Academic literature on the topic 'Gold ores Geology Victoria'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gold ores Geology Victoria.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gold ores Geology Victoria"

1

Osmonbetov, E. "Geology and Goldness Deposits Shambesai." Bulletin of Science and Practice 6, no. 5 (May 15, 2020): 249–56. http://dx.doi.org/10.33619/2414-2948/54/31.

Full text
Abstract:
The specificity of the location and the degree of field search are shown. The characteristic of ore zones (bodies), the mineral composition of ores and reserves are given. The deposit is similar to the gold deposits of the Karlinsky type. Two main technological types of ores have been distinguished: easily miscible oxidized ores that do not contain harmful impurities, suitable for heap leaching, and refractory sulfide gold-arsenic ores, requiring special complex processing methods. These ores are planned to be mined together with oxidized and temporarily stored separately. It is necessary to organize a public hearing and involve professional experts in the examination of projects.
APA, Harvard, Vancouver, ISO, and other styles
2

Mamaev, Yu A., N. G. Yatlukova, T. N. Aleksandrova, and N. M. Litvinova. "On gold extraction from rebellious ores." Journal of Mining Science 45, no. 2 (March 2009): 187–93. http://dx.doi.org/10.1007/s10913-009-0024-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vikentyev, Ilya, Olga Vikent’eva, Eugenia Tyukova, Maximilian Nikolsky, Julia Ivanova, Nina Sidorova, Dmitry Tonkacheev, et al. "Noble Metal Speciations in Hydrothermal Sulphides." Minerals 11, no. 5 (May 3, 2021): 488. http://dx.doi.org/10.3390/min11050488.

Full text
Abstract:
A significant part of the primary gold reserves in the world is contained in sulphide ores, many types of which are refractory in gold processing. The deposits of refractory sulphide ores will be the main potential source of gold production in the future. The refractory gold and silver in sulphide ores can be associated with micro- and nano-sized inclusions of Au and Ag minerals as well as isomorphous, adsorbed and other species of noble metals (NM) not thoroughly investigated. For gold and gold-bearing deposits of the Urals, distribution and forms of NM were studied in base metal sulphides by laser ablation-inductively coupled plasma mass spectrometry and by neutron activation analysis. Composition of arsenopyrite and As-pyrite, proper Au and Ag minerals were identified using electron probe microanalysis. The ratio of various forms of invisible gold—which includes nanoparticles and chemically bound gold—in sulphides is discussed. Observations were also performed on about 120 synthetic crystals of NM-doped sphalerite and greenockite. In VMS ores with increasing metamorphism, CAu and CAg in the major sulphides (sphalerite, chalcopyrite, pyrite) generally decrease. A portion of invisible gold also decreases —from ~65–85% to ~35–60% of the total Au. As a result of recrystallisation of ores, the invisible gold is enlarged and passes into the visible state as native gold, Au-Ag tellurides and sulphides. In the gold deposits of the Urals, the portion of invisible gold is usually <30% of the bulk Au.
APA, Harvard, Vancouver, ISO, and other styles
4

Silyanov, Sergey A., Anatoly M. Sazonov, Yelena A. Zvyagina, Andrey A. Savichev, and Boris M. Lobastov. "Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia)." Minerals 11, no. 2 (February 11, 2021): 190. http://dx.doi.org/10.3390/min11020190.

Full text
Abstract:
Native gold and its satellite minerals were studied throughout the 300 m section of oxidized ores of the Olympiada deposit (Eastern Siberia, Russia). Three zones are identified in the studied section: Upper Zone ~60 g/t Au; Middle Zone ~3 g/t Au; Lower Zone ~20 g/t Au. Supergene and hypogene native gold have been found in these zones. Supergene gold crystals (~1 μm), their aggregates and their globules (100 nm to 1 μm) predominate in the Upper and less in Middle Zone. Relic hypogene gold particles (flattened, fracture and irregular morphology) are sporadically distributed throughout the section. Spongiform gold occurs in the Lower Zone at the boundary with the bedrock, as well as in the bedrock. This gold formed in the process of oxidation of aurostibite, leaching of impurities and its further dissolution. Hypogene gold is commonly isolated but for supergene gold typically associated with ferric (hydr)oxides. New formation of gold occurred due to oxidation of sulfide ores and release of “invisible” gold, as well as dissolution, mobilization and re-deposition of metallic hypogene gold. A model for the formation of oxidized ores with the participation of meteoric and low-temperature hydrothermal waters has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
5

Zalesov, M. V., V. A. Grigoreva, V. S. Trubilov, and A. Ya Boduen. "Designing of engineering solutions to enhance efficiency of high-copper gold-bearing ore processing." Mining Industry Journal (Gornay Promishlennost), no. 5/2021 (November 12, 2021): 51–56. http://dx.doi.org/10.30686/1609-9192-2021-5-51-56.

