Academic literature on the topic 'GNSS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GNSS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GNSS"
Yang, Lijie, Jinhua Wang, Liying Sun, Yisi Zhang, Peng Huang, and Junfeng Guo. "Comparison of Gold Nanospheres, Nanorods, Nanocages and Nanoflowers for Combined Photothermal-Radiotherapy of Cancer." Nano 16, no. 04 (March 10, 2021): 2150037. http://dx.doi.org/10.1142/s1793292021500375.
Full textYang, Guanglin, Weihua Bai, Jinsong Wang, Xiuqing Hu, Peng Zhang, Yueqiang Sun, Na Xu, et al. "FY3E GNOS II GNSS Reflectometry: Mission Review and First Results." Remote Sensing 14, no. 4 (February 17, 2022): 988. http://dx.doi.org/10.3390/rs14040988.
Full textYasyukevich, Yury V., Baocheng Zhang, and Venkata Ratnam Devanaboyina. "Advances in GNSS Positioning and GNSS Remote Sensing." Sensors 24, no. 4 (February 12, 2024): 1200. http://dx.doi.org/10.3390/s24041200.
Full textWang, Xiaocui, Guohua Li, Yu Ding, and Shuqing Sun. "Understanding the photothermal effect of gold nanostars and nanorods for biomedical applications." RSC Adv. 4, no. 57 (2014): 30375–83. http://dx.doi.org/10.1039/c4ra02978j.
Full textShan, Feng, Jingyi Huang, Yanyan Zhu, and Guohao Wei. "Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure." Molecules 29, no. 18 (September 10, 2024): 4287. http://dx.doi.org/10.3390/molecules29184287.
Full textGu, Nianzu, Fei Xing, and Zheng You. "GNSS Spoofing Detection Based on Coupled Visual/Inertial/GNSS Navigation System." Sensors 21, no. 20 (October 12, 2021): 6769. http://dx.doi.org/10.3390/s21206769.
Full textZubinaitė, Vilma, and George Preiss. "A PROPOSED SIMPLIFIED TECHNIQUE FOR CONFIRMING HIGH PRECISION GNSS ANTENNA OFFSETS." Aviation 14, no. 3 (September 30, 2010): 83–89. http://dx.doi.org/10.3846/aviation.2010.13.
Full textMagny, Jean Pierre. "Application of Satellite Based Augmentation Systems to Altitude Separation." Journal of Navigation 52, no. 3 (September 1999): 313–17. http://dx.doi.org/10.1017/s0373463399008413.
Full textQiu, Tongsheng, Xianyi Wang, Yueqiang Sun, Fu Li, Zhuoyan Wang, Junming Xia, Qifei Du, et al. "An Innovative Signal Processing Scheme for Spaceborne Integrated GNSS Remote Sensors." Remote Sensing 15, no. 3 (January 27, 2023): 745. http://dx.doi.org/10.3390/rs15030745.
Full textHuang, Zhenchuan, Shuanggen Jin, Ke Su, and Xu Tang. "Multi-GNSS Precise Point Positioning with UWB Tightly Coupled Integration." Sensors 22, no. 6 (March 14, 2022): 2232. http://dx.doi.org/10.3390/s22062232.
Full textDissertations / Theses on the topic "GNSS"
Jedlička, Petr. "Softwarový přijímač GNSS." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413152.
Full textMarques, Heloísa Alves Silva [UNESP]. "Modelo estocástico para dados GNSS e séries temporais de coordenadas GNSS." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/108612.
Full textOs modelos funcionais relacionados com as observações GNSS são mais conhecidos do que os modelos estocásticos, visto que o desenvolvimento destes últimos é mais complexo. Normalmente, utilizam-se modelos estocásticos numa forma simplificada, como o modelo padrão, o qual assume que todas as medidas das observações GNSS têm a mesma variância e são estatisticamente independentes, espacialmente e temporalmente. Porém, tal suposição não reflete a realidade. Desta forma, atualmente os modelos estocásticos vêm sendo pesquisados com maior profundidade, por exemplo, considerando correlação temporal, cintilação ionosférica, dentre outros. O Brasil, por estar numa região geomagnética equatorial, sofre forte influência de cintilação ionosférica e outros efeitos relacionados à ionosfera. Tendo em vista a recente tecnologia de receptores GNSS que proporciona a possibilidade de se obter parâmetros de cintilação ionosférica, este efeito é factível de ser considerado na modelagem estocástica. Mesmo com a realização de uma modelagem estocástica adequada no processamento de dados GNSS, ainda podem restar erros não-modelados (ruídos), os quais devem contaminar as séries temporais das coordenadas obtidas com as observáveis GNSS, em especial aqueles relacionados com fatores que extrapolam a duração de uma dia, que é o período em geral utilizado na modelagem e processamento dos dados. Desta forma, tais ruídos podem ser caracterizados a partir das componentes de variância dos ruídos das séries temporais. Sendo assim, essa pesquisa teve como objetivo expandir as investigações com relação à modelagem estocástica das observações GNSS considerando principalmente os efeitos de cintilação ionosférica na região brasileira...
