Academic literature on the topic 'GLONASS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GLONASS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GLONASS"

1

Farah, Ashraf. "Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography." Artificial Satellites 53, no. 1 (March 1, 2018): 37–46. http://dx.doi.org/10.2478/arsa-2018-0004.

Full text
Abstract:
Abstract Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.
APA, Harvard, Vancouver, ISO, and other styles
2

Malik, Jabir Shabbir. "Performance Evaluation of Precise Point Positioning Using Dual Frequency Multi-GNSS Observations." Artificial Satellites 55, no. 4 (December 1, 2020): 150–70. http://dx.doi.org/10.2478/arsa-2020-0011.

Full text
Abstract:
Abstract In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.
APA, Harvard, Vancouver, ISO, and other styles
3

Habrich, H., W. Gurtner, and M. Rothacher. "Processing of GLONASS and combined GLONASS/GPS observations." Advances in Space Research 23, no. 4 (January 1999): 655–58. http://dx.doi.org/10.1016/s0273-1177(99)00136-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malik, Jabir Shabbir. "Performance Analysis of Static Precise Point Positioning Using Open-Source GAMP." Artificial Satellites 55, no. 2 (June 1, 2020): 41–60. http://dx.doi.org/10.2478/arsa-2020-0004.

Full text
Abstract:
AbstractIn addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.
APA, Harvard, Vancouver, ISO, and other styles
5

COOK, GERALD L. "GLONASS Performance, 1995-1997, and GPS-GLONASS Interoperability Issues." Navigation 44, no. 3 (September 1997): 291–300. http://dx.doi.org/10.1002/j.2161-4296.1997.tb02348.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Yanli, Fu Zheng, Cheng Yang, Guigen Nie, and Shuhui Li. "Analyses of GLONASS and GPS+GLONASS Precise Positioning Performance in Different Latitude Regions." Remote Sensing 14, no. 18 (September 16, 2022): 4640. http://dx.doi.org/10.3390/rs14184640.

Full text
Abstract:
The orbital inclination angle of the GLONASS constellation is about 10° larger than that of GPS, Galileo, and BDS. Theoretically, the higher orbital inclination angle could provide better observation geometry in high latitude regions. A wealth of research has investigated the positioning accuracy of GLONASS and its impact on multi-GNSS, but rarely considered the contribution of the GLONASS constellation’s large orbit inclination angle. The performance of GLONASS in different latitude regions is evaluated in both stand-alone mode and integration with GPS in this paper. The performance of GPS is also presented for comparison. Three international GNSS service (IGS) networks located in high, middle, and low latitudes are selected for the current study. Multi-GNSS data between January 2021 and June 2021 are used for the assessment. The data quality check shows that the GLONASS data integrity is significantly lower than that of GPS. The constellation visibility analysis indicates that GLONASS has a much better elevation distribution than GPS in high latitude regions. Both daily double-difference network solutions and daily static Precise Point Positioning (PPP) solutions are evaluated. The statistical analysis of coordinate estimates indicates that, in high latitude regions, GLONASS has a comparable or even better accuracy than that of GPS, and GPS+GLONASS presents the best estimate accuracy; in middle latitude regions, GPS stand-alone constellation provides the best positioning accuracy; in low latitude regions, GLONASS offers the worst accuracy, but the positioning accuracy of GPS+GLONASS is better than that of GPS. The tropospheric estimates of GLONASS do not present a resemblance regional advantage as coordinate estimates, which is worse than that of GPS in all three networks. The PPP processing with combined GPS and GLONASS observations reduces the convergence time and improves the accuracy of tropospheric estimates in all three networks.
APA, Harvard, Vancouver, ISO, and other styles
7

Ge, Yulong, WeiJin Qin, Xinyun Cao, Feng Zhou, Shengli Wang, and Xuhai Yang. "Consideration of GLONASS Inter-Frequency Code Biases in Precise Point Positioning (PPP) International Time Transfer." Applied Sciences 8, no. 8 (July 30, 2018): 1254. http://dx.doi.org/10.3390/app8081254.

