Academic literature on the topic 'Glutaminase – métabolisme'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glutaminase – métabolisme.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glutaminase – métabolisme":

1

Pichard, Claude, Comasia A. Raguso, Laurence Genton, Nadine Maisonneuve, and Josiane Jetzer. "Glutamine : métabolisme et physiopathologie." Revue Médicale Suisse -3, no. 2369 (2001): 2327–29. http://dx.doi.org/10.53738/revmed.2001.-3.2369.2327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Darmaun, D. "Intestin et métabolisme de la glutamine." médecine/sciences 9, no. 8-9 (1993): 884. http://dx.doi.org/10.4267/10608/3008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Darmaun, Dominique. "Biodisponibilité de la glutamine et réponse du métabolisme protéique à l'apport de glutamine chez l'homme." Nutrition Clinique et Métabolisme 8, no. 4 (January 1994): 231–40. http://dx.doi.org/10.1016/s0985-0562(05)80172-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hankard, R., D. Hammond, and D. Darmaun. "Effet de la glutamine sur le métabolisme protéique chez l'enfant myopathe." Archives de Pédiatrie 3, no. 12 (December 1996): 1286. http://dx.doi.org/10.1016/s0929-693x(97)85952-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LE FLOC’H, N., and B. SEVE. "Le devenir des protéines et des acides aminés dans l’intestin du porc : de la digestion à l’apparition dans la veine porte." INRAE Productions Animales 13, no. 5 (October 22, 2000): 303–14. http://dx.doi.org/10.20870/productions-animales.2000.13.5.3798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La digestion intestinale des protéines alimentaires fait intervenir des protéases d’origine pancréatique et des peptidases intestinales. Les produits de la digestion sont constitués d’acides aminés libres et de peptides relativement abondants. Acides aminés et peptides sont transportés dans l’entérocyte où ces derniers subissent une hydrolyse. Les acides aminés libres présents dans la veine porte présentent un profil bien différent de celui des protéines alimentaires. En effet, le métabolisme intestinal des acides aminés est très actif. Afin d’assurer la synthèse des protéines constitutives et sécrétées, l’intestin prélève des acides aminés à la fois dans la lumière intestinale et dans le sang artériel. Cet organe renouvelle plus de 50 % de ses protéines par jour et la synthèse de protéines bien particulières comme les mucines engendre des besoins élevés en certains acides aminés comme la thréonine. L’intestin est le principal tissu utilisant la glutamine artérielle et le glutamate alimentaire. Le catabolisme intestinal de ces acides aminés produit de l’alanine, de l’acide aspartique, de la proline et, par l’intermédiaire des enzymes du cycle de l’urée, de l’ornithine, de la citrulline et de l’arginine. Les acides aminés indispensables n’échapperaient pas non plus au catabolisme intestinal. Le rôle de l’intestin ne se limite donc pas à la digestion des protéines et à l’absorption des acides aminés. Son métabolisme modifie profondément la disponibilité des acides aminés alimentaires pour le reste de l’organisme.
6

Darmaun, Dominique. "Métabolisme de la glutamine in vivo chez l'homme : implications pour la nutrition artificielle." Nutrition Clinique et Métabolisme 4, no. 4 (January 1990): 203–14. http://dx.doi.org/10.1016/s0985-0562(05)80333-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubois, Charlotte, Guy Eelen, and Peter Carmeliet. "Un nouveau rôle non métabolique de la glutamine synthétase au cours de l’angiogenèse." médecine/sciences 35, no. 5 (May 2019): 407–9. http://dx.doi.org/10.1051/medsci/2019083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jobert, A., V. Colomb, G. Guihot, B. Darcy-Vrillon, MT Morel, O. Corriol, C. Ricour, and PH Duce. "Effet de la nutrition artificielle sur le métabolisme du glucose et de la glutamine par l'entérocyte de rat." Archives de Pédiatrie 3, no. 12 (December 1996): 1287. http://dx.doi.org/10.1016/s0929-693x(97)85954-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rey, L., A. Sadik, A. Fer, and S. Renaudin. "Étude de quelques aspects du métabolisme carboné et azoté chez l'Arceuthobium oxycedri, gui nain du genévrier." Canadian Journal of Botany 70, no. 8 (August 1, 1992): 1709–16. http://dx.doi.org/10.1139/b92-211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In juniper dwarf mistletoe, Arceuthobium oxycedri (DC) M. Bieb., a hemiparasitic and epiphytic Angiosperm characterized by very reduced and slow development, the chlorophyll content of the shoots is relatively high for a parasitic plant. However, gas exchanges reveal a low net gain in carbon, and the real photosynthetic intensity is only about 1.5 to 2 times higher than the respiratory intensity in these organs. In the endophytic system, which is also chlorophyllous, a small amount of photosynthetic activity also occurs. By studying 14CO2 assimilation and carboxylase activities in both organs, it was possible to determine the ability of the parasite to satisfy part of its carbon requirements. Following the administration of 14CO2, radioactivity was mainly recovered in carbohydrates and to a lesser extent in organic acids and amino acids. This demonstrates that A. oxycedri has some autonomy for the fixation and distribution of carbon into various compounds. On the other hand, the parasite, since it is epiphytic, is completely dependent upon its host for nitrogen. The study of the activities of the key enzymes of nitrogen metabolism ([Formula: see text] and [Formula: see text] reductases, glutamine synthetase, glutamate dehydrogenase, glutamate-oxalacetate transaminase) shows that nitrogen supply from the host certainly occurs mainly in the form of reduced nitrogenous compounds (ammonia and (or) aminated organic compounds). The numerous labelled amino acids recovered after administration of 14CO2 show that A. oxycedri is able to redistribute the imported nitrogen in various ways. Key words: Arceuthobium oxycedri, parasitic Angiosperms, carbon nutrition, nitrogen nutrition.
10