Full text
Abstract:
The modern metals industry is characterised by a downward trend in the quality of ores involved in processing, and conventional methods of extracting useful components are inefficient for raw materials with complex composition. To maintain the growing level of metal production it is required to introduce new efficient technologies for processing of low-grade and refractory ores as well as man-made deposits. The article describes processing methods of refractory raw materials with high cyanide content using copper-gold ores as an example, where gold is the primary commodity, and copper is the accompanying useful component. The most common method of processing copper-gold ores is preconcentration followed by selective leaching of copper and gold. In some cases, technologies involving copper by-products and cyanide recovery from the cyanide leaching solutions offer equally effective options for processing of the copper-gold ores and concentrates. Copper-gold ores are processed at gold mines using the cyanide procedures, supplemented if required by gravity and flotation concentration. In all variations of the cyanide treatment, most of copper minerals actively react with cyanides of alkali metals, binding the CN– ions into the copper complex of [Cu(CN3)]2–. This reaction results in an increased solvent consumption, as well as in number of challenges related to cleaning tailings and slurries from highly toxic cyanide compounds and dissolved copper. In addition to technological complications associated with the need to meet strict requirements for the maximum permissible concentrations, copper accumulated in the cycling solutions also causes a decrease in gold extraction from the processed ores.
APA, Harvard, Vancouver, ISO, and other styles
6

Fraser, K. S., R. H. Walton, and J. A. Wells. "Processing of refractory gold ores." Minerals Engineering 4, no. 7-11 (January 1991): 1029–41. http://dx.doi.org/10.1016/0892-6875(91)90081-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HAQUE, K. E. "Gold Leaching from Refractory Ores—Literature Survey." Mineral Processing and Extractive Metallurgy Review 2, no. 3 (March 1987): 235–53. http://dx.doi.org/10.1080/08827508708952607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D’yachkov, Boris A., Ainel Y. Bissatova, Marina A. Mizernaya, Sergey V. Khromykh, Tatiana A. Oitseva, Oxana N. Kuzmina, Natalya A. Zimanovskaya, and Saltanat S. Aitbayeva. "Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan." Minerals 11, no. 3 (February 28, 2021): 253. http://dx.doi.org/10.3390/min11030253.

Full text
Abstract:
Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes.
APA, Harvard, Vancouver, ISO, and other styles
9

Kalinin, Yu A., R. V. Kuzhuget, A. Sh Khusainova, O. L. Gaskova, and Yu V. Butanaev. "Evolution of Gold in the Oxidation Zone of the Kopto Deposit (the Republic of Tuva, Russia)." Russian Geology and Geophysics 63, no. 7 (July 1, 2022): 789–801. http://dx.doi.org/10.2113/rgg20214386.

Full text
Abstract:
Abstract —The Kopto deposit (northeastern Tuva) is assigned to gold ore objects with a combination of the Au–Cu–skarn and superposed quartz–gold–sulfide stockwork types of mineralization. From the surface, the ores underwent intense oxidation, which formed a zone of secondary gold enrichment, containing a supergene paragenesis with gold and silver chalcogenides and newly formed gold. The depth of distribution of oxidized ores from the surface is 80–90 m. The Au content varies from fractions of ppm to 150 ppm (on average, 30.8 ppm). Using computer thermodynamic modeling, it is shown how the ore gold–sulfide–quartz association transformed under oxidizing conditions with a decrease in the pH of solutions. Gold becomes more and more high-grade; acanthite appears and disappears; limonite prevails (pH = 1.65; Eh = 0.69 V). The conditions for the stability of pyrite, iron hydroxides, and gold and silver chalcogenides (petrovskaite (AgAuS) and uytenbogaardtite (Ag3AuS2)) have been estimated. It requires weakly acidic solutions with pH = 5–6 and Eh values close to zero, which ensures the stability of thiosulfate and hydrosulfide complexes of noble metals. The main difference between solutions in equilibrium with petrovskaite and uytenbogaardtite is the Ag/Au ratios, which are maximum in the first case and approximately equal in the second. The paper is concerned with a comparative analysis of the morphologic features of gold from primary and oxidized ores of the Kopto gold deposit. The aim of this work is to identify a set of signs of the supergene nature of gold and to assess the extent of its redistribution.
APA, Harvard, Vancouver, ISO, and other styles
10

Santos-Munguía, P. C., F. Nava-Alonso, V. M. Rodríguez-Chávez, and O. Alonso-González. "Hidden gold in fire assay of gold telluride ores." Minerals Engineering 141 (September 2019): 105844. http://dx.doi.org/10.1016/j.mineng.2019.105844.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Gold ores Geology Victoria"

1

Whitfield, Derek. "The genesis and controls of gold mineralization south of Rehoboth, Namibia." Thesis, Rhodes University, 1991. http://hdl.handle.net/10962/d1005560.