Full text
Abstract:
International time transfer based on Global Navigation Satellite System (GLONASS) precise point positioning (PPP) is influenced by inter-frequency code biases (IFCBs) because of the application of frequency division multiple access technique. This work seeks to gain insight into the influence of GLONASS IFCBs on international time transfer based on GLONASS-only PPP. With a re-parameterization process, three IFCB handling schemes are proposed: neglecting IFCBs, estimating IFCB for each GLONASS frequency number, and estimating IFCB for each GLONASS satellite. Observation data collected from 39 globally distributed stations in a 71-day period (DOY 227–297, 2017) was exclusively processed. For the comparison reason, Global Positioning System (GPS)-only PPP solutions were regarded as reference values. The clock differences derived from GPS- and GLONASS-only PPP solutions were then analyzed. The experimental results demonstrated that considering GLONASS IFCBs could reduce standard deviation (STD) of the clock differences for both identical receiver types and mixed receiver types, of which reduction was from 3.3% to 62.6%. Furthermore, compared with neglecting IFCBs, STD of the clock differences with estimating IFCB for each GLONASS satellite in coordinate-fixed mode was reduced by more than 30% from 0.30 to 0.20 ns, and by 10% from 0.40 to 0.35 ns, for 1-day arc solutions and 10-day arc solutions, respectively. Moreover, different precise products from three International GNSS Service (IGS) analysis centers were also evaluated. Even though different IFCB handling schemes were adopted in GLONASS satellite clock estimation, our numerical results showed that international time transfer on the basis of estimating IFCB for each GLONASS satellite better than the other two processing schemes. To achieve high-precision GLONASS-only PPP-based international time transfer, it is highly recommended to estimate IFCB for each GLONASS satellite.
APA, Harvard, Vancouver, ISO, and other styles
8

STATELLA, Thiago, Claudinei R. AGUIAR, João F. G. MONICO, and José R. NOGUEIRA. "Cálculo dos vetores de posição e velocidade dos satélites GLONASS a partir das efemérides transmitidas e aspectos relacionados à sua integração com o GPS." Pesquisas em Geociências 40, no. 2 (August 31, 2013): 177. http://dx.doi.org/10.22456/1807-9806.43080.

Full text
Abstract:
Este trabalho apresenta detalhes sobre o cálculo dos vetores de posição e velocidade dos satélites GLONASS a partir de suas efemérides transmitidas, utilizando o método de integração de Runge-Kutta de quarta ordem e a compatibilização das efemérides GLONASS (GLobal Orbiting NAvigation Sattelite System) com o sistema de tempo GPS (Global Positioning System). Também é feita uma análise da compatibilização entre os sistemas de tempo GLONASS e GPS. Para análise da qualidade do método de integração, as coordenadas extrapoladas foram comparadas às coordenadas transmitidas. A média das discrepâncias foi de 1,33 m, com desvio padrão de ±0,83 m. Para demonstrar a compatibilização entre os sistemas (de tempo) GPS e GLONASS, as coordenadas GLONASS calculadas a partir das efemérides transmitidas foram comparadas com as coordenadas precisas geradas pelo IGS no tempo GPS. A discrepância média foi de 6,53 m, menor que a precisão (divulgada) das efemérides transmitidas para o GLONASS. Em seguida, foi feita a compatibilização entre os sistemas (de tempo) GPS e GLONASS ao se calcular as coordenadas GLONASS a partir das efemérides transmitidas, no tempo GPS.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Zhao Jun. "New Data Processing Method Research on GLONASS." Applied Mechanics and Materials 599-601 (August 2014): 1580–83. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1580.

Full text
Abstract:
Because GLONASS and GPS are different in system, data processing of GLONASS carrier phase difference is quite different from that of GPS, requiring special methods. Based on eliminating the impact of the relative deviation of receiver clock, a new mathematical model of GLONASS phase difference is introduced in this article. This new model can make full use of existing GPS data processing technology to complete GLONASS data processing work conveniently.
APA, Harvard, Vancouver, ISO, and other styles
10

Sarkar, Shreya, and Anindya Bose. "Lifetime Performances of Modernized GLONASS Satellites: A Review." Artificial Satellites 52, no. 4 (December 1, 2017): 85–97. http://dx.doi.org/10.1515/arsa-2017-0008.

Full text
Abstract:
AbstractGLONASS, successfully operating during 1990s became unusable by early 2000s. Following a revitalization and modernization plan since 2004, GLONASS constellation has been completed again by the end of 2011 and the use of GLONASS is gaining popularity. Because of the previous experience, some scepticism exists among the stakeholders in using GLONASS for reliable solution and application development. This paper critically reviews the operational lifespan of GLONASS satellites launched between 2004 and 2016, as this is an important contributor towards reliability and sustained operation of the system. For popularization and extracting full benefits of GLONASS as stand-alone system or as an active component of multi-GNSS, major issues of assuring the minimum sufficient GLONASS constellation (of 24…23 satellites), efficient design implementation and the modernized ground control segment development and operation need to be properly taken care of by the system operators.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "GLONASS"

1

Mahdere, Yafet. "Egenskap och precision av GNSS BeiDou, Navstar (GPS), GLONASS samt kombinationen av GPS/GLONASS." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83207.

Full text
Abstract:
Eftersom att både GNSS GPS och GLONASS har många likheter så finns möjlighet att utnyttja systemen i kombination. Dock föreligger olikheter vilket gör att systemen inte är fullkomlig kompatibla med varandra. Diskrepans i koordinater och tidsram utgör ett stort hinder för att kombinera dessa system. Men lösningar för koordinatstransformering har tagits fram för att eliminera dessa divergenser (Roßbach, 2001) BeiDou GNSS system till skillnad från GNSS GPS/GLONASS är ett av det senaste etablerade navigationssystem, vilket ställer frågor för användare om systemets kvalitéer och brister. Denna studie behandlar väldigt översiktligt om hur BeiDou systemet tillkom och bakgrunden, karaktärer samt ambitionen som är framlagt för systemet. BeiDou som ursprungligen kallades för COMPASS hade inte samma ändamål som GLONASS och GPS att tillfredsställa sina användare med globalt navigationssystem, intentionen med systemet var mestadels för positioneringssystem som skulle användas regionalt och för militära ändamål, men med tiden ökade ambitionen hos tillverkaren och en ny plan alstrades. planen var att satsa på att bli en av världsledande positionering och navigationssystem, och det skulle etableras och utnyttjas världen över. GLONASS och NAVSTARs GPS vilka är stora konkurrenter av produktutveckling inom rymd teknologi, har framställt världens mest noggranna och effektiva satellitsystemen. Även om ändamålen för dessa systemen hade sin utgångspunkt för applikation inom det militära avseende, har de gjort tillgängliga för diverse civil användning. GNSS GPS/GLONASS kan i vissa fall visa brister på uppkopplingshastighet men också mätningsprecision vid användning på egen hand, detta p.g.a. att antalet synliga och uppnåbara satelliter är begränsande. Detta har gett upphov till vidare studier inom systemens karaktärer samt implementering av kombination GNSS GPS/GLONASS. Emedan både systemen tillsammans består av 48 satelliter, att hitta tillfredställande antal satelliter under alla omständigheter underlättas. Systemen innehöll implikationer i sina grundinställningar som försvårar tillämpning av dessa i kombination. Satelliterna skickar information om sina positioner på två olika metoder, PZ-90 för GLONASS och WGS-84 för GPS. Metoderna är väldigt lika varandra med skiljer sig någorlunda i sättet de utför sina beräkningar. Denna skiljaktighet skapades då systemen ej hade som avsikt att samarbeta och eventuellt integrera med varandra vilket gjorde att utvecklingen av båda GNSS gick isär. Detta innebär att transformation av satellitinformation är nödvändigt för att uppnå tillförlitliga lösningar, då GNSS ska sammanställas och användas integrerat.
APA, Harvard, Vancouver, ISO, and other styles
2

Habrich, Heinz. "Geodetic applications of the global navigation satellite system (GLONASS) and of GLONASS/GPS combinations /." [S.l.] : [s.n.], 1999. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aronsson, Anders. "Bidrar GLONASS till bättre positionering?" Thesis, Karlstads universitet, Fakulteten för humaniora och samhällsvetenskap (from 2013), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-28316.

Full text
Abstract:
Från den 1 april 2006 gavs möjligheten att använda GLONASS-systemet vid NRTK-mätningar som dessförinnan enbart använde sig av GPS-systemet. Allt fler inbyggda positioneringstjänster i vår nya teknik går nu mot att börja använda sig av både GPS och GLONASS-systemen. Tillgången till både amerikanska och ryska satelliter borde göra att vi får bättre, mer exakta och stabila mätningar vid dåliga förhållanden. Men är verkligen följden av att använda fler satelliter lösningen, eller räcker det i vissa tillfällen med enbart GPS-satelliter. Är den mer utbreda användningen av GLONASS-satelliter bara marknadsföring från företagen för att få sälja mer, dyrare och nyare produkter och därmed lura konsumenten att den är i behov av uppgraderade produkter som har GLONASS-stöd. Syftet var att undersöka om GPS och GLONASS förbättrar mätningarna och tillgängligheten i öppna respektive störda miljöer eller är det bara onödigt för konsumenten att sträva efter att positioneringsverktyget i ny teknik ska stödja båda satellitsystemen. En annan fråga är om det finns viss ny teknik som är tillämpade för olika områden där behovet är antingen större av GPS och GLONASS eller de områden där enbart GPS räcker till och ger minst lika goda mätningar och positionering. I detta examensarbete gjordes NRTK mätningar mot SWEPOS på ett antal kända punkter vid Karlstads Universitet där punkterna hade olika förutsättningar så som öppna och störda miljöer. Mätningarna gjordes med enbart GPS- respektive med GPS och GLONASS-satelliter påslagna. De bestämda koordinaterna i plan för de kända punkterna jämfördes med koordinaterna från mätningarna med enbart GPS respektive med GPS och GLONASS. De extra GLONASS-satelliterna är bra att använda sig av när man ska mäta i störda miljöer, de hjälper till att få en bättre noggrannhet. När man dock är i icke störda miljöer med fri sikt mot satelliterna räcker enbart GPS-satelliterna långt. Med den nya tekniken som kommer så finns ofta GLONASS-systemet inbyggt och är i de flesta fall är ingen ytterligare kostnad som konsumenten behöver ta utan är endast ett bra komplement oavsett användningsområde.
APA, Harvard, Vancouver, ISO, and other styles
4