Bertrand, J., R. Marion-Letellier, S. Azhar, P. Chan, R. Legrand, A. Goichon, M. Aziz, et al. "P213: L’administration de glutamine par voie rectale modifie le profil d’expression colique des protéines ubiquitinées au cours d’une colite chez le rat : focus sur le métabolisme mitochondrial." Nutrition Clinique et Métabolisme 28 (December 2014): S180—S181. http://dx.doi.org/10.1016/s0985-0562(14)70855-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Glutaminase – métabolisme":

1

Murcy, Florent. "Le rôle de la glutaminolyse hépatique dans l'athérosclérose." Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ6022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les maladies cardiovasculaires, principale cause de mortalité dans le monde avec 17 millions de morts chaque année, représentent un problème majeur de santé publique . Malgré les thérapeutiques existantes visant à rétablir l'homéostasie lipidique, la prévalence de ces maladies ne cesse d'augmenter et de nouvelles cibles doivent être recherchées. Récemment, de nouveaux facteurs ont été identifiés comme acteurs potentiels dans le développement des plaques d'athérosclérose. Parmi eux, la glutamine, un acide aminé conditionnellement essentiel, et son métabolisme ont été associés à l'incidence des maladies cardiovasculaires et à l'inflammation. Au sein de notre organisme, deux enzymes majeures sont impliquées dans le contrôle des flux de cet acide : la glutaminase 2 (GLS2) qui métabolise la glutamine en glutamate et la glutamine synthétase (GS) qui permet la réaction inverse. Au cours de notre étude, nous avons tout d'abord étudié l'effet du blocage de l'une ou l'autre de ces enzymes dans un modèle murin d'athérosclérose grâce à l'injection d'un virus adéno-associé (AAV) ou de méthionine sulfoximine. Alors que l'inhibition de la GS n'a que peu d'impact sur le développement des lésions, la déficience en GLS2 entraine une augmentation de la taille de la plaque. Aucune modification majeure des facteurs de risque cardiovasculaires classiques ni même de l'inflammation n'a été associée à l'augmentation des niveaux de glutamine plasmatique en l'absence de GLS2. En faisant des analyses du profil transcriptionnel du foie et des aortes des animaux déficients pour la GLS2, nous avons remarqué que de nombreux gènes impliqués dans le remodelage de la matrice extracellulaire et dans l'interaction cellules/matrice étaient dérégulés. Les diverses colorations et marquages immunofluorescents des plaques ont corroboré le séquençage et identifié des éléments supportant l'hypothèse d'une fragilisation de la matrice extracellulaire. La redistribution des flux de glutamine a en effet entrainé des modifications d'enzymes impliquées dans le remodelage matriciel. En particulier, l'activité de la transglutaminase 2 (TGM2), l'une des enzymes garantes de l'intégrité de la matrice, était augmentée. D'un point de vue thérapeutique, nous avons étudié la surexpression hépatique de la GLS2. Dans nos modèles murins surexprimant l'enzyme, nous avons constaté une diminution de la taille des plaques ainsi qu'une baisse de la glutamine plasmatique. La GLS2 semble alors être un nouvel acteur dans la prévention de l'athérosclérose non seulement en maintenant l'homéostasie des cellules mais aussi en garantissant l'intégrité du milieu dans lequel elles évoluent. Il serait intéressant d'explorer cette nouvelle cible à l'heure où les thérapeutiques semblent s'essouffler
Cardiovascular diseases are the leading cause of death worldwide with 17 million deaths each year and represent a major public health challenge. Despite existing therapies aimed at restoring lipid homeostasis, the prevalence of these diseases keeps increasing and new targets must be find. Recently, new factors have been identified as potential actors in the development of atherosclerotic plaques. Among them, glutamine, a conditionally essential amino acid, and its metabolism have been linked to the incidence of cardiovascular disease and inflammation. Two major enzymes are involved in controlling the flow of this amino acid within our body. Glutaminase 2 (GLS2) metabolizes glutamine into glutamate and the reverse reaction is mediated by glutamine synthetase (GS). During our study, we first studied the effect of their inhibition in a mouse model of atherosclerosis with adeno-associated virus (AAV) injection or methionine sulfoximine. While GS inhibition has a little impact on lesion development, GLS2 deficiency leads to an increase in atherosclerotic plaque size. At the same time, plasma glutamine is increased. There was no major change in classical cardiovascular risk factors or even inflammation. By performing analyzes of the transcriptional profile of the liver and aortas of GLS2 KO animals, we noticed that many genes involved in the remodeling of the extracellular matrix and in the cell/matrix interaction were deregulated. Dedicated stainings of the plaques corroborated the RNA sequencing and identified regulation of key matrix-modulating enzymes supporting the hypothesis of a weakening of the extracellular matrix. Especially, we found an increase in the activity of transglutaminase 2 (TGM2), one of the pivotal regulator of matrix integrity. We next investigated the therapeutic opportunity by overexpressing hepatic GLS2. In our mouse model overexpressing the enzyme, we observed a decrease in atherosclerotic plaque size as well as a decrease in plasma glutamine. GLS2 seems to be a new player in the prevention of atherosclerosis not only by maintaining cell homeostasis but also by guaranteeing the environment integrity in which they evolve. It would be interesting to explore this new target at a time when therapies seem to be running out of steam
2