Full text
Abstract:
Gold mineralization is hosted within gossanous quartz-haematite veins in volcano-sedimentary lithologies of the Klein Aub - Rehoboth basin of the Irumide Belt, Namibia. Mineralization and hydrothermal alteration are restricted to deformed lithologies particularly the metasediments. Lithological relationships, geochemistry and metallogenic characteristics of the Irumide Belt suggest an intra-continental rift setting. Copper mineralization is well known along the length of the belt, from Klein Aub in the southwest to Ghanzi in the northeast, whereas gold mineralization appears restricted to the Klein Aub Rehoboth basin. The gold is envisaged as having being leached initially from graben fill sequences during rift closure and basin dewatering. Location of the mineralization is strongly controlled by structure and lithological contact zones. Such zones are percieved as having acted as conduit zones for escaping mineralized fluids during basin closure and deformation. Apart from the lack of an effective mineralizing trap, all features consistent with the development of an ore deposit are present. The largest mineralization traps within the area studied are shear zones followed by lithological contact zones. The Mebi and Blanks gold mines are developed over large shear zones while the Swartmodder and Neuras gold mines are situated over mineralized lithological contacts. The Swartmodder copper mine yielded ore from a mineralized schist enclave within granite. Copper and gold occurrences are attributed to two contrasting styles of mineralization. Copper mineralization is suggested to have developed during initial rifting of the belt (ie. stratabound sedimentary exhalative type), while the gold and minor copper resulted from rift closure and basin dewatering. Although no economical orebody was realized during the course of this study a model is proposed for the development of mineralization within the Irumide basement lithologies as a working hypothesis for future exploration.
APA, Harvard, Vancouver, ISO, and other styles
2

Morasse, Suzanne. "Geology, structure and timing of gold mineralization at the Kiena deposit, Val d'Or, Québec." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0005/NQ31942.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gendall, Ian Richard. "The porphyry copper system and the precious metal-gold potential." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1005604.

Full text
Abstract:
It has been established that porphyry copper/copper-gold deposits have formed from I Ma to 2 Ga ago. Generally, they are related to the Mesozoic-Cenozoic interval with few reported occurrences from the Palaeozoic or Precambrian. A reason cited is the erosion of these deposits which are often related to convergent plate margins and orogenic belts. Observations of the alteration and mineralisation within and around porphyry copper/copper-gold systems have been included in numerous idealised models. These alteration and mineralisation patterns are dependent on the phases of intrusion, the tectonic setting and rock type, depth of emplacement and relationship to coeval volcanics, physiochemical conditions operative within and surrounding the intrusive and many other mechanical and geochemical conditions. Island arc and cratonic arc/margin deposits are generally considered to be richer in gold than their molybdenum-rich, intra-cratonic counterparts. Metal zonation may occur around these copper/copper-gold deposits, e.g. copper in the core moving out to silver, lead, zinc and gold. This zonation is not always present and gold may occur in the core, intermediate or distal zones. Examples of gold-rich porphyry deposits from British Columbia, Chile and the SW Pacific Island regions suggest gold is closely associated with the potassic-rich zones. Generally these gold-rich zones have greater than 2% magnetite and a high oxygen fugacity is considered to be an important control for gold deposition. High Cl contents within the magma are necessary for gold mobility within the host intrusive centres. Beyond this zone HS₂ becomes an important transporting ligand. Exploration for porphyry copper-gold deposits includes an integrated geological, geophysical and geochemical approach. Petrographic work through to Landsat imagery may be used to determine the chemical conditions of the system, ore association, favourable structural zones and alteration patterns, in order to focus exploration activities.
APA, Harvard, Vancouver, ISO, and other styles
4

Hastings, Matthew H. "Relationship of base-metal skarn mineralization to Carlin-type gold mineralization at the Archimedes gold deposit, Eureka, Nevada." abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1460760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skead, Michael Bethel. "Geological characteristics of selected disseminated sediment-hosted gold deposits in Nevada, U.S.A. : in search of an exploration model." Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1007414.

