. http://dx.doi.org/10.1145/2890506.
Full textINO, Fumihiko, Shinta NAKAGAWA, and Kenichi HAGIHARA. "GPU-Chariot: A Programming Framework for Stream Applications Running on Multi-GPU Systems." IEICE Transactions on Information and Systems E96.D, no. 12 (2013): 2604–16. http://dx.doi.org/10.1587/transinf.e96.d.2604.
Full textRosenfeld, Viktor, Sebastian Breß, and Volker Markl. "Query Processing on Heterogeneous CPU/GPU Systems." ACM Computing Surveys 55, no. 1 (January 31, 2023): 1–38. http://dx.doi.org/10.1145/3485126.
Full textBesozzi, Daniela, Giulio Caravagna, Paolo Cazzaniga, Marco Nobile, Dario Pescini, and Alessandro Re. "GPU-powered Simulation Methodologies for Biological Systems." Electronic Proceedings in Theoretical Computer Science 130 (September 30, 2013): 87–91. http://dx.doi.org/10.4204/eptcs.130.14.
Full textDissertations / Theses on the topic "GPU Systems"
Yuan, George Lai. "GPU compute memory systems." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/15877.
Full textArnau, Jose Maria. "Energy-efficient mobile GPU systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/290736.
Full textEl diseño de las GPUs (Graphics Procesing Units) móviles se centra fundamentalmente en el ahorro energético. Los smartphones y las tabletas son dispositivos alimentados mediante baterías y, por lo tanto, cualquier tipo de renderizado debe utilizar la menor cantidad de energía posible. Mejorar la eficiencia energética de las GPUs móviles será absolutamente necesario para alcanzar el rendimiento requirido para satisfacer las expectativas de los usuarios, sin reducir el tiempo de vida de la batería. El primer paso para optimizar el consumo energético consiste en identificar qué componentes son los principales consumidores de la batería. Estudios anteriores han identificado al banco de registros y a los accessos a memoria principal como las mayores fuentes de consumo energético en una GPU. El propósito de esta tesis es estudiar las características de los procesadores gráficos móviles y de las aplicaciones móviles con el objetivo de proponer distintas técnicas de ahorro energético. En primer lugar, la investigación se centra en desarrollar métodos energéticamente eficientes para ocultar la latencia de la memoria principal. El resultado de la investigación es una arquitectura desacoplada para los Fragment Processors de la GPU. Los resultados experimentales utilizando un simulador de ciclo y distintos juegos de Android muestran que una arquitectura desacoplada, combinada con un nivel de multithreading moderado, proporciona la solución más eficiente desde el punto de vista energético para ocultar la latencia de la memoria prinicipal. Más específicamente, la arquitectura desacoplada con sólo 4 SIMD threads/processor es capaz de alcanzar el 97% del rendimiento de una GPU más grande con 16 SIMD threads/processor, al tiempo que se reduce el consumo energético en un 20.5%. En segundo lugar, el trabajo de investigación se centró en optimizar el ancho de banda en una GPU móvil. Se realizó un estudio del uso del ancho de banda en distintos juegos de Android y se observó que la mayor parte del ancho de banda se utiliza para leer texturas. Además, se observó que frames consecutivos comparten una gran parte de las texturas. Sin embargo, la GPU no puede capturar el reuso de texturas entre frames dado que el tamaño de las texturas utilizadas por un frame es mucho mayor que la caché de segundo nivel. Basándose en este análisis, se desarrolló Parallel Frame Rendering (PFR), una técnica que solapa el procesado de multiples frames consecutivos con el objetivo de explotar el reuso de texturas entre frames y ahorrar así ancho de bando. Al procesar múltiples frames en paralelo las texturas se leen de memoria principal una vez cada dos frames en lugar de leerse en cada frame como sucede en una GPU convencional. PFR proporciona un ahorro del 23.8% en ancho de banda en promedio para distintos juegos de Android, este ahorro de ancho de banda redunda en un incremento del rendimiento del 12% y un ahorro energético del 20.1%. Por último, se mejoró PFR introduciendo un sistema hardware capaz de evitar cómputos redundantes. Un análisis de distintos juegos de Android reveló que más de un 38% de las ejecuciones del Fragment Program eran redundantes en promedio. Así pues, se propuso un sistema hardware capaz de identificar y eliminar parte de los cómputos y accessos a memoria redundantes, dicho sistema proporciona un incremento del rendimiento del 15% y un ahorro energético del 12% en promedio con respecto a una GPU móvil basada en PFR.
Arnau, Montañés Jose Maria. "Energy-efficient mobile GPU systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/290736.
Full textEl diseño de las GPUs (Graphics Procesing Units) móviles se centra fundamentalmente en el ahorro energético. Los smartphones y las tabletas son dispositivos alimentados mediante baterías y, por lo tanto, cualquier tipo de renderizado debe utilizar la menor cantidad de energía posible. Mejorar la eficiencia energética de las GPUs móviles será absolutamente necesario para alcanzar el rendimiento requirido para satisfacer las expectativas de los usuarios, sin reducir el tiempo de vida de la batería. El primer paso para optimizar el consumo energético consiste en identificar qué componentes son los principales consumidores de la batería. Estudios anteriores han identificado al banco de registros y a los accessos a memoria principal como las mayores fuentes de consumo energético en una GPU. El propósito de esta tesis es estudiar las características de los procesadores gráficos móviles y de las aplicaciones móviles con el objetivo de proponer distintas técnicas de ahorro energético. En primer lugar, la investigación se centra en desarrollar métodos energéticamente eficientes para ocultar la latencia de la memoria principal. El resultado de la investigación es una arquitectura desacoplada para los Fragment Processors de la GPU. Los resultados experimentales utilizando un simulador de ciclo y distintos juegos de Android muestran que una arquitectura desacoplada, combinada con un nivel de multithreading moderado, proporciona la solución más eficiente desde el punto de vista energético para ocultar la latencia de la memoria prinicipal. Más específicamente, la arquitectura desacoplada con sólo 4 SIMD threads/processor es capaz de alcanzar el 97% del rendimiento de una GPU más grande con 16 SIMD threads/processor, al tiempo que se reduce el consumo energético en un 20.5%. En segundo lugar, el trabajo de investigación se centró en optimizar el ancho de banda en una GPU móvil. Se realizó un estudio del uso del ancho de banda en distintos juegos de Android y se observó que la mayor parte del ancho de banda se utiliza para leer texturas. Además, se observó que frames consecutivos comparten una gran parte de las texturas. Sin embargo, la GPU no puede capturar el reuso de texturas entre frames dado que el tamaño de las texturas utilizadas por un frame es mucho mayor que la caché de segundo nivel. Basándose en este análisis, se desarrolló Parallel Frame Rendering (PFR), una técnica que solapa el procesado de multiples frames consecutivos con el objetivo de explotar el reuso de texturas entre frames y ahorrar así ancho de bando. Al procesar múltiples frames en paralelo las texturas se leen de memoria principal una vez cada dos frames en lugar de leerse en cada frame como sucede en una GPU convencional. PFR proporciona un ahorro del 23.8% en ancho de banda en promedio para distintos juegos de Android, este ahorro de ancho de banda redunda en un incremento del rendimiento del 12% y un ahorro energético del 20.1%. Por último, se mejoró PFR introduciendo un sistema hardware capaz de evitar cómputos redundantes. Un análisis de distintos juegos de Android reveló que más de un 38% de las ejecuciones del Fragment Program eran redundantes en promedio. Así pues, se propuso un sistema hardware capaz de identificar y eliminar parte de los cómputos y accessos a memoria redundantes, dicho sistema proporciona un incremento del rendimiento del 15% y un ahorro energético del 12% en promedio con respecto a una GPU móvil basada en PFR.
Dollinger, Jean-François. "A framework for efficient execution on GPU and CPU+GPU systems." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD019/document.
Full textTechnological limitations faced by the semi-conductor manufacturers in the early 2000's restricted the increase in performance of the sequential computation units. Nowadays, the trend is to increase the number of processor cores per socket and to progressively use the GPU cards for highly parallel computations. Complexity of the recent architectures makes it difficult to statically predict the performance of a program. We describe a reliable and accurate parallel loop nests execution time prediction method on GPUs based on three stages: static code generation, offline profiling, and online prediction. In addition, we present two techniques to fully exploit the computing resources at disposal on a system. The first technique consists in jointly using CPU and GPU for executing a code. In order to achieve higher performance, it is mandatory to consider load balance, in particular by predicting execution time. The runtime uses the profiling results and the scheduler computes the execution times and adjusts the load distributed to the processors. The second technique, puts CPU and GPU in a competition: instances of the considered code are simultaneously executed on CPU and GPU. The winner of the competition notifies its completion to the other instance, implying the termination of the latter
Yanggratoke, Rerngvit. "GPU Network Processing." Thesis, KTH, Telekommunikationssystem, TSLab, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103694.
Full textNätverksteknik ansluter fler och fler människor runt om i världen. Det har blivit en viktig del av vårt dagliga liv. För att denna anslutning skall vara sömlös, måste nätet vara snabbt. Den snabba tillväxten i nätverkstrafiken och olika kommunikationsprotokoll sätter stora krav på processorer som hanterar all trafik. Befintliga lösningar på detta problem, t.ex. ASIC, FPGA, NPU, och TOE är varken kostnadseffektivt eller lätta att hantera, eftersom de kräver speciell hårdvara och anpassade konfigurationer. Denna avhandling angriper problemet på ett annat sätt genom att avlasta nätverks processningen till grafikprocessorer som sitter i vanliga pc-grafikkort. Avhandlingen främsta mål är att ta reda på hur GPU bör användas för detta. Avhandlingen följer fallstudie modell och de valda fallen är lager 2 Bloom filter forwardering och ``flow lookup'' i Openflow switch. Implementerings alternativ och utvärderingsmetodik föreslås för både fallstudierna. Sedan utvecklas och utvärderas en prototyp för att jämföra mellan traditionell CPU- och GPU-offload. Det primära resultatet från detta arbete utgör kriterier för nätvärksprocessfunktioner lämpade för GPU offload och vilka kompromisser som måste göras. Kriterier är inget inter-paket beroende, liknande processflöde för alla paket. och möjlighet att köra fler processer på ett paket paralellt. GPU offloading ger ökad fördröjning och minneskonsumption till förmån för högre troughput.
Spampinato, Daniele. "Modeling Communication on Multi-GPU Systems." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9068.
Full textCoupling commodity CPUs and modern GPUs give you heterogeneous systems that are cheap, high-performance with incredible FLOPS counts. Recent evolution of GPGPU models and technologies make these systems even more appealing as compute devices for a range of HPC applications including image processing, seismic processing and other physical modeling, as well as linear programming applications. In fact, graphics vendor such as NVIDIA and AMD are now targeting HPC with some of their products. Due to the power and frequency walls, the trend is now to use multiple GPUs on a given system, much like you will find multiple cores on CPU-based systems. However, increasing the hierarchy of resource wides the spectrum of factors that may impact on the performance of the system. The lack of good models for GPU-based, heterogeneous systems also makes it harder to understand which factors impact performance the most. The goal of this thesis is to analyze such factors by investigating and benchmarking NVIDIA's multi-GPU solution, their recent NVIDIA Tesla S1070 Computing System. This system combines four T10 GPUs making available up to 4 TFLOPS of computational power. Based on a comparative study of fundamental parallel computing models and on the specific heterogeneous features exposed by the system, we define a test space for performance analysis. As a case study, we develop a red-black, SOR PDE solver for Laplace equations with Dirichlet boundaries, well known for requiring constant communication in order to exchange neighboring data. To aid both design and analysis, we propose a model for multi-GPU systems targeting communication between the several GPUs. The main variables exposed by the benchmark application are: domain size and shape, kind of data partitioning, number of GPUs, width of the borders to exchange, kernels to use, and kind of synchronization between the GPU contexts. Among other results, the framework is able to point out the most critical bounds of the S1070 system when dealing with applications like the one in our case study. We show that the multi-GPU system greatly benefits from using all its four GPUs on very large data volumes. Our results show the four GPUs almost four times faster than a single GPU, and twice as fast as two. Our analysis outcomes also allow us to refine our static communication model, enriching it with regression-based predictions.
Lulec, Andac. "Solution Of Sparse Systems On Gpu Architecture." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613355/index.pdf.
Full textDastgeer, Usman. "Skeleton Programming for Heterogeneous GPU-based Systems." Licentiate thesis, Linköpings universitet, PELAB - Laboratoriet för programmeringsomgivningar, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70234.
Full textLee, Kenneth Sydney. "Characterization and Exploitation of GPU Memory Systems." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34215.
Full textMaster of Science
Rustico, Eugenio. "Fluid Dynamics Simulations on Multi-GPU Systems." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1030.
Full textBooks on the topic "GPU Systems"
GPU computing gems. Boston, MA: Morgan Kaufmann, 2011.
Find full textGPU Pro 3: Advanced rendering techniques. Boca Raton, FL: A K Peters/CRC Press, 2012.
Find full textHeatly, Ralph. GIS-GPS sources. Cleveland, Ohio: Advanstar Marketing Services, 1995.
Find full textHeatly, Ralph O. GIS-GPS sources. Cleveland, OH: Advanstar Communications, Marketing Services, 1995.
Find full textGeoff, Blewitt, ed. Intelligent positioning: GIS-GPS unification. England: John Wiley, 2006.
Find full textGPS/GNSS antennas. Boston: Artech House, 2013.
Find full textDebian GNU/Linux bible. Foster City, CA: IDG Books Worldwide, 2001.
Find full textWilliams, Kevin W. GPS user-interface design problems. Washington, D.C: Office of Aviation Medicine, 1999.
Find full textWilliams, Kevin W. GPS user-interface design problems. Washington, D.C: Office of Aviation Medicine, 1999.
Find full textGabaglio, Vincent. GPS/INS integration for pedestrian navigation. Zürich: Schweizerische Geodätische Kommission, 2003.
Find full textBook chapters on the topic "GPU Systems"
Lombardi, Luca, and Piercarlo Dondi. "GPU." In Encyclopedia of Systems Biology, 844. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1308.
Full textVázquez, Fransisco, José Antonio Martínez, and Ester M. Garzón. "GPU Computing." In Encyclopedia of Systems Biology, 845–49. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_998.
Full textNam, Byeong-Gyu, and Hoi-Jun Yoo. "Embedded GPU Design." In Embedded Systems, 85–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118468654.ch3.
Full textOsama, Muhammad, Anton Wijs, and Armin Biere. "SAT Solving with GPU Accelerated Inprocessing." In Tools and Algorithms for the Construction and Analysis of Systems, 133–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_8.
Full textShi, Lin, Hao Chen, and Ting Li. "Hybrid CPU/GPU Checkpoint for GPU-Based Heterogeneous Systems." In Communications in Computer and Information Science, 470–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53962-6_42.
Full textWijs, Anton, and Muhammad Osama. "A GPU Tree Database for Many-Core Explicit State Space Exploration." In Tools and Algorithms for the Construction and Analysis of Systems, 684–703. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_35.
Full textYang, Ying, Yu Gu, Chuanwen Li, Changyi Wan, and Ge Yu. "GPU-Accelerated Dynamic Graph Coloring." In Database Systems for Advanced Applications, 296–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18590-9_32.
Full textGuri, Mordechai. "GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines via Covert Noise from GPU Fans." In Secure IT Systems, 194–211. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22295-5_11.
Full textAndrzejewski, Witold, and Pawel Boinski. "GPU-Accelerated Collocation Pattern Discovery." In Advances in Databases and Information Systems, 302–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40683-6_23.
Full textAlba, Enrique, and Pablo Vidal. "Systolic Optimization on GPU Platforms." In Computer Aided Systems Theory – EUROCAST 2011, 375–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27549-4_48.
Full textConference papers on the topic "GPU Systems"
Arafa, Yehia, Abdel-Hameed A. Badawy, Gopinath Chennupati, Nandakishore Santhi, and Stephan Eidenbenz. "PPT-GPU." In MEMSYS '18: The International Symposium on Memory Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3240302.3270315.
Full textWu-chun Feng and Shucai Xiao. "To GPU synchronize or not GPU synchronize?" In 2010 IEEE International Symposium on Circuits and Systems. ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537722.
Full textPandey, Shweta, Aditya K. Kamath, and Arkaprava Basu. "GPM: leveraging persistent memory from a GPU." In ASPLOS '22: 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503222.3507758.
Full textAlglave, Jade, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. "GPU Concurrency." In ASPLOS '15: Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2694344.2694391.
Full textLaflin, Jeremy J., Kurt S. Anderson, and Michael Hans. "Investigation of GPU Use in Conjunction With DCA-Based Articulated Multibody Systems Simulation." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47207.
Full textCarrigan, Travis J., Jacob Watt, and Brian H. Dennis. "Using GPU-Based Computing to Solve Large Sparse Systems of Linear Equations." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48452.
Full textSaiz, Victor Bautista, and Fernan Gallego. "GPU: Application for CCTV systems." In 2014 International Carnahan Conference on Security Technology (ICCST). IEEE, 2014. http://dx.doi.org/10.1109/ccst.2014.6987028.
Full textGreen, Simon G. "GPU-accelerated iterated function systems." In ACM SIGGRAPH 2005 Sketches. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1187112.1187128.
Full textMartinez-del-Amor, Miguel Angel, D. Orellana-Martin, A. Riscos-Nunez, and M. J. Perez-Jimenez. "On GPU-Oriented P Systems." In 2018 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2018. http://dx.doi.org/10.1109/hpcs.2018.00125.
Full textBollweg, Dennis, Luis Altenkort, David Anthony Clarke, Olaf Kaczmarek, Lukas Mazur, Christian Schmidt, Philipp Scior, and Hai-Tao Shu. "HotQCD on multi-GPU Systems." In The 38th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.396.0196.
Full textReports on the topic "GPU Systems"
Owens, John. A Programming Framework for Scientific Applications on CPU-GPU Systems. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1069280.
Full textDongarra, Jack J., and Stanimire Tomov. Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1126489.
Full textCook, Samantha, Marissa Torres, Nathan Lamie, Lee Perren, Scott Slone, and Bonnie Jones. Automated ground-penetrating-radar post-processing software in R programming. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45621.
Full textRobert, J., and Michael Forte. Field evaluation of GNSS/GPS based RTK, RTN, and RTX correction systems. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41864.
Full textBergen, Benjamin K. OpenCL: Free Your GPU... and the rest of your system too! Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1078372.
Full textHoey, David, and Paul Benshoof. Civil GPS Systems and Potential Vulnerabilities. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada440372.
Full textHoey, David, and Paul Benshoof. Civil GPS Systems and Potential Vulnerabilities. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada440379.
Full textDickson, Dick. Standard Report Format for Global Positioning System (GPS) Receivers and Systems Accuracy Tests and Evaluations. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada375388.
Full textLombardi, Michael A. An Evaluation of Dependencies of Critical Infrastructure Timing Systems on the Global Positioning System (GPS). National Institute of Standards and Technology, November 2021. http://dx.doi.org/10.6028/nist.tn.2189.
Full textBragge, Peter, Veronica Delafosse, Ngo Cong-Lem, Diki Tsering, and Breanna Wright. General practitioners raising and discussing sensitive health issues with patients. The Sax Institute, June 2023. http://dx.doi.org/10.57022/rseh3974.
Full text