Nekooie, Marnany Nioosha. "The Intersection of Metabolism and Neural Crest Cell Development." Electronic Thesis or Diss., Paris 12, 2022. http://www.theses.fr/2022PA120066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le métabolisme en tant que clé de voûte du destin des cellules souches fournit non seulement des demandes d'énergie et de molécules précurseurs, mais joue également un rôle dans le remodelage de la chromatine. Dans les embryons de vertébrés, les cellules de la crête neurale (NC) constituent une population remarquable de progéniteurs embryonnaires qui, lors de la délamination du tube neural dorsal, d'une migration et d'une différenciation étendues, donnent lieu à des dérivés neuraux/neuronaux et mésenchymateux. Le potentiel de différenciation des cellules NC nécessite un remodelage épigénétique et des signaux environnementaux. En conséquence, l'intersection du métabolisme et de la lasticité NC fournira des informations essentielles sur la régulation de l'identité et du développement des cellules NC. Ainsi, j'avais l'intention de comprendre le rôle du métabolisme dans l'aspect développemental d'une sous-population de cellules NC, le tronc NC. La première partie de mon étude a abouti à une vision générale des impacts métaboliques sur toutes les étapes de développement de la CN. J'ai mis en évidence que l'oxydation du glucose est un profil métabolique essentiel régissant la délamination, l'adhésion, la migration, la prolifération, le maintien de la tige et la différenciation généralisée des NC. Compte tenu de l'incidence de la transition G1 / S sur l'EMT dans les cellules NC du tronc, l'inhibition de la voie des pentoses phosphates (PPP) n'a pas pu influencer la délamination NC, suggérant une adaptation métabolique pour maintenir les étapes de développement et la survie. Par conséquent, dans l'étape suivante, j'ai cherché à apprécier comment les voies métaboliques s'intègrent dans la délamination NC. Le recâblage de la voie dela glycolyse sous inhibition du PPP au stade de délaminage a fourni un support pour les voies métaboliques multiples recrutées par les progéniteurs NC en réponse au stress métabolique. Mon étude a également élucidé la reprogrammation métabolique du PPP à l'oxydation du glucose dans les cellules NC du tronc, alignée sur la délamination NC à la transition migratoire. De plus, outre le glucose, la glutamine joue un rôle de premier plan dans l'acquisition pluripotente et la délamination des progéniteurs NC qui déclenchent la localisation nucléaire de la glutaminase (GLS) lors de l'étape de délaminage. Par conséquent, la localisation nucléaire du GLS lors de la délamination des cellules NC pré-igratoiressuggère la fonction de régulation du gène pour le GLS. Dans l'ensemble, mes résultats ont indiqué l'intersection du métabolisme et de la reprogrammation NC de l'étape pluripotente à l'engagement NC, définis respectivement par le PPP promu et la localisation nucléaire de GLS au phénotype OXPHOS à base de glucose avec localisation GLS cytoplasmique. De plus, l'interaction possible entre le GLS et la B-caténine a favorisé le nouveau concept sur la contribution du GLS à la signalisation Wnt, prometteuse pour comprendre l'étiologie de nombreuses neurocristopathies
Metabolism as a keystone of stem cells' fate not only supplies demands for energy and precursor molecules but also has roles in chromatin remodeling. In vertebrate embryos, neural crest (NC) cells constitute a remarkable population of embryonic progenitors, which upon delamination from dorsal neural tube, extensive migration and differentiation give rise to both neural/neuronal and mesenchymal derivatives. The developmental potential of NC cells necessitates epigenetic remodeling and environmental cues. Accordingly, the intersection of metabolism and NC plasticity will provide critical insights into the regulation of NC cell identity and development. Thus, I intended to figure out the metabolism role in the developmental aspect of one sub-population of NC cells, trunk type. The first part of my study resulted in a general view of the metabolic impacts on all developmental NC steps. I evidenced that glucose oxidation is a pivotalmetabolic profile governing NC delamination, adhesion, migration, proliferation, maintenance of stemness, and widespread differentiation. Given the incidence of G1/S transition upon EMT in trunk NC cells, the inhibition of pentose phosphate pathway (PPP) was unable to influence the NC delamination, suggesting a metabolic adaptation to maintain developmental steps and survival. Hence, In the next step, I sought to appreciate how metabolic pathways integrate into the NC delamination. The rewiring of glycolysis pathway under PPP suppression in delaminating stage provided support for multi metabolic pathways recruited by NC progenitors in response to the metabolic stress. My study also elucidated the metabolic reprograming from PPP to glucose oxidation in trunk NC cells, aligned with delaminating to migratory transition of these cells. Additionally, besides glucose, glutamine had a prominent role in pluripotent acquisition anddelamination of NC progenitors that triggers the nuclear localization of glutaminase (GLS) upon EMT step. Therefore, the nuclear GLS localization of pre-migratory NC cells in delaminating stage suggests the gene regulatory function for GLS. Altogether, my results indicated the intersection of metabolism and NC reprograming from pluripotent step to the NC commitment, defined respectively by promoted PPP and nuclear localization of GLS to glucose-based OXPHOSphenotype with cytoplasmic GLS localization. Moreover, the possible interaction between GLS and B-catenin fostered the new concept about the contribution of GLS to Wnt signaling, holding promise for understanding the etiology of many neurocristopathies
3

Hasan, Bou Issa Lama. "Étude des dépendances génomiques dans le myélome multiple surexprimant MYC." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le myélome multiple (MM), une hémopathie maligne qui représente environ 13% des cancers hématologiques, est caractérisée par la prolifération de plasma cells tumoraux au niveau de la moelle osseuse. Le MM évolue à partir de stades précurseurs, à savoir la gammapathie monoclonale de signification indéterminée (MGUS) et le myélome multiple asymptomatique (SMM), vers la forme symptomatique, le MM. C’est une hémopathie maligne incurable dont l’hétérogénéité et l’évolution clonale permettent l’échappement aux traitements et la progression de la maladie. Les altérations de MYC ont un rôle essentiel dans cette progression. Cependant, MYC n'est pas ciblable thérapeutiquement en raison de sa localisation nucléaire et de la courte demi-vie de la protéine.Pour surmonter cela, nous avons fait l’hypothèse que l’avantage prolifératif induit par la surexpression de MYC crée des dépendances des cellules tumorales vis-à-vis d’autres voies de signalisation qui deviennent indispensables à la survie de ces cellules. Pour tester cette hypothèse, nous avons appliqué une nouvelle méthodologie utilisant la carte de dépendance (Achilles) et effectué un screening de 2000 petites molécules afin d'identifier les vulnérabilités génomiques induites par MYC. Si elles sont identifiées, ces vulnérabilités offrent une possibilité de traitement ciblé des cancers ayant une surexpression de MYC. Nos analyses démontrent la dépendance des lignées cellulaires surexprimant MYC pour le métabolisme de la glutamine, spécifiquement les gène GLS1 (glutaminase). Nous avons validé et délimité fonctionnellement cette dépendance in vitro à partir des différentes approches.Par l’analyse de notre criblage de 1869 composés chimiques, nous avons observé que les inhibiteurs de la synthèse de NAD avaient un effet préférentiel sur la prolifération des cellules surexprimant MYC. Considérant que les rôles métaboliques du glutamine sont liés à ceux du NAD, nous avons ensuite exploré un effet synergique potentiel entre les inhibiteurs du GLS1 et du NAMPT. Nous avons démontré l'efficacité de cette nouvelle combinaison synergique pour cibler les cellules MM surexprimant MYC in vitro et in vivo.Ces résultats établissent une base méthodologique solide utilisable pour développer de nouvelles approches thérapeutiques afin de répondre à des besoins thérapeutiques non satisfaits pour cibler le MYC dans le MM
Multiple myeloma (MM) is a hematological malignancy that accounts for around 13% of hematological cancers and is characterized by the uncontrolled proliferation of malignant plasma cells in the bone marrow. MM progresses from precursor stages, known as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), to the symptomatic form, MM. It is an incurable malignancy in which heterogeneity and clonal evolution allow treatment escape and disease progression. MYC alterations play an essential role in this progression. However, MYC is not therapeutically targetable due to its nuclear localization and the protein's short half-life.To overcome this, we hypothesized that the proliferative advantage induced by MYC overexpression creates genomic dependencies on other signalling pathways that become essential for cell survival. To test this hypothesis, we applied a novel approach by leveraging large-scale loss of function screen (Achilles) and 1869 small molecules screen to identify MYC-induced genomic vulnerabilities. When identified, these vulnerabilities offer an opportunity to selectively target cancer cells harbouring this overexpression and spare normal cells.Our analyses demonstrate the dependence of MYC overexpressing cells on glutamine metabolism, in particular on the GLS1 (glutaminase). We validated and functionally delineated this dependence in vitro using different approaches.Our small molecule screen highlighted that NAD synthesis inhibitors had a preferential effect on the proliferation of MYC overexpressing cells. Considering that glutamine and NAD have closely interlinked metabolic networks, we investigated the possibility of a potential synergistic effect between GLS1 and NAMPT inhibitors. We demonstrated the effectiveness of this new synergistic combination to target MYC-driven MM cells in vitro and in vivo.These results establish a solid methodological basis that can be used to develop new therapeutic approaches to address unmet therapeutic needs to target MYC in MM
4