Full text
Abstract:
Sediment-hosted disseminated gold deposits in Nevada, western United States are major gold sources and contain reserves in excess of 1 500 metric tons of gold (Percival et aI., 1988). Discovery of these deposit types continues at a pace, with Placer Dome announcing a mojor discovery, Pipeline, to the south of the Gold Acres Mine, along the Battle Mountain - Eureka Trend in 1994 (The Northern Miner, 1994). Host sediments favoured for disseminated gold mineralisation are thinly bedded silty limestones , carbonate debris flows and to a lesser extent shale, chert and sandstone. The distribution of mineralisation is controlled essentially by the intersection of high-angle faults, which acted as conduits for hydrothermal fluids, with favourable host lithologies, anticlines, low-angle faults and other high-angle faults. Geochemical signature for these deposits is simple being Au, Ag, As, Sb, Hg, Tl, Te, F and Ba, but individual element concentrations vary greatly between and within deposits. Age of mineralisation is cause for considerable debate, and ages ranging between isotopic dates of approximately 117 Ma to early to mid-Tertiary (30-40 Ma) are proposed. Most of these deposits are situated along three major trends namely the Carlin, Battle Mountain - Eureka and Getchell trends. The Battle Mountain - Eureka trend and, to a lesser extent the Carlin trend, are defined by major linear aeromagnetic and gravity anomalies , which are believed to reflect deep-seated structures. Most deposits are hosted in autochthonous Devonian, thinly bedded, silty limestones that occur as windows through what is believed to be allochthonous Ordovician siliciclastic sediments, which were transported from west to east along the Roberts Mountains thrust during the late-Devonian Antler Orogeny. However, recent fossil dating of what were thought to be Ordivician siliciclastic sediments, gives a Devonian age. This questions the age of Ordivician sediments at the other deposits and the interpretation of the structural windows in which deposits are located. Fault-bounded, proximal, carbonate debris-flow breccias are now recognised as a major host to mineralisation. These debris flow breccias, together with interbedded carbonate and siliciclastic sediments, carbonaceous sediments and soft sediment deformation are all characteristics of lithologies in pull-apart basins which develop along a major strike slip faults. It is proposed that sediment-hosted disseminated gold mineralisation is controlled by the distribution of deep-seated long-lived, predominantly right-lateral strike-slip faults. It is along these strike-slip faults that syn-sedimentary pull-apart basins developed, within which sediments favoured by epigenetic gold mineralisation were deposited. These pull-apart basins were then overprinted by post-depositional extensional structures, such as negative flower structures. Igneous intrusions and hydrothermal cells have exploited these extensional structures in both compressional and extensional regional tectonic regimes. This model explains the characteristics of the host sediment at many of the deposits, the spatial relationship between igneous intrusion and mineralisation, spanning the period Cretaceous through to mid-Tertiary, the distribution of deposits as districts along major regional trends and why hydrothermal activity is noted between deposit districts but with no complementary mineralisation. Mineralisation is controlled predominantly by high angle structures and although the recent age for mineralisation at the Betze/Post deposit is ~ 117 Ma (Arehart et aI., 1993a), placing it in the compressional Sevier Orogeny, these high-angle structures would be developed within local extensional tectonic domains as described above. This model can, and should, be applied to other areas of the world where similar geological features exist. In exploring for these deposits in Nevada the distribution of Ordovician siliciclastic sediments should be reviewed, especially where spatially associated with deep regional structures. Ordovician sediments have historically been regarded as unfavourable, hence large areas for potential exploration have been ignored but with new ages for these sediments this opens large areas for potential discoveries.
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
6

Veselinović, Milica. "Genetic models for epithermal gold deposits and applications to exploration." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005562.

Full text
Abstract:
Epithermal gold deposits are the product of large-scale hydrothermal systems in tectonically active regions. They form at shallow crustal levels where the physico-chemical conditions change abruptly. Two major groups of epithermal gold deposits can be distinguished based on their genetic connection with: A) Copper-molybdenum porphyry systems and B) Geothermal systems related to volcanic centres and calderas. Epithermal gold deposits connected with geothermal systems encompass three major types: adularia-sericite, acid-sulphate and disseminated replacement (the Carlin-type). Their essential ingredients are: high heat source which leads to convection of groundwater in the upper crust; source of hydrothermal fluid, metals and reduced sulphur; and high-permeability structures which allow fluid convection and metal deposition. Mixing of these ingredients leads to the formation of epithermal gold deposits throughout crustal history, without any restriction on age. The ores were deposited from near-neutral (adularia-sericite type and some of the Carlin-type) to acidic (acid-sulphate type and porphyry-related epithermal gold deposits), low-salinity, high C0₂ and high H₂S fluids, which were predominantly meteoritic in origin. The transport capability of deep fluids in epithermal hydrothermal systems may be shown to be dependent largely on their H₂S content and, through a series of fluid mineral equilibria, on temperature and on C0₂ content. The most common mechanisms of ore deposition are boiling (phase separation), mixing of fluids of different temperatures and salinities, reaction between them and wall rocks, dilution and cooling. An understanding of genetic models for epithermal gold deposits provides the basis for the selection of favourable areas for regional to prospect-scale exploration.
APA, Harvard, Vancouver, ISO, and other styles
7

Mann, P. L. "Surficial placer gold deposits." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1018245.