Functional models related to GNSS observations are better known than the stochastic models because the development these last one is more complex. Generally, stochastic models are applied in a simplified form, as the standard model, which assumes that all GNSS measurements have the same variance and are statistically independent, spatially and temporally. However, this assumption does not reflect the reality. Therefore, currently the stochastic models have been investigated more deeply, for instance, considering time correlation, ionospheric scintillation, among others. Brazil is located in the equatorial geomagnetic region and because of this suffers strong influence of ionospheric scintillation and other effects related to the ionosphere. Considering the recent technology of the GNSS receivers, that provide ways to obtain parameters of ionospheric scintillation, this effect is feasible of being considered in the stochastic modeling. Even if an adequate stochastic modeling could be applied in the GNSS data processing, it still may remain non-modeled errors (noise) that can influence the coordinate’s time series, especially those related to factors that go beyond the duration of one day, which is in general the interval (one day) used in the modeling and data processing. Thus, such noise can be characterized from the noise variance components of the time series. Therefore, this research aimed to expand the investigations regarding the stochastic modeling of GNSS observations mainly considering the ionospheric scintillation effects in the Brazilian region. Furthermore, it also aims to perform investigations related to methodologies for the noise characterization in the GNSS coordinates time series and establish a methodology for building functional models of these series...
Marques, Heloísa Alves Silva. "Modelo estocástico para dados GNSS e séries temporais de coordenadas GNSS /." Presidente Prudente, 2013. http://hdl.handle.net/11449/108612.
Full textCoorientador: Manoel Ivanildo Silvestre Bezerra
Banca: Silvio Rogério Correia de Freitas
Banca: Eunice Menezes de Souza
Banca: Vilma Mayumi Tachibana
Banca: Daniele Barroca Marra Alves
Resumo: Os modelos funcionais relacionados com as observações GNSS são mais conhecidos do que os modelos estocásticos, visto que o desenvolvimento destes últimos é mais complexo. Normalmente, utilizam-se modelos estocásticos numa forma simplificada, como o modelo padrão, o qual assume que todas as medidas das observações GNSS têm a mesma variância e são estatisticamente independentes, espacialmente e temporalmente. Porém, tal suposição não reflete a realidade. Desta forma, atualmente os modelos estocásticos vêm sendo pesquisados com maior profundidade, por exemplo, considerando correlação temporal, cintilação ionosférica, dentre outros. O Brasil, por estar numa região geomagnética equatorial, sofre forte influência de cintilação ionosférica e outros efeitos relacionados à ionosfera. Tendo em vista a recente tecnologia de receptores GNSS que proporciona a possibilidade de se obter parâmetros de cintilação ionosférica, este efeito é factível de ser considerado na modelagem estocástica. Mesmo com a realização de uma modelagem estocástica adequada no processamento de dados GNSS, ainda podem restar erros não-modelados (ruídos), os quais devem contaminar as séries temporais das coordenadas obtidas com as observáveis GNSS, em especial aqueles relacionados com fatores que extrapolam a duração de uma dia, que é o período em geral utilizado na modelagem e processamento dos dados. Desta forma, tais ruídos podem ser caracterizados a partir das componentes de variância dos ruídos das séries temporais. Sendo assim, essa pesquisa teve como objetivo expandir as investigações com relação à modelagem estocástica das observações GNSS considerando principalmente os efeitos de cintilação ionosférica na região brasileira...
Abstract: Functional models related to GNSS observations are better known than the stochastic models because the development these last one is more complex. Generally, stochastic models are applied in a simplified form, as the standard model, which assumes that all GNSS measurements have the same variance and are statistically independent, spatially and temporally. However, this assumption does not reflect the reality. Therefore, currently the stochastic models have been investigated more deeply, for instance, considering time correlation, ionospheric scintillation, among others. Brazil is located in the equatorial geomagnetic region and because of this suffers strong influence of ionospheric scintillation and other effects related to the ionosphere. Considering the recent technology of the GNSS receivers, that provide ways to obtain parameters of ionospheric scintillation, this effect is feasible of being considered in the stochastic modeling. Even if an adequate stochastic modeling could be applied in the GNSS data processing, it still may remain non-modeled errors (noise) that can influence the coordinate's time series, especially those related to factors that go beyond the duration of one day, which is in general the interval (one day) used in the modeling and data processing. Thus, such noise can be characterized from the noise variance components of the time series. Therefore, this research aimed to expand the investigations regarding the stochastic modeling of GNSS observations mainly considering the ionospheric scintillation effects in the Brazilian region. Furthermore, it also aims to perform investigations related to methodologies for the noise characterization in the GNSS coordinates time series and establish a methodology for building functional models of these series...
Doutor
Oliveira, Priscylla Angélica da Silva. "Fusão INS/GNSS com auxílio de medidas de baseline e ângulo GNSS." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3171.
Full textTaha, Ahmad Adnan Mohammad. "Mapping the underworld : integrated GNSS based positioning and GIS based GNSS simulation." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10607/.
Full textBeneš, Jiří. "Měření parametrů GNSS přijímačů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413203.
Full textPuchrik, Lukáš. "Aspekty vyhodnocení měření GNSS." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-392288.
Full textElmas, Zeynep Günsu. "Exploiting new GNSS signals to monitor, model and mitigate the ionospheric effects in GNSS." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/28418/.
Full textYounes, Abdelrazak. "Théorie séquentielle appliquée au contrôle de l'intégrité du GNSS et à l'hybridation GNSS/INS." Toulouse, INPT, 2000. http://www.theses.fr/2000INPT044H.
Full textPorter, Michael Howard. "A Performance Analysis of Two Civilian GNSS Receivers in a GNSS Contested Laboratory Environment." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1564433045685393.
Full textBooks on the topic "GNSS"
Jin, Shuanggen, R. Jin, and X. Liu. GNSS Atmospheric Seismology. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-3178-6.
Full textAwange, Joseph. GNSS Environmental Sensing. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58418-8.
Full textJin, Shuanggen, Estel Cardellach, and Feiqin Xie. GNSS Remote Sensing. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7482-7.
Full textOgaja, Clement A. Introduction to GNSS Geodesy. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91821-7.
Full textAwange, Joseph L. Environmental Monitoring using GNSS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-88256-5.
Full textTan, Shusen. GNSS Systems and Engineering. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2017. http://dx.doi.org/10.1002/9781118897041.
Full textLo Presti, Letizia, and Salvatore Sabina, eds. GNSS for Rail Transportation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79084-8.
Full textBevly, David M. GNSS for vehicle control. Boston, Mass: Artech House, 2010.
Find full textBevly, David M. GNSS for vehicle control. Boston, Mass: Artech House, 2010.
Find full textWu, Renbiao, Wenyi Wang, Dan Lu, Lu Wang, and Qiongqiong Jia. Adaptive Interference Mitigation in GNSS. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5571-3.
Full textBook chapters on the topic "GNSS"
Shi, Chuang, and Na Wei. "Satellite Navigation for Digital Earth." In Manual of Digital Earth, 125–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9915-3_4.
Full textSánchez-Naranjo, Susana María, Nunzia Giorgia Ferrara, Maciej Jerzy Paśnikowski, Jussi Raasakka, Enik Shytermeja, Raúl Ramos-Pollán, Fabio Augusto González Osorio, et al. "GNSS Vulnerabilities." In Multi-Technology Positioning, 55–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50427-8_4.
Full textDemyanov, Vladislav. "GNSS Overview." In Space Weather Impact on GNSS Performance, 5–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15874-2_2.
Full textHernández-Pajares, Manuel. "GNSS Ionosphere." In Encyclopedia of Geodesy, 1–7. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-02370-0_172-1.
Full textBöhm, Johannes, and Henrik Vedel. "GNSS Meteorology." In Encyclopedia of Geodesy, 1–5. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-02370-0_7-1.
Full textAlves, Marcelo de Carvalho, and Luciana Sanches. "GNSS Surveying." In Surveying with Geomatics and R, 349–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003184263-14.
Full textChowdhury, Dhiman Deb. "GNSS Time." In NextGen Network Synchronization, 51–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71179-5_4.
Full textJamil, Abdullah. "Kebijakan Global Navigation Satellite System (GNSS) Negara Pengguna." In Kajian Kebijakan dan Informasi Kedirgantaraan, 93–115. Bogor: Mitra Wacana Media, 2015. http://dx.doi.org/10.30536/9786023181360.6.
Full textJin, Shuanggen, R. Jin, and X. Liu. "GNSS Tropospheric Sounding." In GNSS Atmospheric Seismology, 31–45. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-3178-6_3.
Full textJin, Shuanggen, R. Jin, and X. Liu. "GNSS Ionospheric Sounding." In GNSS Atmospheric Seismology, 47–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-3178-6_4.
Full textConference papers on the topic "GNSS"
Palombo, Nola, and Keunhan Park. "Investigation of Dynamic Near-Field Radiation Between Quantum Dots and Plasmonic Nanoparticles for Effective Tailoring of Solar Spectrum." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64561.
Full textTian, Yusen, Xianyi Wang, Yueqiang Sun, Dongwei Wang, Chunjun Wu, Weihua Bai, Junming Xia, and Qifei Du. "Multifunctional GNSS-R Processing Software FOR GNOS II." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8897997.
Full textKurum, Mehmet, Md Mehedi Farhad, and Dylan Boyd. "GNSS TRANSMISSOMETRY (GNSS-T): MODELING PROPAGATION OF GNSS SIGNALS THROUGH FOREST CANOPY." In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883361.
Full textWong, Jun Kai, Robert Taylor, Sungchul Baek, Yasitha Hewakuruppu, Xuchuan Jiang, and Chuyang Chen. "Temperature Measurements of a Gold Nanosphere Solution in Response to Light-Induced Hyperthermia." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66424.
Full textYin, Cong, Junming Xia, Feixiong Huang, Wei Li, Weihua Bai, Yueqiang Sun, Congliang Liu, et al. "Sea Ice Detection with FY3E GNOS II GNSS Reflectometry." In 2021 IEEE Specialist Meeting on Reflectometry using GNSS and other Signals of Opportunity (GNSS+R). IEEE, 2021. http://dx.doi.org/10.1109/gnssr53802.2021.9617724.
Full textWang, Xianyi, Yusen Tian, Yueqiang Sun, Dongwei Wang, Chunjun Wu, Qifei Du, Yuerong Cai, et al. "Software Design of Gnos-2's GNSS-R Module." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518594.
Full textBogdanov, Petr, Andrei Druzhin, Olga Nechaeva, and Tatiana Primakina. "The Results of GNSS-GNSS Time Offsets Monitoring." In 2019 European Navigation Conference (ENC). IEEE, 2019. http://dx.doi.org/10.1109/euronav.2019.8714125.
Full textNovella, Guillaume, Axel J. Garcia -Pena, Christophe Macabiau, Anaïs Martineau, Pierre Ladoux, Philippe Estival, and Olivier Troubet-Lacoste. "GNSS Acquisition Thresholds for Civil Aviation GNSS Receivers." In 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022). Institute of Navigation, 2022. http://dx.doi.org/10.33012/2022.18357.
Full textYang, Liu, and Jin Tian. "Novel GNSS Signal Simulator for Next Generation GNSS." In 2007 International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2007. http://dx.doi.org/10.1109/wicom.2007.305.
Full textD'Angelo, P., J. A. Pulido, T. Guardabrazo, P. Vieira, P. Silva, and F. Amarillo. "GNSS Bias Calibration System: GNSS-BICS system prototype." In 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/navitec.2012.6423112.
Full textReports on the topic "GNSS"
Lange, S., and J. Boike. GNSS measurements - new validation records and repetition. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/321050.
Full textHu, G., and J. Dawson. The 2017 Australian GNSS CORS position verification analysis. Geoscience Australia, 2018. http://dx.doi.org/10.11636/record.2018.003.
Full textDonahue, B., J. Wentzel, and R. Berg. Guidelines for RTK/RTN GNSS surveying in Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292856.
Full textDonahue, B., J. Wentzel, and R. Berg. Guidelines for RTK/RTN GNSS surveying in Canada. Natural Resources Canada/CMSS/Information Management, 2015. http://dx.doi.org/10.4095/329628.
Full textHu, G., A. Riddell, and J. Dawson. Results of the National GNSS CORS Campaign, September 2014. Geoscience Australia, 2015. http://dx.doi.org/10.11636/record.2015.008.
Full textHabib, Ayman, Darcy M. Bullock, Yi-Chun Lin, Raja Manish, and Radhika Ravi. Field Test Bed for Evaluating Embedded Vehicle Sensors with Indiana Companies. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317385.
Full textNikitina, L., D. W. Danskin, R. Ghoddousi-Fard, and P. Prikryl. Status of the existing monitoring and forecasts for GNSS systems. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296982.
Full textHu, G., S. McClusky, R. Ruddick, and A. Peterson. Evaluation of Geoscience Australia’s proposed GNSS CORS antenna mount adaptors. Geoscience Australia, 2022. http://dx.doi.org/10.11636/record.2022.008.
Full textElliot, P. G., E. N. Rosario, and R. J. Davis. Novel Quadrifilar Helix Antenna Combining GNSS, Iridium, and a UHF Communications Monopole. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada562143.
Full textGhoddousi-Fard, R. An investigation on the GNSS ionospheric mapping-functions uncertainties using NeQuick model. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/326084.
Full text