Academic literature on the topic 'Glycogen storage disease type III'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glycogen storage disease type III.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glycogen storage disease type III"
Carvalho, Julene S., Eurem E. Matthews, James V. Leonard, and John Deanfield. "Cardiomyopathy of glycogen storage disease type III." Heart and Vessels 8, no. 3 (September 1993): 155–59. http://dx.doi.org/10.1007/bf01744800.
Full textLabrune, Philippe, Pascale Trioche, Isabelle Duvaltier, Paquita Chevalier, and Michel Odièvre. "Hepatocellular Adenomas in Glycogen Storage Disease Type I and III: A Series of 43 Patients and Review of the Literature." Journal of Pediatric Gastroenterology and Nutrition 24, no. 3 (March 1997): 276–79. http://dx.doi.org/10.1002/j.1536-4801.1997.tb00424.x.
Full textShen, J., and Y. Chen. "Molecular Characterization of Glycogen Storage Disease Type III." Current Molecular Medicine 2, no. 2 (March 1, 2002): 167–75. http://dx.doi.org/10.2174/1566524024605752.
Full textMinen, Federico, Gabriele Cont, Angela De Cunto, Stefano Martelossi, Alessandro Ventura, Giuseppe Maggiore, Flavio Faletra, Paolo Gasparini, and Denise Cassandrini. "Delayed Diagnosis of Glycogen Storage Disease Type III." Journal of Pediatric Gastroenterology and Nutrition 54, no. 1 (January 2012): 122–24. http://dx.doi.org/10.1097/mpg.0b013e318228d806.
Full textCleary, M. A., J. H. Walter, B. A. Kerr, and J. E. Wraith. "Facial appearance in glycogen storage disease type III." Clinical Dysmorphology 11, no. 2 (April 2002): 117–20. http://dx.doi.org/10.1097/00019605-200204000-00008.
Full textMOSES, S. W., N. GADOTH, N. BASHAN, E. BEN-DAVID, A. SLONIM, and K. L. WANDERMAN. "Neuromuscular Involvement in Glycogen Storage Disease Type III." Acta Paediatrica 75, no. 2 (March 1986): 289–96. http://dx.doi.org/10.1111/j.1651-2227.1986.tb10201.x.
Full textKorlimarla, Aditi, Stephanie Austin, Baodong Sun, and Priya Kishnani. "Hepatic Manifestations in Glycogen Storage Disease Type III." Current Pathobiology Reports 6, no. 4 (November 5, 2018): 233–40. http://dx.doi.org/10.1007/s40139-018-0182-x.
Full textLiu, Kai-Ming, Jer-Yuarn Wu, and Yuan-Tsong Chen. "Mouse model of glycogen storage disease type III." Molecular Genetics and Metabolism 111, no. 4 (April 2014): 467–76. http://dx.doi.org/10.1016/j.ymgme.2014.02.005.
Full textSalemi, Vera Maria Cury, Léa Maria Macruz Ferreira Demarchi, Estêvan Vieira Cabeda, Jaqueline Wagenführ, and Ana Cristina Tanaka. "Type III glycogen storage disease mimicking hypertrophic cardiomyopathy." European Heart Journal - Cardiovascular Imaging 13, no. 2 (November 14, 2011): 197. http://dx.doi.org/10.1093/ejechocard/jer231.
Full textZimakas, P. J. A. "Glycogen storage disease type III in Inuit children." Canadian Medical Association Journal 172, no. 3 (February 1, 2005): 355–58. http://dx.doi.org/10.1503/cmaj.1031589.
Full textDissertations / Theses on the topic "Glycogen storage disease type III"
Vidal, Patrice. "Développement d'un traitement de thérapie génique pour la glycogénose de type III." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS571.