Baker, David Frederick. "The performance of hybrid GPS and GLONASS." Thesis, University of Nottingham, 2001. http://eprints.nottingham.ac.uk/11268/.

Full text
Abstract:
In recent years, the market served by satellite positioning systems has expanded exponentially. It is stimulated by the needs of an ever increasing number and variety of scientific, business and leisure applications. The dominant system is the USA's GPS, or Global Positioning System. However, GPS is not a panacea for all positioning tasks, in any environmental situation. For example, two of the fastest growing applications, vehicle tracking and personal location, operate in an often harsh signal reception environment. This can be so severe that even with the current 29 working satellites, GPS may struggle to perform. In exceptional circumstances it can fail to provide a positioning service at all. The simplest way to improve the situation when signal reception is poor, is to add similar signals from alternative satellite systems. This has already been achieved by combining GPS with the Russian satellite positioning system, Global'naya Navigatsionnaya Sputnikova Sistema, abbreviated to GLONASS. The combination of GPS with GLONASS is referred to here as Hybrid. But how good is Hybrid relative to GPS, and how can performance be evaluated objectively? The research project presented here set out to answer this question, and to understand the situations in which Hybrid failed, and ask what solutions were then available to fulfil a positioning task. The problems associated with integrating one satellite positioning system with another, their potential inconsistencies and their impact on positioning errors were also examined. This field of research is relevant to Hybrid as defined here, and also to other mixed systems, for example GPS with EGNOS, a European geostationary satellite system, and GPS with Galileo, a proposed global system controlled by the Europeans. The issues were addressed from the viewpoint of practical usage of the positioning systems. Hence the many and varied experiments to quantify positioning performance using both static receivers, and a variety of platforms with wide ranging levels of vehicle dynamics. The capability of satellite positioning systems to work in the harshest environments, was tested in the proposed Olympic sport of bob skeleton. This involved the development of the acquisition system, and a number of programs. The latter were equally applicable to the ensuing work with road vehicles, and the quantitative assessment of positioning performance relative to a truth. The processes established to manipulate, import, and merge satellite based vehicle tracking data with Ordnance Survey digital mapping products, have already been used in four other projects within the School of Civil Engineering. The software to regularise positioning interval, smoothing processes, and to compare tracking data with a truth, have been similarly provided. Without major funding the outlook for GLONASS and hence Hybrid looks bleak, and it is predicted that without replenishment the constellation may fall to six satellites by the end of 2001. However as mentioned above, the issues identified, and ideas and software developed in this research, will be directly applicable to any future hybridisation of GPS with Galileo.
APA, Harvard, Vancouver, ISO, and other styles
5

Swann, John W. "Advantages and problems of combining GPS with GLONASS." Thesis, University of Nottingham, 1999. http://eprints.nottingham.ac.uk/11284/.

Full text
Abstract:
The Global Positioning System (GPS) has been an undoubted success and a great many applications have benefited from it. It does however have limitations, which make its use in certain environments, and for certain tasks, difficult or indeed impossible.In recent years a second satellite based navigation system, the Global'naya Navigatsionnaya Sputnikov Sistema (GLONASS) has become increasingly available. A great deal of interest has been expressed in combining both these systems, in the hope that combined GPS/GLONASS technology will present significant benefits under conditions where GPS alone has struggled. The research described in this thesis was undertaken to examine the potential benefits and problems of such a combination. This has been primarily achieved through the modification of the existing GPS processing software of the Institute of Engineering Surveying and Space Geodesy (IESSG) to accept GLONASS observations. The analysis of data collected under controlled conditions and processed through this software has highlighted biases in the pseudorange measurements from the GLONASS satellites. This is due to the fact that each GLONASS satellite broadcasts on a different frequency, which is then delayed by slightly different amounts through the Radio Frequency (R/F) section of the receiver. If these R/F sections were identical in each receiver, this error source would cancel, but this has not been found to be the case with the receivers used in this research. Interestingly, no such biases have found to be present in the GLONASS carrier phase observations. Various tests have been performed and the data processed through both IESSG and commercially available software. These have highlighted that there are undoubted potential benefits of using combined GPS/GLONASS receivers in environments where visibility is restricted. Under ideal conditions however, the effect of any benefit is reduced, and indeed the biases present in the GLONASS pseudoranges may slightly degrade the accuracy of differential positioning. The software developed has already been used in other research projects within the IESSG. Although the future of the GLONASS system is somewhat uncertain, any future changes to it should be easily accounted for within the code. There is however a real need to further develop and incorporate cycle slip detection software, especially for GLONASS observations, and to investigate the possibility of solving for the biases in the GLONASS pseudoranges.
APA, Harvard, Vancouver, ISO, and other styles
6

Hui, Liu, and Zhang Qishan. "ANALYSIS ON THE COVERAGE CHARACTERISTICS OF GLONASS CONSTELLATION." International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/606822.

Full text
Abstract:
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada
The coverage characteristics of the GLONASS constellation is analyzed. The almanac data of GLONASS navigation message are used in the computation according to the operation of the satellites. The ground traces of the GLONASS satellites are plotted. And the probability of visible satellite number is calculated under different latitude conditions. The results are analyzed to give descriptions of the GLONASS constellation. And they are compared with those of GPS's. The conclusion is verified that GLONASS constellation provides better coverage at high latitude.
APA, Harvard, Vancouver, ISO, and other styles
7

Hui, Liu, Cheng Leelung, and Zhang Qishan. "THE DESIGN OF C/A CODE GLONASS RECEIVER." International Foundation for Telemetering, 1997. http://hdl.handle.net/10150/609824.

Full text
Abstract:
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada
GLONASS is similar to GPS in many aspects such as system configuration, navigation mechanism, signal structure, etc.. There exists the possibility of receiving and processing GLONASS signals with GPS technology. The frequency plan of the GLONASS system is different from that of GPS. This makes the front-end of GLONASS receiver more complicated. The work here manifests our initial effort in GLONASS receiving. A design scheme is proposed of a C/A code GLONASS receiver.
APA, Harvard, Vancouver, ISO, and other styles
8

Martin, Ian. "GNSS precise point positioning : the enhancement with GLONASS." Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2192.

Full text
Abstract:
Precise Point Positioning (PPP) provides GNSS navigation using a stand-alone receiver with no base station. As a technique PPP suffers from long convergence times and quality degradation during periods of poor satellite visibility or geometry. Many applications require reliable realtime centimetre level positioning with worldwide coverage, and a short initialisation time. To achieve these goals, this thesis considers the use of GLONASS in conjunction with GPS in kinematic PPP. This increases the number of satellites visible to the receiver, improving the geometry of the visible satellite constellation. To assess the impact of using GLONASS with PPP, it was necessary to build a real time mode PPP program. pppncl was constructed using a combination of Fortran and Python to be capable of processing GNSS observations with precise satellite ephemeris data in the standardised RINEX and SP3 formats respectively. pppncl was validated in GPS mode using both static sites and kinematic datasets. In GPS only mode, one sigma accuracy of 6.4mm and 13mm in the horizontal and vertical respectively for 24h static positioning was seen. Kinematic horizontal and vertical accuracies of 21mm and 33mm were demonstrated. pppncl was extended to assess the impact of using GLONASS observations in addition to GPS in static and kinematic PPP. Using ESA and Veripos Apex G2 satellite orbit and clock products, the average time until 10cm 1D static accuracy was achieved, over a range of globally distributed sites, was seen to reduce by up to 47%. Kinematic positioning was tested for different modes of transport using real world datasets. GPS/GLONAS SPPP reduced the convergence time to decimetre accuracy by up to a factor of three. Positioning was seen to be more robust in comparison to GPS only PPP, primarily due to cycle slips not being present on both satellite systems on the occasions when they occurred, and the reduced impact of undetected outliers.
APA, Harvard, Vancouver, ISO, and other styles
9

Reußner, Nico. "Die GLONASS-Mehrdeutigkeitslösung beim Precise Point Positioning (PPP)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202164.

Full text
Abstract:
Precise Point Positioning (PPP) ermöglicht eine präzise Positionsbestimmung mittels globaler Satellitennavigationssysteme (Global Navigation Satellite System, GNSS) ohne die direkte Verwendung der Beobachtungsdaten von regionalen Referenzstationen. Die wesentlichste Einschränkung von PPP im Vergleich zu differenziellen Auswertetechniken (Real-Time Kinematic, RTK) ist die deutlich längere Konvergenzzeit. Voraussetzung für die Verkürzung der Konvergenzzeit ist die Festsetzung der geschätzten Mehrdeutigkeiten auf ganzzahlige Werte. Die Mehrdeutigkeitslösung verlangt ein robustes funktionales Modell und beruht auf einem zweistufigen Mehrdeutigkeitsfestsetzungsverfahren, welches frei von ionosphärischen Einflüssen 1. Ordnung ist. Die sowohl auf Code- als auch auf Phasenbeobachtungen basierende Melbourne-Wübbena-Linearkombination erlaubt hierbei eine einfache Festsetzung der Widelane-Mehrdeutigkeiten. Infolgedessen kann zur Berechnung der ionosphären-freien Linearkombination die im Vergleich zur Wellenlänge der ionosphären-freien Linearkombination deutlich größere Narrowlane-Wellenlänge verwendet werden. Zur Stabilisierung des im Normalfall lediglich auf den Beobachtungsdaten des amerikanischen Global Positioning System (GPS) beruhenden funktionalen Modells können die Beobachtungsdaten des russischen GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) beitragen. Aufgrund der Technik, die GLONASS zur Identifizierung der einzelnen Satelliten einsetzt (Frequency Division Multiple Access, FDMA), unterscheiden sich die Frequenzen der einzelnen Satelliten. Die leicht unterschiedlichen Frequenzen erschweren die Modellierung und Korrektion der instrumentell bedingten Signalverzögerungen (z. B. Fractional-Cycle Biases (FCB)). Vor diesem Hintergrund kann das konventionelle Mehrdeutigkeitsfestsetzungsverfahren nur bedingt für GLONASS verwendet werden. Die Untersuchung der instrumentell bedingten GLONASS-Signalverzögerungen sowie die Entwicklung einer alternativen Methode zur Festsetzung der GLONASS-Mehrdeutigkeiten mit dem Ziel einer kombinierten GPS/GLONASS-Mehrdeutigkeitslösung sind die Schwerpunkte der vorliegenden Arbeit. Die entwickelte alternative Mehrdeutigkeitsfestsetzungsstrategie baut auf der puren Widelane-Linearkombination auf, weshalb globale Ionosphärenmodelle unabdingbar sind. Sie eignet sich sowohl für GLONASS als auch für GPS und zeigt gleichwertige Ergebnisse für beide GNSS, wenngleich im Vergleich zur konventionellen Methode mit geringeren Mehrdeutigkeitsfestsetzungsquoten zu rechnen ist
Precise Point Positioning (PPP) allows for accurate Global Navigation Satellite System (GNSS) based positioning without the immediate need for observations collected by regional station networks. The fundamental drawback of PPP in comparison to differential techniques such as Real-Time Kinematic (RTK) is a significant increase in convergence time. Among a plurality of different measures aiming for a reduction of convergence time, fixing the estimated carrier phase ambiguities to integer values is the key technique for success. The ambiguity resolution asks for a robust functional model and rests upon a two-stage method ruling out first-order ionospheric effects. In this context the Melbourne-Wübbena linear combination of dual-frequency carrier phase and code measurements leverages a simple resolution of widelane ambiguities. As a consequence the in comparison to the wavelength of the ionosphere-free linear combination significantly longer narrowlane wavelength can be used to form the ionosphere-free linear combination. By default the applied functional model is solely based on observations of the Global Positioning System (GPS). However measurements from the GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) can contribute to improve the model’s stability significantly. Due to the technique used by GLONASS to distinguish individual satellites (Frequency Division Multiple Access, FDMA), the signals broadcast by those satellites differ in their frequencies. The resulting slightly different frequencies constitute a barricade for both modelling and correcting any device-dependent signal delays, e.g. fractional-cycle biases (FCB). These facts limit the applicability of the conventional ambiguity-fixing approach when it comes to GLONASS signals. The present work puts a focus both on investigating the device-dependent GLONASS signal delays and on developing an alternative method for fixing GLONASS ambiguities with the ultimate objective of a combined GPS/GLONASS ambiguity resolution. The alternative ambiguity resolution strategy is based on the pure widelane linear combination, for which reason ionospheric corrections are indispensable. The procedure is applicable for GLONASS in the first instance but reveals equivalent results for both GPS and GLONASS. The disadvantage relative to the conventional approach is the reduced ambiguity fixing success rate
APA, Harvard, Vancouver, ISO, and other styles
10

Mohammed, Jareer Jaber. "Precise Point Positioning (PPP) : GPS vs. GLONASS and GPS+GLONASS with an alternative strategy for tropospheric Zenith Total Delay (ZTD) estimation." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/45468/.

Full text
Abstract:
Different Global Navigation Satellite System (GNSS) constellations are available these days. This has led to an increase in the number of satellites available for the user, and that presents different performance levels for the user requirements like accuracy and convergence time. However, these benefits come from different constellations that have different reference times and for some, different frequencies. At the same time, the Precise Point Positioning (PPP) has also been presented as being a position solution within a certain level of accuracy and precision. Therefore, it is important to investigate the potential benefits from the PPP with a view to using a single or multi-constellation. These investigations include accuracy, precision, and convergence time. In addition, it is important to look at the individual performance of these constellations regarding the above improvements. This will give a clear decision about adopting a single or multi-constellation. It will also provide an independent solution, for instance for the station coordinates and troposphere, and independent estimated station velocities, without additional cost. This research has been conducted in three stages. Firstly, the research begins with an evaluation of the GPS and the GLONASS (GLO) constellation geometry using a new approach for computing the cumulative dilution of precision (DOP) rather than the conventional DOP which was found to be latitude-dependent. Then it investigates the achievable station coordinate accuracy from PPP scenarios for static positioning after choosing the most appropriate PPP strategy that needs to be followed. Furthermore, the effect of different precise products (satellite orbits and clocks) on the PPP solutions and the difference between those products has been covered. It has been proven that PPP solutions can reach the same precision as a Global Double-Difference (GDD) GPS solution. Most importantly, the PPP GLO is found to be capable of producing similar precision and accuracy when compared to PPP GPS as well as the GDD GPS solution. Secondly, this research also investigates the conventional strategy (using a model for the hydrostatic component and estimating the wet component) for estimating the troposphere Zenith Total Delay (ZTD) from the PPP solutions with an evaluation of the obtained accuracy of the tropospheric ZTD from four tropospheric models. It also presents an alternative strategy (estimating both components using different mapping functions and different process noises) for estimating the tropospheric ZTD from the PPP that can give millimeters of ZTD accuracy without affecting the station coordinate estimation and without relying on any metrological data or models. Validations have been conducted for the new strategy using PPP GPS, PPP GLO and PPP GPS+GLO. Regional validation was conducted over seven consecutive days for seven weeks, using the Ordnance Survey of Great Britain (OSGB) stations in the UK, and long-term (over one year) validation was conducted using 22 stations from the OSGB. The regional and long-term validations have been conducted using three different final precise products (satellite orbits (SP3) and clocks (CLK)), which are the EMX, ESA and GFZ. A global validation using ~76 IGS stations was conducted over a different period. This was conducted in three stages, using the final EMX, final IGS and real-time IGS precise products. It was found that this approach can be used in real-time as well as in post processing without a significant difference between the results. Finally, this research has investigated the potential of using the PPP GLO for crustal motion separate to using the PPP GPS. Consistent horizontal station rates were found between PPP GPS and GDD GPS solutions. It was also concluded that it should be possible to use the PPP GLO for crustal motion, as an independent and precise solution. However, there was a bias in the orientation components of the estimated horizontal station rates between the PPP GLO and both other solutions (PPP GPS and GDD GPS), which was concluded to be a system bias rather than a strategy bias.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "GLONASS"

1

Perov, A. I., and V. N. Kharisov. GLONASS: Print︠s︡ipy postroenii︠a︡ i funkt︠s︡ionirovanii︠a︡. 3rd ed. Moskva: Radiotekhnika, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Makhutov, Nikolaĭ Andreevich. GLONASS v sisteme obespechenii︠a︡ bezopasnosti. Moskva: MGOF "Znanie", 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dodel, Hans. Satellitennavigation: GALILEO, GPS, GLONASS, integrierte Verfahren. Bonn: Hüthig, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herbert, Lichtenegger, and Wasle Elmar, eds. GNSS--global navigation satellite systems: GPS, GLONASS, Galileo, and more. Wien: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Precise Time and Time Interval (PTTI) Applications and Planning Meeting (27nd 1995 San Diego, Calif.). 27th annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting: [microform]. Greenbelt, Md: Goddard Space Flight Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Close, Nicole. Tableaux noirs & bancs de bois: Eben-Emael, Wonck, Bassenge, Roclenge, Boirs, Glons. Bruxelles: Musée d'Eben, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

N, Kharisov V., Perov A. I, and Boldin V. A, eds. Globalʹnai͡a︡ sputnikovai͡a︡ radionavigat͡s︡ionnai͡a︡ sistema, GLONASS. Moskva: IPRZhR, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Petrovski, Ivan G. GPS, GLONASS, Galileo, and BeiDou for Mobile Devices. University of Cambridge ESOL Examinations, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lichtenegger, Herbert, B. Hofmann-Wellenhof, and Elmar Wasle. GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhatta, M. Global Navigation Satellite Systems: Insights into GPS, GLONASS, Galileo, Compas and Others. Taylor & Francis Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "GLONASS"

1

Schüttler, Tobias. "GLONASS." In Satellitennavigation, 99–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53887-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Revnivykh, Sergey, Alexey Bolkunov, Alexander Serdyukov, and Oliver Montenbruck. "GLONASS." In Springer Handbook of Global Navigation Satellite Systems, 219–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42928-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dodel, Hans, and Dieter Häupler. "GLONASS." In Satellitennavigation, 245–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79444-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leick, Alfred. "GLONASS Carrier Phases." In Geodesy-The Challenge of the 3rd Millennium, 97–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05296-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dodel, Hans, and Dieter Häupler. "Übersicht GPS, GLONASS, Galileo." In Satellitennavigation, 295–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79444-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Junping, Pei Xiao, Yize Zhang, and Bin Wu. "GPS/GLONASS System Bias Estimation and Application in GPS/GLONASS Combined Positioning." In Lecture Notes in Electrical Engineering, 323–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37404-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mansfeld, Werner. "Global Navigation Satellite System (GLONASS)." In Satellitenortung und Navigation, 247–66. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-322-92917-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mansfeld, Werner. "Global Navigation Satellite System (GLONASS)." In Satellitenortung und Navigation, 255–72. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-663-11328-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mansfeld, Werner. "Ergänzungen zu GPS, GLONASS und anderen Satellitenortungssystemen." In Satellitenortung und Navigation, 213–53. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-663-11328-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Valero Ubierna, Constantino. "Positioning systems: GNSS." In Manuali – Scienze Tecnologiche, 11. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-044-3.11.

Full text
Abstract:
This topic will provide an overview of the technologies available for georeferencing machinery or any agricultural equipment on the Earth’s surface. Principles of GNSS (global navigation satellite systems) will be presented, along with current satellite constellations such as NAVSTAR GPS, GLONASS, Beidou, Galileo, etc. Error correction based on SBAS services and RTK technology. RTK networks. Definition of static and dynamic errors and accuracy.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "GLONASS"

1

Karutin, Sergey. "GLONASS." In 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016). Institute of Navigation, 2016. http://dx.doi.org/10.33012/2016.14869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hackman, C., S. M. Byram, V. J. Slabinski, and J. C. Tracey. "USNO GPS/GLONASS PNT products: Overview, and GPS+GLONASS vs GLONASS only PPP accuracy." In 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014. IEEE, 2014. http://dx.doi.org/10.1109/plans.2014.6851444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karutin, Sergey. "The Status of GLONASS System." In 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020). Institute of Navigation, 2020. http://dx.doi.org/10.33012/2020.17553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karutin, Sergey. "The Status of GLONASS System." In 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021). Institute of Navigation, 2021. http://dx.doi.org/10.33012/2021.17898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knyazev, А. Ju, and A. R. Ismagilov. "GLOBAL NAVIGATION SATELLITE SYSTEM GLONASS." In Международная студенческая научно-практическая конференция "Наука. Образование. Профессия". Башкирский государственный аграрный университет, 2022. http://dx.doi.org/10.31563/9785745607950-2022-79-83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bogdanov, P. P., A. V. Druzhin, A. E. Tiuliakov, and A. Y. Feoktistov. "GLONASS time and UTC(SU)." In 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). IEEE, 2014. http://dx.doi.org/10.1109/ursigass.2014.6928996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pecheritsa, Dmitry S. "GLONASS Receivers Calibration in Pseudorange Biases." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dotsenko, Anatoly, and Konstantin Mandrovskiy. "Ways to Improve the Quality of Asphalt Roads." In TRANSPORT FOR TODAY'S SOCIETY. Faculty of Technical Sciences Bitola, 2021. http://dx.doi.org/10.20544/tts2021.1.1.21.p14.

Full text
Abstract:
Abstract – The system of complex monitoring of the main parameters of road-construction machines and asphaltic concrete mixture during its transportation and laying on the road surface is considered. The implementation of this trend is carried out with the help of the GLONASS satellite system, which provides not only an improvement in terms of the quality of the work performance but also contributes for increasing of productivity and also reduces the human factor on the quality of the finished road surface. Keywords – Monitoring, GLONASS, Road-construction machines, Asphaltic concrete, Quality.
APA, Harvard, Vancouver, ISO, and other styles
9

Norris, Natasha, Frank van Graas, and Eric Vinande. "Implementation and Evaluation of GPS/GLONASS RAIM." In 2019 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2019. http://dx.doi.org/10.33012/2019.16725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Yuping, Hang Guo, and Min Yu. "A Comparison for GLONASS Satellite Coordinate Calculation." In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5365110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography