Academic literature on the topic 'Godeaux surface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Godeaux surface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Godeaux surface"
Werner, Caryn. "A four-dimensional deformation of a numerical Godeaux surface." Transactions of the American Mathematical Society 349, no. 4 (1997): 1515–25. http://dx.doi.org/10.1090/s0002-9947-97-01892-8.
Full textBöhning, Christian, Hans-Christian Graf von Bothmer, and Pawel Sosna. "On the derived category of the classical Godeaux surface." Advances in Mathematics 243 (August 2013): 203–31. http://dx.doi.org/10.1016/j.aim.2013.04.017.
Full textMurakami, Masaaki. "The torsion group of a certain numerical Godeaux surface." Journal of Mathematics of Kyoto University 41, no. 2 (2001): 323–33. http://dx.doi.org/10.1215/kjm/1250517636.
Full textKEUM, JONGHAE, and YONGNAM LEE. "Fixed locus of an involution acting on a Godeaux surface." Mathematical Proceedings of the Cambridge Philosophical Society 129, no. 2 (September 2000): 205–16. http://dx.doi.org/10.1017/s0305004100004497.
Full textFranciosi, Marco, Rita Pardini, and Sönke Rollenske. "Gorenstein stable Godeaux surfaces." Selecta Mathematica 24, no. 4 (July 7, 2017): 3349–79. http://dx.doi.org/10.1007/s00029-017-0342-6.
Full textLiedtke, Christian. "Non-classical Godeaux surfaces." Mathematische Annalen 343, no. 3 (September 13, 2008): 623–37. http://dx.doi.org/10.1007/s00208-008-0284-6.
Full textCalabri, Alberto, Ciro Ciliberto, and Margarida Mendes Lopes. "Numerical Godeaux surfaces with an involution." Transactions of the American Mathematical Society 359, no. 04 (October 17, 2006): 1605–33. http://dx.doi.org/10.1090/s0002-9947-06-04110-9.
Full textFranciosi, Marco, and Sönke Rollenske. "Canonical rings of Gorenstein stable Godeaux surfaces." Bollettino dell'Unione Matematica Italiana 11, no. 1 (January 5, 2017): 75–91. http://dx.doi.org/10.1007/s40574-016-0114-9.
Full textCoughlan, Stephen, and Giancarlo Urzúa. "On $\boldsymbol{{\mathbb Z}/3}$-Godeaux Surfaces." International Mathematics Research Notices 2018, no. 18 (March 20, 2017): 5609–37. http://dx.doi.org/10.1093/imrn/rnx049.
Full textCoughlan, Stephen. "EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1= ℤ/2." Journal of the Korean Mathematical Society 53, no. 4 (July 1, 2016): 869–93. http://dx.doi.org/10.4134/jkms.j150307.
Full textDissertations / Theses on the topic "Godeaux surface"
Maggiolo, Stefano. "On the automorphism group of certain algebraic varieties." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4690.
Full textStenger, Isabel [Verfasser], and Wolfram [Akademischer Betreuer] Decker. "A Homological Approach to Numerical Godeaux Surfaces / Isabel Stenger ; Betreuer: Wolfram Decker." Kaiserslautern : Technische Universität Kaiserslautern, 2018. http://d-nb.info/1174205253/34.
Full textKazanova, Anna. "Degenerations of Godeaux surfaces and exceptional vector bundles." 2013. https://scholarworks.umass.edu/dissertations/AAI3603104.
Full textBook chapters on the topic "Godeaux surface"
Lopes, Margarida Mendes, and Rita Pardini. "Godeaux Surfaces with an Enriques Involution and Some Stable Degenerations." In From Classical to Modern Algebraic Geometry, 451–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32994-9_12.
Full text"The Chow motive of the Godeaux surface." In Algebraic Geometry, 179–96. De Gruyter, 2002. http://dx.doi.org/10.1515/9783110198072.179.
Full textCatanese, Fabrizio, and Roberto Pignatelli. "On simply connected Godeaux surfaces." In Complex Analysis and Algebraic Geometry, edited by Thomas Peternell and Frank-Olaf Schreyer. Berlin, Boston: De Gruyter, 2000. http://dx.doi.org/10.1515/9783110806090-007.
Full text