Full textGlycogen storage disease type III (GSDIII) is a recessive genetic disorder caused by mutations affecting the activity of the glycogen debranching enzyme (GDE). Symptoms are hepatomegaly and hypoglycemia during childhood and degenerative muscle weakness during adulthood. At present, no curative treatment exists for GSDIII. First, we developed and characterized a mouse model that faithfully recapitulates the human disease. Gene therapy allows the treatment of previously untreatable metabolic and neuromuscular diseases. Adeno-associated virus (AAV) vectors are vectors of choice for in vivo gene therapy, with an excellent safety and efficacy profile demonstrated in human. A major limitation for GSDIII is the size of the transgene that exceeds the genome packaging capacity of AAV vectors. We explored an alternative approach using the lysosomal pathway and the acid alpha-glucosidase (GAA) able to degrade the glycogen, overloading the lysosomes with this protein. In muscles, the increase of GAA activity is not able to treat the phenotype of GSDIII whereas the overexpression of GAA in the liver induces a normalization of the concentration of glycogen. The second step of this thesis was to have GDE de novo expressed in cells. We developed strategy based on the injection of two vectors that can use the mechanisms of homologous recombination. This allowed the correction of the GSDIII phenotype in a murine model of the disease. The results show that it is possible to correct the muscle phenotype of GSDIII. Nevertheless, the effectiveness of this strategy remains only partial in the liver, again highlighting a different glycogen degradation pathway in both tissues
Rossiaud, Lucille. "Modélisation et compréhension de la glycogénose de type III grâce à l'utilisation de cellules souches pluripotentes induites humaines." Electronic Thesis or Diss., université Paris-Saclay, 2024. https://www.biblio.univ-evry.fr/theses/2024/interne/2024UPASL091.pdf.
Full textGlycogen storage disease type III (GSDIII) is a rare genetic disorder caused by glycogen debranching enzyme (GDE) deficiency, leading to an accumulation of glycogen accumulation in the liver, heart and skeletal muscles. While liver damages predominate in childhood, muscle impairments progress and become predominant in adulthood. The lack of human models hinders our understanding of the disease and the development of treatments.In this context, my first objective was to create in vitro human pathological models from induced pluripotent stem cells (hiPSCs). I generated five pathological hiPSC lines: four lines derived from patients by reprogramming and one line genetically modified by CRISPR/Cas9. These cells were then differentiated into myocytes and hepatocytes, the two relevant cell types for the study of GSDIII. I confirmed that these cells express muscle and liver specific markers respectively, and recapitulate the glycogen accumulation phenotype under glucose starvation conditions compared to healthy cells.The second objective was to better understand the pathophysiological mechanisms of GSDIII and to identify new biomarkers of the disease. I first focused on muscle, for which I identified genes differentially expressed between healthy and pathological cells by RNA sequencing of hiPSC-derived myocytes. Comparative analysis with RNA sequencing data from triceps biopsies of healthy and GSDIII mice revealed overexpression of a common gene encoding galectin-3, a marker of damaged vesicles. This overexpression was validated in mutated myocytes derived from hiPSCs, as well as in the triceps of GSDIII mice and in patient biopsies. In parallel, a similar approach on hiPSC-derived hepatocytes identified potential liver biomarkers, paving the way for a better understanding of the mechanisms of liver damage.The final objective was to use these in vitro human pathological models to test new therapies. I demonstrated that treatment of mutated myocytes with AAV vectors expressing complete or truncated human GDE, previously validated on in vivo GSDIII mouse and rat models, reduced glycogen accumulation to levels comparable to those of healthy cells. These experiments confirmed the value of developing these new in vitro models.Taken together, this work has led to the identification of new biomarkers for GSDIII, providing a better understanding of the molecular mechanisms in muscle and liver. The creation of these new in vitro models also opens up new therapeutic prospects for GSDIII, particularly by facilitating drug screening
Bhattacharya, K. "Improvement of the nutritional management of glycogen storage disease type I." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19282/.
Full textCrane, Bayley. "Efficacy of Gene Therapy in Dogs with Glycogen Storage Disease Type Ia." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-03202009-163526/.
Full textRemiche, Gauthier. "Genotype-phenotype Correlation in Late-onset Glycogen Storage Disease Type II, Early Diagnosis and Prognostic Determinants." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/227822.
Full textDoctorat en Sciences médicales (Médecine)
info:eu-repo/semantics/nonPublished
Hermans, Monique Maria Petra. "Structural and functional analysis of lysosomal [alpha]-glucosidase in relation to glycogen storage disease type II." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 1993. http://hdl.handle.net/1765/13746.
Full textNascimbeni, Anna Chiara. "Glycogenosys type II and Danon Disease: molecular study and muscle pathology." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426098.
Full textScopo di questo studio è stato quello di analizzare a livello molecolare, biochimico e della patologia muscolare due gruppi di pazienti affetti dalla malattia di Danon e da glicogenosi di tipo II, in modo da acquisire nuove informazioni utili a tracciare possibili correlazioni genotipo-fenotipo e a chiarire i meccanismi patologici alla base di queste patologie. La Glicogenosi di tipo II (GSDII) è una malattia autosomica recessiva (OMIM # 232300) causata da un deficit dell’enzima mitocondriale ?-glucosidasi o maltasi acida (EC 3.2.1.20/3), che catalizza l’idrolisi dei legami glicogeno ? -1,4 e ? -1,6. Tale deficit enzimatico porta all’accumulo a livello lisosomale di glicogeno, che genera un’ampia eterogeneità clinica, che spazia da casi con esordio infantile e quadro clinico molto severo a forme più benigne con esordio tardivo nell’età adulta. Sono stati analizzati 23 pazienti con deficit di ?-glucosidasi acida per l’attività enzimatica mediante saggio fluorimetrico, l’espressione proteica mediante immunoblotting, la presenza di mutazioni nel gene GAA con SSCP e la patologia muscolare mediante immunocolorazione del Golgi e delle proteine sarcolemmali. L’attività enzimatica è risultata assente o minima nei casi ad esordio infantile e variabilmente ridotta nei pazienti con esordio tardivo. Le correlazioni genotipo-fenotipo indicano che la maggior parte dei pazienti ad esordio tardivo presentano la mutazione “leaky splicing” c.–32-13T>G in eterozigosi (un paziente era omozigote), ma il decorso della malattia è spesso difficile da prevedere solo sulla base delle mutazioni. Un risultato interessante deriva dall’analisi mediante western blot dell’espressione dell’?-glucosidasi nei pazienti: abbiamo infatti dimostrato che il muscolo di questi pazienti esprime prevalentemente forme inattive/immature dell’enzima ?-glucosidasi, mentre la forma matura della proteina è assente o presente a livelli molto ridotti. Inoltre, si è visto che l’eventuale quantità residua di forme proteiche mature riscontrate al western blot correla con i livelli di attività enzimatica riscontrati nel muscolo di questi pazienti. Il peso molecolare sia delle forme mature che di quelle immature/inattive è risultato essere maggiore nei pazienti rispetto ai muscoli di controllo. Attribuiamo tali differenze ad un’eccessiva sialilizzazione delle forme proteiche non funzionali, causata probabilmente da un loro trasporto ritardato o da una loro ritenzione nel complesso di Golgi, in cui agiscono le sialil-transferasi. A sostegno di tale ipotesi, abbiamo riscontrato una proliferazione del Golgi nelle fibre muscolari dei pazienti, causata possibilmente dalla ritenzione delle forme enzimatiche inattive, che non possono venire correttamente veicolate ai lisosomi. Le membrane vacuolari esprimono le proteine sarcolemmali nei pazienti con esordio tardivo ma non in quelli ad esordio infantile, suggerendo un’autofagia estesa ed un rimodellamento della membrana vacuolare nei pazienti ad esordio tardivo. La Malattia di Danon ha ereditarietà di tipo dominante legato al cromosoma X ed è causata da mutazioni nel gene LAMP2 (Lysosomal Associated Membrane Protein-2), e si presenta con cardiomiopatia ipertrofica, miopatia e ritardo mentale. Per studiare gli effetti delle mutazioni nel gene LAMP2 sull’espressione proteica in diversi tessuti, abbiamo effettuato uno screening molecolare ed un’analisi del difetto proteico sul tessuto muscolare, cardiaco, sui leucociti e fibroblasti di 9 soggetti maschi non correlati tra loro, con cardiomiopatia ipertrofica e miopatia vacuolare. Tre dei 9 soggetti analizzati hanno evidenziato un deficit proteico di LAMP2 generalizzato. Tale difetto è stato infatti riscontrato in tutti i tessuti da noi analizzati: tessuto muscolare scheletrico e cardiaco, leucociti e fibroblasti. Questo risultato indica che l’analisi biochimica può essere svolta in modo non invasivo sui leucociti, e potrebbe quindi essere impiegata nello screening dei soggetti maschi; inoltre, questo deficit multi-organo di proteina LAMP2 potrebbe spiegare il coinvolgimento clinico multisistemico. Abbiamo inoltre esteso l’analisi anche alla madre di un affetto: in questo caso il muscolo, i fibroblasti e i leucociti presentano livelli proteici comparabili al controllo normale. Sono state identificate mutazioni nel gene LAMP2 in tutti e 3 i pazienti maschi e nella femmina eterozigote. Ciascun paziente presentava una mutazione diversa e non riportata precedentemente in letteratura: sono tutte mutazioni nulle (nonsenso o frame-shifting) che ci si aspetta diano origine ad una proteina tronca, con perdita del dominio trans-membrana. ’istopatologia muscolare ha evidenziato una vacuolizzazione fibrale estesa e della degenerazione . L’analisi immunopatologica del muscolo scheletrico ha evidenziato che non vi è proliferazione del complesso del Golgi nei pazienti, che le membrane vacuolari esprimono le proteine sarcolemmali e che il grado di vacuolizzazione correla con il coinvolgimento clinico a livello muscolare. L’analisi dell’inattivazione del cromosoma X effettuata sul tessuto muscolare e sui leucociti ha escluso la possibilità che il coinvolgimento selettivo di alcuni tessuti nelle femmine sia dovuto ad una inattivazione non casuale dell’X
Ichikawa, Shoji. "The molecular genetic analysis of three human neurological disorders." free online free to MU campus, others may purchase, 2002. http://wwwlib.umi.com/cr/mo/preview?3074409.
Full textCurlis, Yvette M. "Attitudes towards newborn screening for Pompe disease among affected adults, family members and parents of 'healthy' children /." Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/7065.
Full textThe aim of this study was to investigate attitudes towards newborn screening for Pompe disease among affected adults, their family members and parents of ‘healthy’ children. Affected adults were recruited through support groups in Australia, the United Kingdom and United States; family members of affected adults were recruited from Australia; and parents of ‘healthy’ children were recruited through maternal child health clinics in Victoria, Australia. Participants completed questionnaires exploring their experiences of Pompe disease and/or newborn screening and their attitudes towards newborn screening for Pompe disease.
Support for newborn screening for Pompe disease was high among adults with Pompe disease (85.4%), parents of ‘healthy’ children (93.9%) and all three family members of affected adults who participated in this study. However, when offered a theoretical screening test that would only identify infantile-onset Pompe disease, 42.1% of adults with Pompe disease and 53.1% of parents of ‘healthy’ children preferred this screen, indicating that these stakeholders have some concerns regarding detection of late-onset disease in infancy. Factors influencing attitudes were investigated and support for newborn screening in affected adults was highly correlated with age of onset of disease; a preference to have been diagnosed in infancy; a belief that an earlier diagnosis would have made symptoms easier to cope with; and a stronger confidence in the efficacy of enzyme replacement therapy.
Potential benefits of diagnosis of late-onset disease in infancy were identified as being able to avoid the diagnosis odyssey, access enzyme replacement therapy at the optimal time, and allow individuals to make appropriate life choices. Participants identified increased anxiety in parents and the potential for over-protectiveness, in addition to possible discrimination, as harms of newborn screening for Pompe disease.
Families in which an infant is identified with the potential for late-onset Pompe disease will need assistance to adapt to and manage this diagnosis, so that anxiety is minimised and unnecessary limitations are not placed on the child. Whilst potential medical and psychosocial benefits can result from newborn screening, it is important to carefully consider the potential for harm and the resources required to appropriately manage these so that ultimately benefit outweighs harm.
Schleissing, Mary Rucker. "Biochemical and functional analysis after in utero delivery of recombinant adeno-associated virus to a mouse model of glycogen storage disease type II." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000603.
Full textBooks on the topic "Glycogen storage disease type III"
Filosto, Massimiliano. Advances in diagnosis and management of glycogenosis II. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textCrowley, John F. Chasing miracles: The Crowley family journey of strength, hope, and joy. New York: Newmarket Press, 2010.
Find full textAnand, Geeta. The Cure. New York: HarperCollins, 2009.
Find full textToscano, Antonio, Massimiliano Filosto, and Alessandro Padovani. Advances in Diagnosis and Management of Glycogenosis II. Nova Science Publishers, Incorporated, 2013.
Find full textvan der Ploeg, Ans T., and Pascal Laforêt. Pompe Disease. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0055.
Full textAnand, Geeta. The Cure: How a Father Raised $100 Million--And Bucked the Medical Establishment--In a Quest to Save His Children. William Morrow, 2006.
Find full textAnand, Geeta. The Cure: How a Father Raised $100 Million--And Bucked the Medical Establishment--In a Quest to Save His Children. William Morrow, 2006.
Find full textAnand, Geeta. Cure: How a Father Raised $100 Million--and Bucked the Medical Establishment--in a Quest to Save His Children. HarperCollins Publishers, 2009.
Find full textAnand, Geeta. Cure: How a Father Raised $100 Million--and Bucked the Medical Establishment--in a Quest to Save His Children. HarperCollins Publishers, 2009.
Find full textAnand, Geeta. Cure: How a Father Raised $100 Million--and Bucked the Medical Establishment--in a Quest to Save His Children. HarperCollins Publishers, 2010.
Find full textBook chapters on the topic "Glycogen storage disease type III"
Timson, David J., Richard J. Reece, James B. Thoden, Hazel M. Holden, Andrea L. Utz, Beverly M. K. Biller, Eugen-Matthias Strehle, et al. "Glycogen Storage Disease Type III." In Encyclopedia of Molecular Mechanisms of Disease, 729. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8632.
Full textAustin, S. L., A. D. Proia, M. J. Spencer-Manzon, J. Butany, S. B. Wechsler, and P. S. Kishnani. "Cardiac Pathology in Glycogen Storage Disease Type III." In JIMD Reports, 65–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8904_2011_118.
Full textShin, Y. S., M. Rieth, J. Tausenfreund, and W. Endres. "First Trimester Diagnosis of Glycogen Storage Disease Type II and Type III." In Studies in Inherited Metabolic Disease, 289–91. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1069-0_30.
Full textMaire, I., G. Mandon, and M. Mathieu. "First Trimester Prenatal Diagnosis of Glycogen Storage Disease Type III." In Studies in Inherited Metabolic Disease, 292–94. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1069-0_31.
Full textLee, Teresa M., Erika S. Berman-Rosenzweig, Alfred E. Slonim, and Wendy K. Chung. "Two Cases of Pulmonary Hypertension Associated with Type III Glycogen Storage Disease." In JIMD Reports, 79–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/8904_2011_20.
Full textGatti, R., G. Lamedica, M. Di Rocco, D. Massocco, N. Marchese, and C. Borrone. "Long-term Cornstarch Therapy in Glycogen Storage Disease Types I, Ib and III." In Practical Developments in Inherited Metabolic Disease: DNA Analysis, Phenylketonuria and Screening for Congenital Adrenal Hyperplasia, 280–83. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4131-1_48.
Full textBrambilla, Alessandra, Savina Mannarino, Roberta Pretese, Serena Gasperini, Cinzia Galimberti, and Rossella Parini. "Improvement of Cardiomyopathy After High-Fat Diet in Two Siblings with Glycogen Storage Disease Type III." In JIMD Reports, 91–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/8904_2014_343.
Full textSentner, Christiaan P., Yvonne J. Vos, Klary N. Niezen-Koning, Bart Mol, and G. Peter A. Smit. "Mutation Analysis in Glycogen Storage Disease Type III Patients in the Netherlands: Novel Genotype-Phenotype Relationships and Five Novel Mutations in the AGL Gene." In JIMD Reports, 19–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8904_2012_134.
Full textMansour, Eli, and Ana Flavia Bernardes Sousa. "Glycogen Storage Disease Type 1b." In Encyclopedia of Medical Immunology, 330–33. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_136.
Full textManners, D. J. "Glycogen Storage Disease, Type I." In Ciba Foundation Symposium - Control of Glycogen Metabolism, 321–35. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719343.ch23.
Full textConference papers on the topic "Glycogen storage disease type III"
Giugliano, Giusy, Michela Schiavo, Daniele Pirone, Jaromir Behal, Vittorio Bianco, Sandro Montefusco, Pasquale Memmolo, Lisa Miccio, Pietro Ferraro, and Diego L. Medina. "Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in digital holography microscopy." In Digital Holography and Three-Dimensional Imaging, Th2A.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.th2a.6.
Full textKe, Li,. "Recurrence Quantification Analysis of Sustained Sub-Maximal Grip Force in Patients with Glycogen Storage Disease Type III." In Modeling and Control in Biomedical Systems, edited by Rees, Stephen, chair Andreassen, Steen and Andreassen, Steen. Elsevier, 2009. http://dx.doi.org/10.3182/20090812-3-dk-2006.00067.
Full textQuackenbush, David, Justin Devito, Luigi Garibaldi, and Melissa Buryk. "Late Presentation of Glycogen Storage Disease Type Ia and Iii in Children with Short Stature and Hepatomegaly*." In Selection of Abstracts From NCE 2016. American Academy of Pediatrics, 2018. http://dx.doi.org/10.1542/peds.141.1_meetingabstract.753.
Full textMerrigan, Christine, Orla Purcell, Eimear Forbes, Jenny Mc Nulty, Emma Lally, and Prof Ellen Crushell. "GP229 The use of the ketogenic diet in a metabolic patient with glycogen storage disease type IIIa." In Faculty of Paediatrics of the Royal College of Physicians of Ireland, 9th Europaediatrics Congress, 13–15 June, Dublin, Ireland 2019. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2019. http://dx.doi.org/10.1136/archdischild-2019-epa.288.
Full textAlrasheed, Khalid, Tahseen Mozaffar, and Mari Perez-Rosendahl. "Muscle Pathology in a Case of Glycogen Storage Disease III (P6-8.014)." In 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000202881.
Full textKallenbach, Michael, Petra May, David Pullmann, David Schöler, Jan Philipp Köhler, Irene Esposito, Tom Lüdde, and Stephan vom Dahl. "Incidence of hepatic adenomas in adult glycogen storage disease type Ia/b." In 39. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0042-1759983.
Full textYahşi, Aysun, Tuğba Erat, Halil Özdemir, Tuğçe Tural Kara, Reyhan Erol, Fatma Tuba Eminoğlu, Elif Ince, et al. "P274 An unexpected disease in an infant with pancytopenia and pulmonary abscess: glycogen storage disease type 1b." In 8th Europaediatrics Congress jointly held with, The 13th National Congress of Romanian Pediatrics Society, 7–10 June 2017, Palace of Parliament, Romania, Paediatrics building bridges across Europe. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2017. http://dx.doi.org/10.1136/archdischild-2017-313273.362.
Full textWang, Shutao, Balasundar I. Raju, Evgeniy Leyvi, David A. Weinstein, and Ralf Seip. "Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients." In 11TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. AIP, 2012. http://dx.doi.org/10.1063/1.4757373.
Full textBell, Alexandra, and Ahmed Al-Mukhtar. "P087 Liver transplant in Glycogen Storage Disease Type 1a; a case that disputes current guidelines." In Abstracts of the British Association for the Study of the Liver Annual Meeting, 22–24 November 2021. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2021. http://dx.doi.org/10.1136/gutjnl-2021-basl.95.
Full textPellegrino, Francesco, Aimee Wiseman, Lucy Jackman, Leanne Goh, and Edward Gaynor. "OC81 Eosinophilic esophagitis successfully treated with elimination diet and proton pump inhibitors in a patient with glycogen storage disease type 9c." In Abstracts of the BSPGHAN 38th Annual Meeting, 20–22 March 2024, The Bristol Hotel, Bristol, UK. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/flgastro-2024-bspghan.77.
Full text