Full text
Abstract:
This review summarises the factors which control the formation and distribution of surficial gold placer deposits. Regional tectonic and climatic conditions as well as gold source are considered. The characteristics of eluvial, alluvial, marine, glacial and fluvioglacial gold placer deposits are described. Particular attention is paid to the gold grains within these placers. These gold grains have a distinctive morphology and chemical composition which reflect the manner in which they were transported, deposited and concentrated within the placers. The knowledge of the processes which lead to the formation and location of surficial gold placers is then used to guide exploration and target potential deposits, which can then be evaluated.
APA, Harvard, Vancouver, ISO, and other styles
8

Campbell, Keith Bryan. "The geology, alteration, and mineralization of the True North gold deposit, Fairbanks, Alaska." abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Breedt, Machiel Christoffel. "Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa." Thesis, Rhodes University, 1996. http://hdl.handle.net/10962/d1005578.

Full text
Abstract:
The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
APA, Harvard, Vancouver, ISO, and other styles
10

Sener, A. K. "Characteristics, distribution and timing of gold mineralisation in the Pine Creek Orogen, Northern Territory, Australia /." Connect to this title, 2004. http://theses.library.uwa.edu.au/adt-WU2005.0102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Gold ores Geology Victoria"

1

Meyer, Michael. The origin of gold in Archaean epigenetic gold deposits. Johannesburg: University of the Witwatersrand, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gold, '86 (1986 Toronto Ont ). Gold '86: An international symposium on the geology of gold deposits. Toronto: Gold '86, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Theodore, Ted G. Geology and gold mineralization of the Gold Basin-Lost Basin mining districts, Mohave County, Arizona. Washington: U.S. G.P.O., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Phillips, G. Neil. Archaean gold deposits of Australia. Johannesburg: University of the Witwatersrand, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

German, Jerry M. The geology of gold occurrences in the west-central Georgia Piedmont: The Carroll County gold belt and the southwestern portion of the Dahlonega gold belt. Atlanta: Georgia Dept. of Natural Resources, Environmental Protection Division, Georgia Geologic Survey, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brazil Gold '91 (1991 Belo Horizonte, Brazil). Brazil gold '91: The economics, geology, geochemistry and genesis of gold deposits. Rotterdam: Published for the Associação Organizadora do Brazil Gold by A.A. Balkema, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tingley, Joseph V. Lode gold deposits of Round Mountain, Nevada. Reno, Nevada: University of Nevada-Reno, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Melbourne), Bicentennial Gold 88 (Conference). Bicentennial Gold 88: Melbourne, Victoria, May 16-20, 1988 : extended abstracts oral programme. Melbourne: Bicentennial Gold 88, under the sponsorship of the Geological Society of Australia, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bicentennial Gold 88 (Conference) (Melbourne). Bicentennial Gold 88: Melbourne, Victoria, May 16-20 1988 : extended abstracts poster programme. Melbourne: Bicentennial Gold 88, under the sponsorship of the Geological Society of Australia, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gold '86 (1986 Toronto, Ont.). Gold '86: An international symposium on the geology of gold deposits : proceedings volume. Toronto, Ont: Gold '86, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gold ores Geology Victoria"

1

"Structural Setting of the Gold Mineralization at Stawell, Victoria, Australia." In The Geology of Gold Deposits, 292–309. Society of Economic Geologists, 1989. http://dx.doi.org/10.5382/mono.06.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Geochemistry of Wall Rocks at the Clunes Gold Deposit, Victoria." In The Geology of Gold Deposits, 310–19. Society of Economic Geologists, 1989. http://dx.doi.org/10.5382/mono.06.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Regional Variation of Silver and Gold Ratios in Vein Ores of Arizona." In The Geology of Gold Deposits, 626–36. Society of Economic Geologists, 1989. http://dx.doi.org/10.5382/mono.06.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kelley, Karen D., Eric P. Jensen, Jason S. Rampe, and Doug White. "Chapter 17: Epithermal Gold Deposits Related to Alkaline Igneous Rocks in the Cripple Creek District, Colorado, United States." In Geology of the World’s Major Gold Deposits and Provinces, 355–73. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.17.

Full text
Abstract:
Abstract Cripple Creek is among the largest epithermal districts in the world, with more than 800 metric tons (t) Au (&gt;26.4 Moz). The ores are associated spatially, temporally, and genetically with ~34 to 28 Ma alkaline igneous rocks that were emplaced into an 18-km2 diatreme complex and surrounding Proterozoic rocks. Gold occurs in high-grade veins, as bulk tonnage relatively low-grade ores, and in hydrothermal breccias. Pervasive alteration in the form of potassic metasomatism is extensive and is intimately associated with gold mineralization. Based on dating of intrusions and molybdenite and gangue minerals (primarily using 40Ar/39Ar and Re-Os techniques), the region experienced a protracted but intermittent history of magmatism (over a period of at least 5 m.y.) and hydrothermal activity (intermittent over the final ~3 m.y. of magmatic activity). Key factors that likely played a role in the size and grade of the deposit were (1) the generation of alkaline magmas during a transition between subduction and extension that tapped a chemically enriched mantle source; (2) a long history of structural preparation, beginning in the Proterozoic, which created deep-seated structures to allow the magmas and ore fluids to reach shallow levels in the crust, and which produced a fracture network that increased permeability; and (3) an efficient hydrothermal system, including effective gold transport mechanisms, and multiple over-printed hydrothermal events.
APA, Harvard, Vancouver, ISO, and other styles
5

Moskvitina, M. L., B. B. Damdinov, A. D. Izvekova, and L. B. Damdinova. "MINERAL COMPOSITION AND GEOCHEMICAL FEATURES OF QUARTZ-SULFIDE ORES OF THE ZUN-KHOLBA GOLD DEPOSIT." In BAIKAL YOUTH SCIENTIFIC CONFERENCE ON GEOLOGY AND GEOPHYSICS, 68–70. Buryat Scientific Center of SB RAS Press, 2021. http://dx.doi.org/10.31554/978-5-7925-0604-6-2021-68-70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seltmann, Reimar, Richard J. Goldfarb, Bo Zu, Robert A. Creaser, Alla Dolgopolova, and Vitaly V. Shatov. "Chapter 24: Muruntau, Uzbekistan: The World’s Largest Epigenetic Gold Deposit." In Geology of the World’s Major Gold Deposits and Provinces, 497–521. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.24.

Full text
Abstract:
Abstract Muruntau in the Central Kyzylkum desert of the South Tien Shan, western Uzbekistan, with past production of ~3,000 metric tons (t) Au since 1967, present annual production of ~60 t Au, and large remaining resources, is the world’s largest epigenetic Au deposit. The host rocks are the mainly Cambrian-Ordovician siliciclastic flysch of the Besapan sequence. The rocks were deformed into a broadly east-west fold-and-thrust belt prior to ca. 300 Ma during ocean closure along the South Tien Shan suture. A subsequent tectonic transition was characterized by left-lateral motion on regional splays from the suture and by a massive thermal event documented by widespread 300 to 275 Ma magmatism. The Besapan rocks were subjected to middle to upper greenschist-facies regional metamorphism, an overprinting more local thermal metamorphism to produce a large hornfels aureole, and then Au-related hydrothermal activity all during early parts of the thermal event. The giant Muruntau Au deposit formed in the low-strain hornfels rocks at ca. 288 Ma at the intersection of one of the east-west splays, the Sangruntau-Tamdytau shear zone, with a NE-trending regional fault zone, the Muruntau-Daugyztau fault, which likely formed as a cross fault during the onset of left-lateral translation on the regional splays. Interaction between the two faults opened a large dilational zone along a plunging anticlinorium fold nose that served as a major site for hydrothermal fluid focusing. The Au ores are dominantly present as a series of moderately to steeply dipping quartz ± K-feldspar stockwork systems surrounding uncommon central veins and with widespread lower Au-grade metasomatites (i.e., disseminated ores). Pervasive alteration is biotite-K-feldspar, although locally albitization is dominant. Sulfides are mainly arsenopyrite, pyrite, and lesser pyrrhotite, and scheelite may be present both in preore ductile veins and in the more brittle auriferous stockwork systems. The low-salinity, aqueous-carbonic ore-forming fluids probably deposited the bulk of the ore at 400° ± 50°C and 6-to 10-km paleodepth. The genesis of the deposit remains controversial with metamorphic, thermal aureole gold (TAG), and models related to mantle upwelling all having been suggested in recent years. More importantly, the question as to why there was such a focusing of so much Au and fluid into this one location, forming an ore system an order of magnitude larger than other giant Au deposits in metamorphic terranes, remains unresolved.
APA, Harvard, Vancouver, ISO, and other styles
7

Dirks, P. H. G. M., I. V. Sanislav, M. R. van Ryt, J. M. Huizenga, T. G. Blenkinsop, S. L. Kolling, S. D. Kwelwa, and G. Mwazembe. "Chapter 8: The World-Class Gold Deposits in the Geita Greenstone Belt, Northwestern Tanzania." In Geology of the World’s Major Gold Deposits and Provinces, 163–83. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.08.

Full text
Abstract:
Abstract The Geita mine is operated by AngloGold Ashanti and currently comprises four gold deposits mined as open pits and underground operations in the Geita greenstone belt, Tanzania. The mine produces ~0.5 Moz of gold a year and has produced ~8.3 Moz since 2000, with current resources estimated at ~6.5 Moz, using a lower cut-off of 0.5 g/t. The geologic history of the Geita greenstone belt involved three tectonic stages: (I) early (2820–2700 Ma) extension (D1) and formation of the greenstone sequence in an oceanic plateau environment; (II) shortening of the greenstone sequence (2700–2660 Ma) involving ductile folding (D2–5) and brittle-ductile shearing (D6), coincident with long-lived igneous activity concentrated in five intrusive centers; and (III) renewed extension (2660–2620 Ma) involving strike-slip and normal faulting (D7–8), basin formation, and potassic magmatism. Major gold deposits in the Geita greenstone belt formed late in the history of the greenstone belt, during D8 normal faulting at ~2640 Ma, and the structural framework, mineral paragenesis, and timing of gold precipitation is essentially the same in all major deposits. Gold is hosted in iron-rich lithologies along contacts between folded metaironstone beds and tonalite-trondhjemite-granodiorite (TTG) intrusions, particularly where the contacts were sheared and fractured during D6–7 faulting. The faults, together with damage zones created along D3 fold hinges and D2–3 hydrothermal breccia zones near intrusions, formed microfracture networks that were reactivated during D8. The fracture networks served as conduits for gold-bearing fluids; i.e., lithologies and structures that trap gold formed early, but gold was introduced late. Fluids carried gold as Au bisulfide complexes and interacted with Fe-rich wall rocks to precipitate gold. Fluid-rock interaction and mineralization were enhanced as a result of D8 extension, and localized hydrofracturing formed high-grade breccia ores. Gold is contained in electrum and gold-bearing tellurides that occur in the matrix and as inclusions in pyrrhotite and pyrite. The gold mineralization is spatially linked to long-lived, near-stationary intrusive centers. Critical factors in forming the deposits include the (syn-D2–6) formation of damage zones in lithologies that enhance gold precipitation (Fe-rich lithologies); late tectonic reactivation of the damage zones during extensional (D8) faulting with the introduction of an S-rich, gold-bearing fluid; and efficient fluid-rock interaction in zones that were structurally well prepared.
APA, Harvard, Vancouver, ISO, and other styles
8

Simmons, Stuart F., Benjamin M. Tutolo, Shaun L. L. Barker, Richard J. Goldfarb, and François Robert. "Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits." In Geology of the World’s Major Gold Deposits and Provinces, 823–45. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.38.

Full text
Abstract:
Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from &lt;4 to &gt;10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.
APA, Harvard, Vancouver, ISO, and other styles
9

Dubé, Benoît, Patrick Mercier-Langevin, John Ayer, Jean-Luc Pilote, and Thomas Monecke. "Chapter 3: Gold Deposits of the World-Class Timmins-Porcupine Camp, Abitibi Greenstone Belt, Canada." In Geology of the World’s Major Gold Deposits and Provinces, 53–80. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.03.

Full text
Abstract:
Abstract The Timmins-Porcupine camp, with &gt;2,190 metric tons Au (70.5 Moz) produced between 1906 and 2019, is the world’s largest Archean orogenic gold camp. The gold deposits of the camp are distributed over ~50 km of strike length along the Destor-Porcupine fault zone. This includes the world-class Hollinger-McIntyre and Dome deposits, which represent archetypal examples of large orogenic quartz-carbonate gold systems. The Dome deposit, where the ore is centered on a folded unconformity between Tisdale volcanic rocks and Timiskaming sedimentary units, also illustrates the spatial relationship between large gold deposits and a regional unconformity. Ore-forming hydrothermal activity in the camp spanned a prolonged period of time, as illustrated by early-stage, low-grade ankerite veins formed between ca. 2690 and 2674 Ma. This was prior to or very early relative to the development of the regional unconformity and sedimentation of the Timiskaming assemblage, and subsequent main-stage gold deposition. The bulk of the gold in the district is younger than the Three Nations Formation of the upper part of the Timiskaming assemblage (i.e., ≤2669 ± 1 Ma) and was deposited syn- to late-main phase of shortening (D3) in the Timmins-Porcupine camp from about 2660 to 2640 ± 10 Ma. The early carbonatization represents a significant early-stage hydrothermal event in the formation of large structurally controlled gold deposits such as Dome and illustrates the protracted nature of the large-scale CO2-rich metasomatism occurring before and during gold deposition. Ores in the Timmins-Porcupine camp mainly consist of networks of steeply to moderately dipping fault-fill quartz-carbonate ± tourmaline ± pyrite veins and associated extensional, variably deformed, shallowly to moderately dipping arrays of sigmoidal veins hosted in highly carbonatized and sericitized rocks and formed during main regional shortening (D3). In contrast, at the Timmins West mine, the Thunder Creek and 144 GAP deposits are early- to syn-Timiskaming intrusion-associated deposits that slightly predate to overlap the main phase of D3 horizontal shortening in which the associated intrusions mainly played a passive role as an older mechanical and chemical trap rock. The formation of the gold deposits of the Timmins-Porcupine camp is due to several key factors. The Destor-Porcupine fault zone represents a deeply rooted first-order structure and tapped auriferous metamorphic fluids and melts from the upper mantle-lower crust. The fault zone has channeled large volumes of auriferous H2O-CO2-rich fluids to the upper crust late in the evolution of the belt. Several of the gold deposits of the camp are spatially associated with the regional Timiskaming unconformity. The current level of erosion is deep enough to expose the unconformity and to maximize the chance of discovering the quartz-carbonate style of orogenic deposits or the associated hydrothermal footprint, but also allowed for preservation of at least part of the gold deposits that are mainly hosted in the highly reactive Fe-rich basalt of the Tisdale assemblage. Additional key factors include the presence of komatiitic and/or basaltic komatiite flows, competent pre- and syn-Timiskaming subalkaline and alkaline intrusions that predate the main phase of shortening, and the occurrence of a flexure in the trace of the Destor-Porcupine fault zone that may have further facilitated and focused the ore-forming fluid upflow in the most endowed part of the camp. The complex structural and rheological discontinuities, competency contrasts, and early-stage folds with associated fracture and fault netorks in the camp provided highly favorable ground-preparation conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Motzer, William E., and David A. Mustart. "Mount Diablo mercury deposits." In Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.1217(03).

Full text
Abstract:
ABSTRACT The California Coast Ranges mercury deposits are part of the western North America mercury belt, in which mercury occurs most commonly as red cinnabar (α-HgS), sometimes associated with its high-temperature polymorph, metacinnabar (β-HgS). In the Coast Ranges, ores were deposited from hydrothermal solutions and range in age from Miocene to Holocene. Ore deposition at Mount Diablo generally occurred along active faults and associated extension fractures in the Franciscan complex, most often in serpentinite that had been hydrothermally altered to silica-carbonate rock. The Mount Diablo mine lies ~48 km (~30 miles) northeast of San Francisco in Contra Costa County and is mineralogically unique in California, because metacinnabar, the higher-temperature polymorph of mercury sulfide, is a major primary ore mineral in the deposit, while at all other mercury mines in California, it is quite rare. In addition, hydrothermal activity is so recent that sulfurous gases and methane continued to be released into the mine at least into the 1940s. Historically, long before active large-scale mining began in the 1800s, the Mount Diablo mercury deposits were known to the Indigenous people of the Ohlone tribes, who used the cinnabar in rituals as well as for red pigment to decorate their bodies, and as a prized trade item. The deposit was later rediscovered in 1863 and mined intermittently until 1958. The Mount Diablo mine and adjacent Rhyne (also variously spelled Ryne or Rhine) mine were the sites of most of the mercury operations in the region, and at both mines, mercury ore occurs in structurally controlled lenticular bodies of silica-carbonate rock and serpentinite. The total district production probably exceeded 12,300 flasks (at 76 pounds or ~34.5 kg per flask) at an estimated grade of 2711 g per metric ton. Low-grade ore reserves are believed to still exist, with 17,000 short tons of indicated and inferred ore. Other minor deposits of copper, silver, and gold occur on Mount Diablo, principally in and around Eagle Peak, but mercury is not associated with these deposits.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography