Journal articles on the topic 'GluK1 receptors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GluK1 receptors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chałupnik, Paulina, Alina Vialko, Darryl S. Pickering, Markus Hinkkanen, Stephanie Donbosco, Thor C. Møller, Anders A. Jensen, et al. "Discovery of the First Highly Selective Antagonist of the GluK3 Kainate Receptor Subtype." International Journal of Molecular Sciences 23, no. 15 (August 8, 2022): 8797. http://dx.doi.org/10.3390/ijms23158797.
Full textJaremko, William, Zhen Huang, Nicholas Karl, Vincen D. Pierce, Janet Lynch, and Li Niu. "A kainate receptor–selective RNA aptamer." Journal of Biological Chemistry 295, no. 19 (March 11, 2020): 6280–88. http://dx.doi.org/10.1074/jbc.ra119.011649.
Full textSheng, Nengyin, Yun Stone Shi, and Roger A. Nicoll. "Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking." Proceedings of the National Academy of Sciences 114, no. 5 (January 18, 2017): 1159–64. http://dx.doi.org/10.1073/pnas.1619253114.
Full textPollok, Stefan, and Andreas Reiner. "Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization." Proceedings of the National Academy of Sciences 117, no. 41 (September 30, 2020): 25851–58. http://dx.doi.org/10.1073/pnas.2007471117.
Full textJaremko, William J., Zhen Huang, Wei Wen, Andrew Wu, Nicholas Karl, and Li Niu. "Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors." Journal of Biological Chemistry 292, no. 18 (March 21, 2017): 7338–47. http://dx.doi.org/10.1074/jbc.m116.774752.
Full textKoga, Kohei, Su-Eon Sim, Tao Chen, Long-Jun Wu, Bong-Kiun Kaang, and Min Zhuo. "Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex." Journal of Neurophysiology 108, no. 7 (October 1, 2012): 1988–98. http://dx.doi.org/10.1152/jn.00453.2012.
Full textAnna Kaczor, Agnieszka, Christiane Kronbach, Klaus Unverferth, Kalevi Pihlaja, Kirsti Wiinamaki, Jari Sinkkonen, Urszula Kijkowska-Murak, Tomasz Wrobel, Tomasz Stachal, and Dariusz Matosiuk. "Novel Non-Competitive Antagonists of Kainate GluK1/GluK2 Receptors." Letters in Drug Design & Discovery 9, no. 10 (December 1, 2012): 891–98. http://dx.doi.org/10.2174/157018012804586978.
Full textAnna Kaczor, Agnieszka, Christiane Kronbach, Klaus Unverferth, Kalevi Pihlaja, Kirsti Wiinamaki, Jari Sinkkonen, Urszula Kijkowska-Murak, Tomasz Wrobel, Tomasz Stachal, and Dariusz Matosiuk. "Novel Non-Competitive Antagonists of Kainate GluK1/GluK2 Receptors." Letters in Drug Design & Discovery 9, no. 10 (October 24, 2012): 891–98. http://dx.doi.org/10.2174/1570180811209050891.
Full textMasocha, Willias. "Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice." PeerJ 3 (October 22, 2015): e1350. http://dx.doi.org/10.7717/peerj.1350.
Full textBartyzel, Agata, Agnieszka A. Kaczor, Ghodrat Mahmoudi, Ardavan Masoudiasl, Tomasz M. Wróbel, Monika Pitucha, and Dariusz Matosiuk. "Experimental and Computational Structural Studies of 2,3,5-Trisubstituted and 1,2,3,5-Tetrasubstituted Indoles as Non-Competitive Antagonists of GluK1/GluK2 Receptors." Molecules 27, no. 8 (April 12, 2022): 2479. http://dx.doi.org/10.3390/molecules27082479.
Full textSolly, Kelli, Rebecca Klein, Michael Rudd, M. Katharine Holloway, Eric N. Johnson, Darrell Henze, and Michael F. A. Finley. "High-Throughput Screen of GluK1 Receptor Identifies Selective Inhibitors with a Variety of Kinetic Profiles Using Fluorescence and Electrophysiology Assays." Journal of Biomolecular Screening 20, no. 6 (February 19, 2015): 708–19. http://dx.doi.org/10.1177/1087057115570580.
Full textDescalzi, Giannina, Tao Chen, Kohei Koga, Xiang-Yao Li, Kaori Yamada, and Min Zhuo. "Cortical GluK1 kainate receptors modulate scratching in adult mice." Journal of Neurochemistry 126, no. 5 (July 19, 2013): 636–50. http://dx.doi.org/10.1111/jnc.12351.
Full textKarim, Mohammad Rabiul, Munmun Pervin, and Yasuro Atoji. "Glutamatergic circuits in the song system of Zebra Finch brain determined by gene expression of Vglut2 and Glutamate receptors." Research in Agriculture Livestock and Fisheries 1, no. 1 (February 22, 2015): 61–70. http://dx.doi.org/10.3329/ralf.v1i1.22356.
Full textKaczor, Agnieszka A., Zbigniew Karczmarzyk, Andrzej Fruziński, Kalevi Pihlaja, Jari Sinkkonen, Kirsti Wiinämaki, Christiane Kronbach, Klaus Unverferth, Antti Poso, and Dariusz Matosiuk. "Structural studies, homology modeling and molecular docking of novel non-competitive antagonists of GluK1/GluK2 receptors." Bioorganic & Medicinal Chemistry 22, no. 2 (January 2014): 787–95. http://dx.doi.org/10.1016/j.bmc.2013.12.013.
Full textFritsch, B., J. Reis, M. Gasior, R. M. Kaminski, and M. A. Rogawski. "Role of GluK1 Kainate Receptors in Seizures, Epileptic Discharges, and Epileptogenesis." Journal of Neuroscience 34, no. 17 (April 23, 2014): 5765–75. http://dx.doi.org/10.1523/jneurosci.5307-13.2014.
Full textFisher, Janet L. "The auxiliary subunits Neto1 and Neto2 have distinct, subunit-dependent effects at recombinant GluK1- and GluK2-containing kainate receptors." Neuropharmacology 99 (December 2015): 471–80. http://dx.doi.org/10.1016/j.neuropharm.2015.08.018.
Full textBartyzel, Agata, Agnieszka A. Kaczor, Halina Głuchowska, Monika Pitucha, Tomasz M. Wróbel, and Dariusz Matosiuk. "Thermal and spectroscopic studies of 2,3,5-trisubstituted and 1,2,3,5-tetrasubstituted indoles as non-competitive antagonists of GluK1/GluK2 receptors." Journal of Thermal Analysis and Calorimetry 133, no. 2 (March 8, 2018): 935–44. http://dx.doi.org/10.1007/s10973-018-7146-6.
Full textUnno, Masaki, Masanobu Shinohara, Koichiro Takayama, Hideharu Tanaka, Kenta Teruya, Katsumi Doh-ura, Ryuichi Sakai, Makoto Sasaki, and Masao Ikeda-Saito. "Binding and Selectivity of the Marine Toxin Neodysiherbaine A and Its Synthetic Analogues to GluK1 and GluK2 Kainate Receptors." Journal of Molecular Biology 413, no. 3 (October 2011): 667–83. http://dx.doi.org/10.1016/j.jmb.2011.08.043.
Full textAndreou, Anna P., Philip R. Holland, Michele P. Lasalandra, and Peter J. Goadsby. "Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors." PAIN 156, no. 3 (March 2015): 439–50. http://dx.doi.org/10.1097/01.j.pain.0000460325.25762.c0.
Full textBuldyrev, Ilya, Theresa Puthussery, and W. Rowland Taylor. "Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell." Journal of Neurophysiology 107, no. 7 (April 1, 2012): 1795–807. http://dx.doi.org/10.1152/jn.00924.2011.
Full textLv, Qian, Yong Liu, Dong Han, Jing Xu, Yan-Yan Zong, Yao Wang, and Guang-Yi Zhang. "Neuroprotection of GluK1 kainate receptor agonist ATPA against ischemic neuronal injury through inhibiting GluK2 kainate receptor–JNK3 pathway via GABAA receptors." Brain Research 1456 (May 2012): 1–13. http://dx.doi.org/10.1016/j.brainres.2012.03.050.
Full textMaiorov, S. A., V. P. Zinchenko, S. G. Gaidin, and A. M. Kosenkov. "Potential mechanism of GABA secretion in response to the activation of GluK1-containing kainate receptors." Neuroscience Research 171 (October 2021): 27–33. http://dx.doi.org/10.1016/j.neures.2021.03.009.
Full textQuijano Cardé, Natalia A., Erika E. Perez, Richard Feinn, Henry R. Kranzler, and Mariella De Biasi. "Antagonism of GluK1-containing kainate receptors reduces ethanol consumption by modulating ethanol reward and withdrawal." Neuropharmacology 199 (November 2021): 108783. http://dx.doi.org/10.1016/j.neuropharm.2021.108783.
Full textHan, Yan, Congzhou Wang, Jae Seon Park, and Li Niu. "Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant." Biochemistry 51, no. 3 (January 9, 2012): 761–68. http://dx.doi.org/10.1021/bi201446z.
Full textIrvine, Mark W., Blaise M. Costa, Daniel Dlaboga, Georgia R. Culley, Richard Hulse, Caroline L. Scholefield, Palmi Atlason, et al. "Piperazine-2,3-dicarboxylic Acid Derivatives as Dual Antagonists of NMDA and GluK1-Containing Kainate Receptors." Journal of Medicinal Chemistry 55, no. 1 (December 14, 2011): 327–41. http://dx.doi.org/10.1021/jm201230z.
Full textZinchenko, Valery Petrovich, Artem Mikhailovich Kosenkov, Sergei Gennadevich Gaidin, Alexander Igorevich Sergeev, Ludmila Petrovna Dolgacheva, and Sultan Tuleukhanovich Tuleukhanov. "Properties of GABAergic Neurons Containing Calcium-Permeable Kainate and AMPA-Receptors." Life 11, no. 12 (November 27, 2021): 1309. http://dx.doi.org/10.3390/life11121309.
Full textBraga, Maria F. M., Vassiliki Aroniadou-Anderjaska, He Li, and Michael A. Rogawski. "Topiramate Reduces Excitability in the Basolateral Amygdala by Selectively Inhibiting GluK1 (GluR5) Kainate Receptors on Interneurons and Positively Modulating GABAA Receptors on Principal Neurons." Journal of Pharmacology and Experimental Therapeutics 330, no. 2 (May 5, 2009): 558–66. http://dx.doi.org/10.1124/jpet.109.153908.
Full textCopits, B. A., J. S. Robbins, S. Frausto, and G. T. Swanson. "Synaptic Targeting and Functional Modulation of GluK1 Kainate Receptors by the Auxiliary Neuropilin and Tolloid-Like (NETO) Proteins." Journal of Neuroscience 31, no. 20 (May 18, 2011): 7334–40. http://dx.doi.org/10.1523/jneurosci.0100-11.2011.
Full textAroniadou-Anderjaska, V., V. I. Pidoplichko, T. H. Figueiredo, C. P. Almeida-Suhett, E. M. Prager, and M. F. M. Braga. "Presynaptic facilitation of glutamate release in the basolateral amygdala: A mechanism for the anxiogenic and seizurogenic function of GluK1 receptors." Neuroscience 221 (September 2012): 157–69. http://dx.doi.org/10.1016/j.neuroscience.2012.07.006.
Full textHerbrechter, Robin, Nadine Hube, Raoul Buchholz, and Andreas Reiner. "Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data." Cellular and Molecular Life Sciences 78, no. 14 (June 8, 2021): 5605–30. http://dx.doi.org/10.1007/s00018-021-03865-z.
Full textMiller, Justin Robert, Suzanne Neumueller, Clarissa Muere, Samantha Olesiak, Lawrence Pan, John D. Bukowy, Asem O. Daghistany, Matthew R. Hodges, and Hubert V. Forster. "Changes in glutamate receptor subunits within the medulla in goats after section of the carotid sinus nerves." Journal of Applied Physiology 116, no. 12 (June 15, 2014): 1531–42. http://dx.doi.org/10.1152/japplphysiol.00216.2014.
Full textLu, Wei, John A. Gray, Adam J. Granger, Matthew J. During, and Roger A. Nicoll. "Potentiation of Synaptic AMPA Receptors Induced by the Deletion of NMDA Receptors Requires the GluA2 Subunit." Journal of Neurophysiology 105, no. 2 (February 2011): 923–28. http://dx.doi.org/10.1152/jn.00725.2010.
Full textJuuri, Juuso, Vernon R. J. Clarke, Sari E. Lauri, and Tomi Taira. "Kainate Receptor–Induced Ectopic Spiking of CA3 Pyramidal Neurons Initiates Network Bursts in Neonatal Hippocampus." Journal of Neurophysiology 104, no. 3 (September 2010): 1696–706. http://dx.doi.org/10.1152/jn.00840.2009.
Full textHe, Xue-Yan, Yan-Jun Li, Chakrapani Kalyanaraman, Li-Li Qiu, Chen Chen, Qi Xiao, Wen-Xue Liu, et al. "GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors." Proceedings of the National Academy of Sciences 113, no. 38 (September 6, 2016): E5645—E5654. http://dx.doi.org/10.1073/pnas.1524358113.
Full textBonini, Daniela, Cristina Mora, Paolo Tornese, Nathalie Sala, Alice Filippini, Luca La Via, Marco Milanese, et al. "Acute Footshock Stress Induces Time-Dependent Modifications of AMPA/NMDA Protein Expression and AMPA Phosphorylation." Neural Plasticity 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7267865.
Full textOtsu, Y., E. Darcq, K. Pietrajtis, F. Mátyás, E. Schwartz, T. Bessaih, S. Abi Gerges, et al. "Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula." Science 366, no. 6462 (October 10, 2019): 250–54. http://dx.doi.org/10.1126/science.aax1522.
Full textAksenova, S., A. Batova, A. Bugay, and E. Dushanov. "EFFECTS OF MODULATORS TO THE ACTIVATION OF NMDA RECEPTORS." Russian Journal of Biological Physics and Chemisrty 7, no. 3 (September 28, 2022): 418–22. http://dx.doi.org/10.29039/rusjbpc.2022.0537.
Full textBedoukian, Matthew A., Jennifer D. Whitesell, Erik J. Peterson, Colin M. Clay, and Kathryn M. Partin. "The Stargazin C Terminus Encodes an Intrinsic and Transferable Membrane Sorting Signal." Journal of Biological Chemistry 283, no. 3 (November 6, 2007): 1597–600. http://dx.doi.org/10.1074/jbc.m708141200.
Full textFisher, Janet L., and Paul R. Housley. "Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors." Cellular and Molecular Neurobiology 33, no. 8 (August 23, 2013): 1099–108. http://dx.doi.org/10.1007/s10571-013-9976-x.
Full textDelaney, Andrew J., Petra L. Sedlak, Elenora Autuori, John M. Power, and Pankaj Sah. "Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits." Journal of Neurophysiology 109, no. 5 (March 1, 2013): 1391–402. http://dx.doi.org/10.1152/jn.00176.2012.
Full textSirrieh, Rita E., David M. MacLean, and Vasanthi Jayaraman. "A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc." Journal of General Physiology 146, no. 2 (July 13, 2015): 173–81. http://dx.doi.org/10.1085/jgp.201511422.
Full textStelljes, A., E. A. Bushong, M. E. Martone, P. W. Wiseman, K. L. Hood, M. Mayford, and M. H. Ellisman. "Study of Distribution and Transport Events of the GluR1 AMPA Receptor: Combination of Genetically Modified Receptors and Multi-Resolution Microscopy." Microscopy and Microanalysis 7, S2 (August 2001): 40–41. http://dx.doi.org/10.1017/s1431927600026271.
Full textCummings, Kirstie A., and Gabriela K. Popescu. "Glycine-dependent activation of NMDA receptors." Journal of General Physiology 145, no. 6 (May 11, 2015): 513–27. http://dx.doi.org/10.1085/jgp.201411302.
Full textLee, Hey-Kyoung, Kogo Takamiya, Kaiwen He, Lihua Song, and Richard L. Huganir. "Specific Roles of AMPA Receptor Subunit GluR1 (GluA1) Phosphorylation Sites in Regulating Synaptic Plasticity in the CA1 Region of Hippocampus." Journal of Neurophysiology 103, no. 1 (January 2010): 479–89. http://dx.doi.org/10.1152/jn.00835.2009.
Full textMaki, Bruce A., and Gabriela K. Popescu. "Extracellular Ca2+ ions reduce NMDA receptor conductance and gating." Journal of General Physiology 144, no. 5 (October 27, 2014): 379–92. http://dx.doi.org/10.1085/jgp.201411244.
Full textElmasri, Marwa, James S. Lotti, Wajeeha Aziz, Oliver G. Steele, Eirini Karachaliou, Kenji Sakimura, Kasper B. Hansen, and Andrew C. Penn. "Synaptic Dysfunction by Mutations in GRIN2B: Influence of Triheteromeric NMDA Receptors on Gain-of-Function and Loss-of-Function Mutant Classification." Brain Sciences 12, no. 6 (June 15, 2022): 789. http://dx.doi.org/10.3390/brainsci12060789.
Full textArmstrong, Scott P., Paul J. Banks, Thomas J. W. McKitrick, Catharine H. Geldart, Christopher J. Edge, Rohan Babla, Constantinos Simillis, Nicholas P. Franks, and Robert Dickinson. "Identification of Two Mutations (F758W and F758Y) in the N -methyl-D-aspartate Receptor Glycine-binding Site that Selectively Prevent Competitive Inhibition by Xenon without Affecting Glycine Binding." Anesthesiology 117, no. 1 (July 1, 2012): 38–47. http://dx.doi.org/10.1097/aln.0b013e31825ada2e.
Full textTarusawa, Etsuko, Kaori Akashi, Kenji Sakimura, Elek Molnar, Yugo Fukazawa, Yumiko Yoshimura, and Ryuichi Shigemoto. "Immunohistochemical localization of kainate receptors, GluK2/3 (GluR6/7) and GluK5 (KA2), in the mouse hippocampus." Neuroscience Research 68 (January 2010): e230-e231. http://dx.doi.org/10.1016/j.neures.2010.07.1018.
Full textWei, Mengping, Jian Zhang, Moye Jia, Chaojuan Yang, Yunlong Pan, Shuaiqi Li, Yiwen Luo, et al. "α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors." Proceedings of the National Academy of Sciences 113, no. 19 (April 25, 2016): E2695—E2704. http://dx.doi.org/10.1073/pnas.1524589113.
Full textLind, Genevieve E., Tung-Chung Mou, Lucia Tamborini, Martin G. Pomper, Carlo De Micheli, Paola Conti, Andrea Pinto, and Kasper B. Hansen. "Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits." Proceedings of the National Academy of Sciences 114, no. 33 (July 31, 2017): E6942—E6951. http://dx.doi.org/10.1073/pnas.1707752114.
Full text