Rumbach, Lucien. "Valproate de sodium et métabolisme de l'ammoniaque." Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR1BH16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jacque, Nathalie. "Étude du métabolisme de la glutamine dans les leucémies aiguës myéloïdes." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB221/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La survie des cellules cancéreuses dépend d’une activité énergétique et biosynthétique accrue et la glutamine participe à de nombreux processus nécessaires à cette adaptation métabolique. Dans les leucémies aiguës myéloïdes (LAM), la croissance et la prolifération sont favorisées par l’activation anormale de plusieurs voies de signalisation, et notamment par la voie mTORC1. Les acides aminés essentiels, et en particulier la leucine, sont indispensables à l’activation de mTORC1. La glutamine est captée par la cellule via le transporteur SLC1A5 et permet ensuite l’entrée de la leucine via le transporteur bidirectionnel SLC7A5. La concentration en glutamine est donc une étape limitante dans l’activation de mTORC1 par la leucine. Nous avons étudié les effets de la privation en glutamine dans les LAM à l’aide de différents outils (milieu sans glutamine, shARN inhibant l’expression du transporteur de la glutamine SLC1A5 et la drogue L-asparaginase, qui a une activité de glutaminase extracellulaire), et observé une inhibition de mTORC1 et de la synthèse protéique. L’inhibition du transporteur SLC1A5 inhibe la pousse tumorale dans un modèle de xénotransplantation. La L-asparaginase inhibe mTORC1 et induit une apoptose de façon proportionnelle à son activité glutaminase et complètement indépendante de la concentration en asparagine. La privation en glutamine induit l’expression de la glutamine synthase et l’autophagie, et ces deux processus peuvent être des mécanismes de résistance intrinsèques ou acquis dans certaines lignées leucémiques. L’apoptose induite par la privation en glutamine n’est cependant pas liée à l’inhibition de mTORC1, puisqu’elle n’est pas diminuée par l’utilisation d’un mutant de mTOR non inhibé par la privation en glutamine. Nous nous sommes donc intéressés à une autre voie dépendante de la glutamine dans de nombreux cancers, la phosphorylation oxydative. L’étape initiale du catabolisme intracellulaire de la glutamine est la conversion de la glutamine en glutamate par des enzymes appelées glutaminases. Différentes isoformes des glutaminases existent qui sont codées chez l’homme par les gènes GLS1 et GLS2. Le glutamate est ensuite transformé en α-cétoglutarate, intermédiaire du cycle TCA. Dans les lignées de LAM, la privation en glutamine inhibe la phosphorylation oxydative mitochondriale. Nous avons observé que la protéine glutaminase C (GAC), une des isoformes de GLS1, est constamment exprimée dans les LAM mais aussi dans les progéniteurs hématopoïétiques CD34+ normaux. L’inhibition d’expression de la GLS1 par des shARN inductibles ou bien par le composé CB-839 réduit la phosphorylation oxydative, conduisant à une inhibition de prolifération et à une induction d’apoptose des cellules leucémiques. L’invalidation génétique de la GLS1 inhibe la formation de tumeur et améliore la survie des souris dans un modèle de xénotransplantation. A l’inverse, le ciblage de la GLS1 n’a pas d’effets cytotoxiques ni cytostatiques sur les progéniteurs hématopoïétiques normaux. Ces effets anti-leucémiques sont inhibés par l’adjonction d’α-cétoglutarate, et ceux induit par le CB-839 sont abrogés lorsqu’est exprimé de façon ectopique un mutant GACK320A hyperactif, attestant du rôle essentiel du maintien d’un cycle TCA actif dans les cellules de LAM. Enfin, nous montrons que l’inhibition de la glutaminolyse active la voie d’apoptose mitochondriale intrinsèque et agit en synergie avec l’inhibition spécifique de BCL-2 par l’ABT-199. Ces résultats démontrent que le ciblage spécifique de la glutaminolyse est une autre façon d’exploiter l’addiction à la glutamine des cellules leucémiques de LAM et que le maintien d’un cycle TCA actif est essentiel à la survie de ces cellules
Cancer cells survival is dependent on high energetic and biosynthetic activity, and glutamine is involved in many metabolic processes necessary for this adaptation. In acute myeloid leukemia (AML), growth and proliferation are promoted by activation of several signaling pathways, including mTORC1. Essential amino acids, in particular leucine, are required for mTORC1 activation. Glutamine enters into the cell via the SLC1A5 transporter and then allows the input of leucine via the bidirectional SLC7A5 transporter. Therefore, the intracellular glutamine concentration is a limiting step in the activation of mTORC1 by leucine. We studied the effects of glutamine deprivation in AML using different tools (medium without glutamine, shRNA against the SLC1A5 glutamine transporter and the drug L-asparaginase, which has an extracellular glutaminase activity) and observed mTORC1 and protein synthesis inhibition. SLC1A5 transporter knockdown inhibits tumor growth in a xenotransplantation model. L-asparaginase inhibits mTORC1 and induces apoptosis in proportion to its glutaminase activity and independently of asparagine concentration. Glutamine privation induces the expression of glutamine synthase and autophagy, and these two processes are involved in the resistance to glutamine privation in some leukemic cell lines. However, apoptosis induced by glutamine privation is not related to the inhibition of mTORC1, since it is not modified in the presence of a constitutively active mutant of mTOR. We next focused on the oxidative phosphorylation, another glutamine dependent pathway in many cancers. The initial step of the intracellular catabolism of glutamine is the conversion of glutamine to glutamate by enzymes called glutaminases. Different glutaminases isoforms exist that are encoded by the GLS1 and GLS2 genes. Glutamate is then converted to α-ketoglutarate, an essential TCA cycle intermediate. In AML cell lines, we observed that glutamine privation inhibits mitochondrial oxidative phosphorylation. The protein glutaminase C (GAC), an isoform of GLS1, is constantly expressed in AML but also in normal CD34 + hematopoietic progenitors. The knockdown of GLS1 by inducible shRNA or by the CB-839 compound reduced oxidative phosphorylation, leading to proliferation inhibition and apoptosis induction in leukemia cells. Genetic invalidation of GLS1 inhibits tumor formation and improves survival of mice in a xenograft model. Conversely, the targeting of GLS1 has no cytotoxic or cytostatic effects on normal hematopoietic progenitors. These anti-leukemic effects are inhibited by the addition of α-ketoglutarate, and those induced by the CB-839 are suppressed in the presence of an ectopically expressed GACK320A hyperactive mutant, confirming the essential role of maintaining an active TCA cycle in AML cells. Finally, we showed that glutaminolysis inhibition induces the intrinsic mitochondrial pathway of apoptosis and acts synergistically with the specific inhibition of BCL-2 by ABT-199. These results demonstrate that specific targeting of glutaminolysis is another way to exploit glutamine addiction in AML and that an active TCA cycle in essential for AML cell survival
6

Polat, Ibrahim Halil. "Rôle fonctionnel des pentoses phosphates et glutamine dans le métabolisme des cellules cancéreuses." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAS031/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cancer est un terme qui rassemble plusieurs ensembles hétérogène de maladies et il est caractérisé par la perte de contrôle physiologique et la transformation maligne des cellules saines. Il est essentiel de comprendre le cancer de la biologie cellulaire afin d'identifier de nouveaux biomarqueurs pour le diagnostic précoce et la conception de nouvelles stratégies thérapeutiques. Reprogrammation métabolique est une caractéristique émergente de cancer, ce qui signifie que les cellules cancéreuses passent leur métabolisme de base pour répondre aux exigences accrues de la croissance et la division cellulaire. Par conséquent, explorer reprogrammant métabolique que les cellules cancéreuses subissent est une stratégie clé pour identifier de nouvelles cibles pour le traitement du cancer. Dans cette thèse, de nouvelles possibilités pour le traitement du cancer ont été explorés en analysant la reprogrammation métabolique de la tumeur. À cet égard, nous avons étudié et proposé voie des pentoses phosphates (PPP) enzymes cibles thérapeutiques putatifs contre les cancers du sein et du côlon. En outre, nous avons exploré le métabolisme de la glutamine dans les cellules du cancer du sein et les adaptations du réseau métaboliques qu'ils subissent dans le but de contourner la privation de glutamine et la déficience mitochondriale générale. Ainsi, le ciblage PPP est l'intérêt des chercheurs d'utiliser à la fois oxydantes et non oxydantes phases de cette voie métabolique comme une cible de médicament thérapeutique. Pour tester cela, nous inhibés bœuf PPP enzymes 6PGD dans les cellules cancéreuses du sein et G6PD dans les cellules du côlon.Nous avons effectué la caractérisation de la reprogrammation métabolique induite par l'inhibition de l'enzyme de bœuf PPP par l'ARN interferase (ARNi) silençage médiation, afin d'explorer le potentiel de cette enzyme comme une cible de médicament thérapeutique dans deux lignées de cellules de cancer du sein. Nous avons demontré que l'inhibition 6PGD a entraîné une diminution taux de prolifération, arrêt du cycle cellulaire et induction de l'apoptose médiée par l'activation de p53, en diminuant les capacités de formation mammosphere et le métabolisme altéré de carbone central par modulation de Warburg phenomenan et en améliorant le métabolisme de la glutamine. D'autre part, nous avons montré l'effet de l'inhibition de la G6PD sur la prolifération des cellules du cancer du côlon et du PPP est régulée par la disponibilité de la glutamine dans les cellules cancéreuses du côlon.De plus, nous avons caractérisé les adaptations métaboliques que les cellules cancéreuses du sein subissent la privation de glutamine ou lorsque les mitochondries sont fait défection. Nous avons effectué une analyse des flux métaboliques utilisant métabolomique et Fluxomique et nous avons utilisé la biologie des systèmes afin d'estimer une vision globale des modifications de flux dans différentes conditions de culture. Nous avons observé une augmentation du cycle de pyruvate avec privation glutamine, ce qui indique que le ciblage des enzymes de cette voie telle que l'enzyme malique pourrait être une approche prometteuse combinée à l'inhibition de l'enzyme de glutaminase. D'autre part, nous avons observé que mimant une hypoxie par des cellules de cancer du sein de traitement redirigée oligomycine pour augmenter la carboxylation réductrice. Considérant que l'hypoxie est une condition commune dans l'environnement de la tumeur, le ciblage mécanisme de carboxylation réductrice pourrait être une nouvelle stratégie de lutte contre le cancer. Collectivement, les résultats présentés dans cette thèse démontre l'importance du métabolisme de la prolifération des cellules cancéreuses et la survie. Ce travail met également en évidence l'importance de la biologie des systèmes se rapproche de comprendre les mécanismes moléculaires sous-jacents des maladies multifactorielles complexes afin de souligner de nouvelles cibles thérapeutiques potentielles
Moreover, we characterized the metabolic adaptations that breast cancer cells undergo in the deprivation of glutamine or when mitochondria are defected. We conducted metabolic flux analysis using metabolomics and fluxomics approaches and we employed Systems Biology approaches in order to estimate a global view of flux alterations in different culture conditions. We observed an increased pyruvate cycle with glutamine deprivation, thus indicating that targeting the enzymes of this pathway such as malic enzyme could be a promising approach combined with inhibition of glutaminase enzyme. On the other hand, we observed that mimicking hypoxia by oligomycin treatment redirected breast cancer cells to increase reductive carboxylation. Considering that hypoxia is a common condition in the tumor environment, targeting reductive carboxylation mechanism could be a novel strategy to fight against cancer. Collectively, all the results provided in this thesis demosntrate the importance of metabolism in cancer cell proliferation and survival. This work also highlights the importance of Systems Biology approaches to comprehend the molecular mechanisms underlying complex multifactorial diseases in order to point out new potential therapeutic targets
7

Baverel, Gabriel. "Métabolisme de l'alanine et de l'aspartate dans le cortex rénal du cobaye." Lyon 1, 1985. http://www.theses.fr/1985LYO19060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette etude demontre que la glutamine est le principal produit carbone et azote du metabolisme de la l-alanine et du l-aspartate dans le cortex renal du cobaye in vitro. Cette synthese de glutamine est egalement demontree in vivo
8

Maurin, Claire. "Régulation de la glutamine synthétase chez le cocolithophoridé Emiliania Huxleyi." Brest, 1997. http://www.theses.fr/1997BRES2008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La nature de la source azotee et sa concentration ainsi que la lumiere sont des facteurs de regulation de la glutamine synthetase d'emiliania huxleyi au niveau de son activite et de sa synthese. L'etude parallele de la glutamate deshydrogenase et de la glutamine synthetase montre que cette derniere se situe sur la voie principale d'assimilation de l'azote. Deux isoformes de la glutamine synthetase (gs1 et gs2) ont ete purifies et caracterises. Les modalites de regulation propres a chaque isoforme ont ete etudiees afin de preciser le role de chacune dans les differents processus d'assimilation, de reassimilation ou de detoxication de l'ammonium.
9

Vercoutère, Barbara. "Voies et régulations du métabolisme hépatique de la glutamine chez des souris normales et déficientes en récepteur à l'hormone thyroïdienne par invalidation de gènes : aspects cellulaires et moléculaires." Lyon 1, 2002. http://www.theses.fr/2002LYO10202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette étude s'inscrit dans une thématique de phénotypage métabolique de souris génétiquement modifiées. A l'aide d'hépatocytes isolés, nous avons étudié les effets de l'hormone thyroi͏̈dienne T3, et le rôle de chacun de ses récepteurs,[alpha] et [beta], sur le métabolisme de la glutamine, principal précurseur hépatique de glucose et d'urée. L'effet de l'état nutritionnel, nourri ou à jeun, a d'abord été étudié chez des souris Swiss et 129SV normales. La RMN du carbone 13, couplée à des dosages enzymatiques et un modèle mathématique, montre que le jeûne ne modifie pas l'utilisation de glutamine. Mais il augmente la néoglucogenèse relative ou absolue et diminue l'oxydation de la glutamine (inhibition des flux citrate synthase, pyruvate et [alpha]-cétoglutarate déshydrogénases). Nous avons ensuite utilisé les souris [alpha]0/0 et [beta]-/- respectivement déficientes en récepteur [alpha) et [beta]. Quel que soit le génotype des souris (sauvages, [alpha] 0/0 et [beta]-/-), la T3 stimule les activités hépatiques de la citrate synthase, l'enzyme malique et la phosphoénolpyruvate carboxykinase. Par contre, les ARNm correspondants ne sont augmentés que chez les souris sauvages et [alpha]0/0. Ainsi, l'action transcriptionnelle établie ou supposée de la T3 sur ces gènes serait véhiculée par le récepteur [beta]. Chez les [beta]-/-, il existerait également une régulation de ces enzymes par la T3 à un niveau encore indéterminé. Les flux enzymatiques suggèrent que la suppression de la T3 chez la souris [beta]-/- s'accompagne d'une diminution de la consommation de glutamine, de la néoglucogenèse et de l'oxydation. La supplémentation en T3 ne restaure que le métabolisme oxydatif chez les [beta]-/-, donc via le récepteur [alpha]. En conclusion, la confrontation de trois niveaux différents de fonctionnement cellulaire (ARNm, protéine, flux enzymatique) apporte des éléments nouveaux sur le rôle respectif des récepteurs [alpha] et [beta] dans l'action métabolique hépatique de la T3.
10

Bodineau, Clément. "Biochemical characterization of mTORC1 regulation by glutamine metabolism." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La glutamine est l'acide aminé le plus abondant dans le sang des mammifères et son métabolisme est particulièrement important pour la prolifération des cellules tumorales. Les cellules cancéreuses métabolisent la glutamine principalement par la glutaminolyse, un processus métabolique catabolisé par la glutaminase (GLS) et la glutamate déshydrogénase (GDH) qui active la signalisation mTORC1. Avec l'AMPK, la voie mTORC1 est un régulateur clé de la croissance et de la prolifération cellulaire. L'activation déséquilibrée de mTORC1 par la glutaminolyse en absence d'acides aminés entraîne une mort cellulaire apoptotique non canonique appelée "glutamoptose". Dans ce projet de thèse, nous avons identifié que la réactivation de l'AMPK empêchait à la fois l'activation de mTORC1 et la mort cellulaire pendant la glutamoptose, in vitro et in vivo ; ce qui suggère un rôle actif de l'AMPK pendant ce processus. De façon surprenante, le lien entre la glutamine et l'AMPK, médié par l'ATP, n'a pas nécessité la participation de la glutaminolyse. Nous avons cependant démontré le rôle crucial de l'asparagine synthétase (ASNS) et du GABA shunt dans la production d'ATP en présence seulement de glutamine, qui s’est révélé nécessaire au contrôle métabolique de l'axe AMPK/mTORC1. En effet, l'inhibition complète de mTORC1 a nécessité à la fois l'inhibition de la GLS et de l'ASNS. Par conséquent, nous proposons un modèle par lequel le métabolisme de la glutamine régule la voie mTORC1 par deux branches indépendantes impliquant la glutaminolyse et l’ASNS/GABA shunt qui devrait être envisagé pour d'éventuelles thérapies ciblées contre le cancer
Glutamine is the most abundant amino acid in the blood of mammals and its metabolism is particularly important for tumour cell proliferation. Cancer cells metabolize glutamine mostly through glutaminolysis, a metabolic process catabolized by glutaminase (GLS) and glutamate dehydrogenase (GDH) that activates mTORC1 signalling. Together with AMPK, the mTORC1 pathway is a key regulator of cell growth and proliferation. The unbalanced activation of mTORC1 by glutaminolysis during amino-acid starvation leads to a non-canonical apoptotic cell death known as “glutamoptosis”. In this thesis project, we identified that the reactivation of AMPK prevented both mTORC1 activation and cell death during glutamoptosis both in vitro and in vivo; suggesting an active role of AMPK during this process. Surprisingly, the connection between glutamine and AMPK, mediated by ATP, did not involve the necessary participation of glutaminolysis. Rather, we demonstrated the crucial role of the asparagine synthetase (ASNS) and the GABA shunt for the production of ATP during glutamine sufficiency, necessary for the metabolic control of the AMPK/mTORC1 axis. Indeed, the complete inhibition of mTORC1 required both the inhibition of GLS and the ASNS. Hence, we propose a model by which glutamine metabolism regulates mTORC1 pathway through two independent branches involving glutaminolysis and ASNS/GABA shunt that should be considered for potential targeted therapies against cancer

Books on the topic "Glutaminase – métabolisme":

1

Kvamme, Elling. Glutamine and Glutamate Mammals. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kvamme, Elling. Glutamine and Glutamate Mammals. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume I. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume I. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume I. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume II. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume II. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kvamme, Elling. Glutamine and Glutamate Mammals: Volume I. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meynial-Denis, Dominique. Glutamine: Biochemistry, Physiology, and Clinical Applications. CRC Press, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meynial-Denis, Dominique. Glutamine: Biochemistry, Physiology, and Clinical Applications. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography