Academic literature on the topic 'GPCR Signalling Pathways'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GPCR Signalling Pathways.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GPCR Signalling Pathways"

1

Mohamed, Raafat, Reearna Janke, Wanru Guo, et al. "GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species." Vascular Biology 1, no. 1 (2019): R1—R11. http://dx.doi.org/10.1530/vb-18-0004.

Full text
Abstract:
The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic studies suggest that these two transactivation pathways are distinct. Currently, there is a focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular diseases. With the broadening of GPCR transactivation signalling, it is therefore important from a therapeutic perspective to find a common transactivation pathway of EGFR and TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and they act as second messengers, thus modulating cellular signal transduction pathways. ROS are involved in different mechanisms of GPCR transactivation of EGFR. However, the role of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will discuss the involvement of ROS in GPCR transactivation-dependent signalling.
APA, Harvard, Vancouver, ISO, and other styles
2

Ellisdon, Andrew M., and Michelle L. Halls. "Compartmentalization of GPCR signalling controls unique cellular responses." Biochemical Society Transactions 44, no. 2 (2016): 562–67. http://dx.doi.org/10.1042/bst20150236.

Full text
Abstract:
With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Ying, Yang Yang, Richard Ward, et al. "Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways." Biochemical Journal 470, no. 2 (2015): 155–67. http://dx.doi.org/10.1042/bj20150358.

Full text
Abstract:
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, M., A. V. Babwah, and S. S. G. Ferguson. "Small GTP-binding protein-coupled receptors." Biochemical Society Transactions 32, no. 6 (2004): 1040–44. http://dx.doi.org/10.1042/bst0321040.

Full text
Abstract:
Heterotrimeric GPCRs (G-protein-coupled receptors) form the largest group of integral membrane receptor proteins and mediate diverse physiological processes. In addition to signalling via heterotrimeric G-proteins, GPCRs can also signal by interacting with various small G-proteins to regulate downstream effector pathways. The small G-protein superfamily is structurally classified into at least five families: the Ras, Rho/Rac/cdc42, Rab, Sar1/Arf and Ran families. They are monomeric G-proteins with molecular masses over the range 20–30 kDa, which function as molecular switches to control many eukaryotic cell functions. Several studies have provided evidence of crosstalk between GPCRs and small G-proteins. It is well documented that GPCR signalling through heterotrimeric G-proteins can lead to the activation of Ras and Rho GTPases. In addition, RhoA, Rabs, ARFs and ARF GEFs (guanine nucleotide-exchange factors) can associate directly with GPCRs, and GPCRs may also function as GEFs for small GTPases. In this review, we summarize the recent progress made in understanding the interaction between GPCRs and small GTPases, focusing on understanding how the association of small G-proteins with GPCRs and GPCR-regulatory proteins may influence GPCR signalling and intracellular trafficking.
APA, Harvard, Vancouver, ISO, and other styles
5

Mary, Sophie, Jean-Alain Fehrentz, Marjorie Damian, et al. "How ligands and signalling proteins affect G-protein-coupled receptors' conformational landscape." Biochemical Society Transactions 41, no. 1 (2013): 144–47. http://dx.doi.org/10.1042/bst20120267.

Full text
Abstract:
The dynamic character of GPCRs (G-protein-coupled receptors) is essential to their function. However, the details of how ligands and signalling proteins stabilize a receptor conformation to trigger the activation of a given signalling pathway remain largely unexplored. Multiple data, including recent results obtained with the purified ghrelin receptor, suggest a model where ligand efficacy and functional selectivity are directly related to different receptor conformations. Importantly, distinct effector proteins (G-proteins and arrestins) as well as ligands are likely to affect the conformational landscape of GPCRs in different manners, as we show with the isolated ghrelin receptor. Such modulation of the GPCR conformational landscape by pharmacologically distinct ligands and effector proteins has major implications for the design of new drugs that activate specific signalling pathways.
APA, Harvard, Vancouver, ISO, and other styles
6

Kamato, Danielle, Mai Gabr, Hirushi Kumarapperuma та ін. "Gαq Is the Specific Mediator of PAR-1 Transactivation of Kinase Receptors in Vascular Smooth Muscle Cells". International Journal of Molecular Sciences 23, № 22 (2022): 14425. http://dx.doi.org/10.3390/ijms232214425.

Full text
Abstract:
Aims: G protein-coupled receptor (GPCR) transactivation of kinase receptors greatly expands the actions attributable to GPCRs. Thrombin, via its cognate GPCR, protease-activated receptor (PAR)-1, transactivates tyrosine and serine/threonine kinase receptors, specifically the epidermal growth factor receptor and transforming growth factor-β receptor, respectively. PAR-1 transactivation-dependent signalling leads to the modification of lipid-binding proteoglycans involved in the retention of lipids and the development of atherosclerosis. The mechanisms of GPCR transactivation of kinase receptors are distinct. We aimed to investigate the role of proximal G proteins in transactivation-dependent signalling. Main Methods: Using pharmacological and molecular approaches, we studied the role of the G⍺ subunits, G⍺q and G⍺11, in the context of PAR-1 transactivation-dependent signalling leading to proteoglycan modifications. Key Findings: Pan G⍺q subunit inhibitor UBO-QIC/FR900359 inhibited PAR-1 transactivation of kinase receptors and proteoglycans modification. The G⍺q/11 inhibitor YM254890 did not affect PAR-1 transactivation pathways. Molecular approaches revealed that of the two highly homogenous G⍺q members, G⍺q and G⍺11, only the G⍺q was involved in regulating PAR-1 mediated proteoglycan modification. Although G⍺q and G⍺11 share approximately 90% homology at the protein level, we show that the two isoforms exhibit different functional roles. Significance: Our findings may be extrapolated to other GPCRs involved in vascular pathology and highlight the need for novel pharmacological tools to assess the role of G proteins in GPCR signalling to expand the preeminent position of GPCRs in human therapeutics.
APA, Harvard, Vancouver, ISO, and other styles
7

Gorvin, Caroline M. "Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis." Journal of Molecular Endocrinology 61, no. 1 (2018): R1—R12. http://dx.doi.org/10.1530/jme-18-0049.

Full text
Abstract:
The calcium-sensing receptor (CASR) is a class C G-protein-coupled receptor (GPCR) that detects extracellular calcium concentrations, and modulates parathyroid hormone secretion and urinary calcium excretion to maintain calcium homeostasis. The CASR utilises multiple heterotrimeric G-proteins to mediate signalling effects including activation of intracellular calcium release; mitogen-activated protein kinase (MAPK) pathways; membrane ruffling; and inhibition of cAMP production. By studying germline mutations in the CASR and proteins within its signalling pathway that cause hyper- and hypocalcaemic disorders, novel mechanisms governing GPCR signalling and trafficking have been elucidated. This review focusses on two recently described pathways that provide novel insights into CASR signalling and trafficking mechanisms. The first, identified by studying a CASR gain-of-function mutation that causes autosomal dominant hypocalcaemia (ADH), demonstrated a structural motif located between the third transmembrane domain and the second extracellular loop of the CASR that mediates biased signalling by activating a novel β-arrestin-mediated G-protein-independent pathway. The second, in which the mechanism by which adaptor protein-2 σ-subunit (AP2σ) mutations cause familial hypocalciuric hypercalcaemia (FHH) was investigated, demonstrated that AP2σ mutations impair CASR internalisation and reduce multiple CASR-mediated signalling pathways. Furthermore, these studies showed that the CASR can signal from the cell surface using multiple G-protein pathways, whilst sustained signalling is mediated only by the Gq/11 pathway. Thus, studies of FHH- and ADH-associated mutations have revealed novel steps by which CASR mediates signalling and compartmental bias, and these pathways could provide new targets for therapies for patients with calcaemic disorders.
APA, Harvard, Vancouver, ISO, and other styles
8

Hart, Stefan, Oliver M. Fischer, Norbert Prenzel, et al. "GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways." Biological Chemistry 386, no. 9 (2005): 845–55. http://dx.doi.org/10.1515/bc.2005.099.

Full text
Abstract:
Abstract The epidermal growth factor receptor (EGFR) plays a key role in the regulation of important cellular processes under normal and pathophysiological conditions such as cancer. In human mammary carcinomas the EGFR is involved in regulating cell growth, survival, migration and metastasis and its activation correlates with the lack of response in hormone therapy. Here, we demonstrate in oestrogen receptor-positive and -negative human breast cancer cells and primary mammary epithelial cells a cross-communication between G protein-coupled receptors (GPCRs) and the EGFR. We present evidence that specific inhibition of ADAM15 or TACE blocks GPCR-induced and proHB-EGF-mediated EGFR tyrosine phosphorylation, downstream mitogenic signalling and cell migration. Notably, activation of the PI3K downstream mediator PKB/Akt by GPCR ligands involves the activity of sphingosine kinase (SPHK) and is independent of EGFR signal transactivation. We conclude that GPCR-induced chemotaxis of breast cancer cells is mediated by EGFR-dependent and -independent signalling pathways, with both parallel pathways having to act in concert to achieve a complete migratory response.
APA, Harvard, Vancouver, ISO, and other styles
9

Fischer, O. M., S. Hart, A. Gschwind, and A. Ullrich. "EGFR signal transactivation in cancer cells." Biochemical Society Transactions 31, no. 6 (2003): 1203–8. http://dx.doi.org/10.1042/bst0311203.

Full text
Abstract:
The EGFR (epidermal growth factor receptor) plays a key role in the regulation of essential normal cellular processes and in the pathophysiology of hyperproliferative diseases such as cancer. Recent investigations have demonstrated that GPCRs (G-protein-coupled receptors) are able to utilize the EGFR as a downstream signalling partner in the generation of mitogenic signals. This cross-talk mechanism combines the broad diversity of GPCRs with the signalling capacities of the EGFR and has emerged as a general concept in a multitude of cell types. The molecular mechanisms of EGFR signal transactivation involve processing of transmembrane growth factor precursors by metalloproteases which have been recently identified as members of the ADAM (adisintegrin and metalloprotease) family of zinc-dependent proteases. Subsequently, the EGFR transmits signals to prominent downstream pathways, such as mitogen-activated protein kinases, the phosphoinositide 3-kinase/Akt pathway and modulation of ion channels. Analysis of GPCR-induced EGFR activation in more than 60 human carcinoma cell lines derived from different tissues has demonstrated the broad relevance of this signalling mechanism in cancer. Moreover, EGFR signal transactivation was linked to diverse biological processes in human cancer cells, such as cell proliferation, migration and anti-apoptosis. Together with investigations revealing the importance of this GPCR–EGFR cross-talk mechanism in cardiac hypertrophy, Helicobacter pylori-induced pathophysiological processes and cystic fibrosis, these findings support an important role for GPCR ligand-dependent EGFR signal transactivation in diverse pathophysiological disorders.
APA, Harvard, Vancouver, ISO, and other styles
10

WERRY, Tim D., Graeme F. WILKINSON, and Gary B. WILLARS. "Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+." Biochemical Journal 374, no. 2 (2003): 281–96. http://dx.doi.org/10.1042/bj20030312.

Full text
Abstract:
Alteration in [Ca2+]i (the intracellular concentration of Ca2+) is a key regulator of many cellular processes. To allow precise regulation of [Ca2+]i and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca2+]i both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca2+ from intracellular stores and influence Ca2+ entry across the plasma membrane. It has been well documented that Ca2+ signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca2+ signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography