Dissertations / Theses on the topic 'Global Optimization, Clustering Methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Global Optimization, Clustering Methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
SOUZA, Ellen Polliana Ramos. "Swarm optimization clustering methods for opinion mining." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/25227.
Full textApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-07-26T21:58:03Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Ellen Polliana Ramos Souza.pdf: 1140564 bytes, checksum: 0afe0dc25ea5b10611d057c23af46dec (MD5)
Made available in DSpace on 2018-07-26T21:58:03Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Ellen Polliana Ramos Souza.pdf: 1140564 bytes, checksum: 0afe0dc25ea5b10611d057c23af46dec (MD5) Previous issue date: 2017-02-22
Opinion Mining (OM), also known as sentiment analysis, is the field of study that analyzes people’s sentiments, evaluations, attitudes, and emotions about different entities expressed in textual input. This is accomplished through the classification of an opinion into categories, such as positive, negative, or neutral. Supervised machine learning (ML) and lexicon-based are the most frequent approaches for OM. However, these approaches require considerable effort for preparing training data and to build the opinion lexicon, respectively. In order to address the drawbacks of these approaches, this Thesis proposes the use of unsupervised clustering approach for the OM task which is able to produce accurate results for several domains without manually labeled data for the training step or tools which are language dependent. Three swarm algorithms based on Particle Swarm Optimization (PSO) and Cuckoo Search (CS) are proposed: the DPSOMUT which is based on a discrete PSO binary version, the IDPSOMUT that is based on an Improved Self-Adaptive PSO algorithm with detection function, and the IDPSOMUT/CS that is a hybrid version of IDPSOMUT and CS. Several experiments were conducted with different corpora types, domains, text language, class balancing, fitness function, and pre-processing techniques. The effectiveness of the clustering algorithms was evaluated with external measures such as accuracy, precision, recall, and F-score. From the statistical analysis, it was possible to observe that the swarm-based algorithms, especially the PSO ones, were able to find better solutions than conventional grouping techniques, such as K-means and Agglomerative. The PSO-based algorithms achieved better accuracy using a word bigram pre-processing and the Global Silhouette as fitness function. The OBCC corpus is also another contribution of this Thesis and contains a gold collection with 2,940 tweets in Brazilian Portuguese with opinions of consumers about products and services.
A mineração de opinião, também conhecida como análise de sentimento, é um campo de estudo que analisa os sentimentos, opiniões, atitudes e emoções das pessoas sobre diferentes entidades, expressos de forma textual. Tal análise é obtida através da classificação das opiniões em categorias, tais como positiva, negativa ou neutra. As abordagens de aprendizado supervisionado e baseadas em léxico são mais comumente utilizadas na mineração de opinião. No entanto, tais abordagens requerem um esforço considerável para preparação da base de dados de treinamento e para construção dos léxicos de opinião, respectivamente. A fim de minimizar as desvantagens das abordagens apresentadas, esta Tese propõe o uso de uma abordagem de agrupamento não supervisionada para a tarefa de mineração de opinião, a qual é capaz de produzir resultados precisos para diversos domínios sem a necessidade de dados rotulados manualmente para a etapa treinamento e sem fazer uso de ferramentas dependentes de língua. Três algoritmos de agrupamento não-supervisionado baseados em otimização de partícula de enxame (Particle Swarm Optimization - PSO) são propostos: o DPSOMUT, que é baseado em versão discreta do PSO; o IDPSOMUT, que é baseado em uma versão melhorada e autoadaptativa do PSO com função de detecção; e o IDPSOMUT/CS, que é uma versão híbrida do IDPSOMUT com o Cuckoo Search (CS). Diversos experimentos foram conduzidos com diferentes tipos de corpora, domínios, idioma do texto, balanceamento de classes, função de otimização e técnicas de pré-processamento. A eficácia dos algoritmos de agrupamento foi avaliada com medidas externas como acurácia, precisão, revocação e f-medida. A partir das análises estatísticas, os algortimos baseados em inteligência coletiva, especialmente os baseado em PSO, obtiveram melhores resultados que os algortimos que utilizam técnicas convencionais de agrupamento como o K-means e o Agglomerative. Os algoritmos propostos obtiveram um melhor desempenho utilizando o pré-processamento baseado em n-grama e utilizando a Global Silhouete como função de otimização. O corpus OBCC é também uma contribuição desta Tese e contem uma coleção dourada com 2.940 tweets com opiniões de consumidores sobre produtos e serviços em Português brasileiro.
Ren, Zhiwei. "Portfolio Construction using Clustering Methods." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-042605-092010/.
Full textSchütze, Oliver. "Set oriented methods for global optimization." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=976566982.
Full textGutmann, H. M. "Radial basis function methods for global optimization." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599804.
Full textStepanenko, Svetlana. "Global Optimization Methods based on Tabu Search." Doctoral thesis, kostenfrei, 2008. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2008/3060/.
Full textPettersson, Tobias. "Global optimization methods for estimation of descriptive models." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11781.
Full textUsing mathematical models with the purpose to understand and store knowlegde about a system is not a new field in science with early contributions dated back to, e.g., Kepler’s laws of planetary motion.
The aim is to obtain such a comprehensive predictive and quantitative knowledge about a phenomenon so that mathematical expressions or models can be used to forecast every relevant detail about that phenomenon. Such models can be used for reducing pollutions from car engines; prevent aviation incidents; or developing new therapeutic drugs. Models used to forecast, or predict, the behavior of a system are refered to predictive models. For such, the estimation problem aims to find one model and is well known and can be handeled by using standard methods for global nonlinear optimization.
Descriptive models are used to obtain and store quantitative knowledge of system. Estimation of descriptive models has not been much described by the literature so far; instead the methods used for predictive models have beed applied. Rather than finding one particular model, the parameter estimation for descriptive models aims to find every model that contains descriptive information about the system. Thus, the parameter estimation problem for descriptive models can not be stated as a standard optimization problem.
The main objective for this thesis is to propose methods for estimation of descriptive models. This is made by using methods for nonlinear optimization including both new and existing theory.
McMeen, John Norman Jr. "Ranking Methods for Global Optimization of Molecular Structures." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2447.
Full textAkteke, Basak. "Derivative Free Optimization Methods: Application In Stirrer Configuration And Data Clustering." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606591/index.pdf.
Full texts design variables is not directly available. This nonlinear objective function is obtained from the flow field by the flow solver. We present and interpret numerical results of this implementation. Moreover, a contribution is given to a survey and a distinction of DFO research directions, to an analysis and discussion of these. We also state a derivative free algorithm used within a clustering algorithm in combination with non-smooth optimization techniques to reveal the effectiveness of derivative free methods in computations. This algorithm is applied on some data sets from various sources of public life and medicine. We compare various methods, their practical backgrounds, and conclude with a summary and outlook. This work may serve as a preparation of possible future research.
Stolpe, Mathias. "On Models and Methods for Global Optimization of Structural Topology." Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3478.
Full textThis thesis consists of an introduction and sevenindependent, but closely related, papers which all deal withproblems in structural optimization. In particular, we considermodels and methods for global optimization of problems intopology design of discrete and continuum structures.
In the first four papers of the thesis the nonconvex problemof minimizing the weight of a truss structure subject to stressconstraints is considered. First itis shown that a certainsubclass of these problems can equivalently be cast as linearprograms and thus efficiently solved to global optimality.Thereafter, the behavior of a certain well-known perturbationtechnique is studied. It is concluded that, in practice, thistechnique can not guarantee that a global minimizer is found.Finally, a convergent continuous branch-and-bound method forglobal optimization of minimum weight problems with stress,displacement, and local buckling constraints is developed.Using this method, several problems taken from the literatureare solved with a proof of global optimality for the firsttime.
The last three papers of the thesis deal with topologyoptimization of discretized continuum structures. Theseproblems are usually modeled as mixed or pure nonlinear 0-1programs. First, the behavior of certain often usedpenalization methods for minimum compliance problems isstudied. It is concluded that these methods may fail to producea zero-one solution to the considered problem. To remedy this,a material interpolation scheme based on a rational functionsuch that compli- ance becomes a concave function is proposed.Finally, it is shown that a broad range of nonlinear 0-1topology optimization problems, including stress- anddisplacement-constrained minimum weight problems, canequivalently be modeled as linear mixed 0-1 programs. Thisresult implies that any of the standard methods available forgeneral linear integer programming can now be used on topologyoptimization problems.
Keywords:topology optimization, global optimization,stress constraints, linear programming, mixed integerprogramming, branch-and-bound.
Robertson, Blair Lennon. "Direct Search Methods for Nonsmooth Problems using Global Optimization Techniques." Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/5060.
Full textZhang, Jiapu. "Derivative-free hybrid methods in global optimization and their applications." Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/34054.
Full textDoctor of Philosophy
Hu, Jiaqiao. "Randomized search methods for solving Markov decision processes and global optimization." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3770.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Raber, Ulrich. "Nonconvex all-quadratic global optimization problems solution methods, application and related topics /." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=961036478.
Full textQuttineh, Nils-Hassan. "Models and Methods for Costly Global Optimization and Military Decision Support Systems." Doctoral thesis, Linköpings universitet, Optimeringslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77078.
Full textKoullias, Stefanos. "Methodology for global optimization of computationally expensive design problems." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49085.
Full textOtero, Richard Edward. "Problem decomposition by mutual information and force-based clustering." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43641.
Full textGurol, Selime. "Statistical Learning And Optimization Methods For Improving The Efficiency In Landscape Image Clustering And Classification Problems." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606595/index.pdf.
Full textZhan, Lixin. "Fast Stochastic Global Optimization Methods and Their Applications to Cluster Crystallization and Protein Folding." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1246.
Full textThe MUBH method combines the basin hopping (BH) method, which can be used to efficiently map out an energy landscape associated with local minima, with the multicanonical Monte Carlo (MUCA) method, which encourages the system to move out of energy traps during the computation. It is found to be more efficient than the original BH method when applied to the Lennard-Jones systems containing 150-185 particles.
The asynchronous multicanonical basin hopping (AMUBH) method, a parallelization of the MUBH method, is also implemented using the message passing interface (MPI) to take advantage of the full usage of multiprocessors in either a homogeneous or a heterogeneous computational environment. AMUBH, MUBH and BH are used together to find the global minimum structures for Co nanoclusters with system size N≤200.
The BP method is based on the BH method and the idea of the energy landscape paving (ELP) strategy. In comparison with the acceptance scheme of the ELP method, moving towards the low energy region is enhanced and no low energy configuration may be missed during the simulation. The applications to both the pentapeptide Met-enkephalin and the villin subdomain HP-36 locate new configurations having energies lower than those determined previously.
The MUBH, BP and BH methods are further employed to search for the global minimum structures of several proteins/peptides using the ECEPP/2 and ECEPP/3 force fields. These two force fields may produce global minima with different structures. The present study indicates that the global minimum determination from ECEPP/3 prefers helical structures. Also discussed in this thesis is the effect of the environment on the formation of beta hairpins.
Barreau, Thibaud. "Strategic optimization of a global bank capital management using statistical methods on open data." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273413.
Full textProjektets ämne handlar om att optimering allokering av kapital inom en fransk global bank. Kapital management syftar här på hur kapital ska fördelas mellan olika avdelningar inom banken. I detta projekt fokuserar jag på optimering av allokeringen av riskvägda resurser (RWA) mellan några av bankens enheter, som en representation av det allokerade kapitalet. Uppsatsen inriktar sig främst emot retail-delen av banken. Första steget var att modellera utvecklingen av en bankavdelning givet en ekonomisk omgivning? Andra steget var att försöka optimera fördelningen av RWA mellan de utvalda bankavdelningarna.
Yamakawa, Yuya. "Studies on Optimization Methods for Nonlinear Semidefinite Programming Problems." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199446.
Full textVan, Assche Dimitri. "New methodological perspectives on PROMETHEE methods." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287858/6/contratDV.pdf.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Enqvist, Per. "Spectral Estimation by Geometric, Topological and Optimization Methods." Doctoral thesis, Stockholm, 2001. http://media.lib.kth.se:8080/kthdisseng.html.
Full textHendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.
Full textMahjani, Behrang. "Methods from Statistical Computing for Genetic Analysis of Complex Traits." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284378.
Full texteSSENCE
Titi, Jihad [Verfasser]. "Matrix Methods for the Tensorial and Simplicial Bernstein Forms with Application to Global Optimization / Jihad Titi." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1214180582/34.
Full textMiller, Michael Chad. "Global Resource Management of Response Surface Methodology." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1621.
Full textPaudel, Danda Pani. "Local and global methods for registering 2D image sets and 3D point clouds." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS077/document.
Full textIn this thesis, we study the problem of registering 2D image sets and 3D point clouds under threedifferent acquisition set-ups. The first set-up assumes that the image sets are captured using 2Dcameras that are fully calibrated and coupled, or rigidly attached, with a 3D sensor. In this context,the point cloud from the 3D sensor is registered directly to the asynchronously acquired 2D images.In the second set-up, the 2D cameras are internally calibrated but uncoupled from the 3D sensor,allowing them to move independently with respect to each other. The registration for this set-up isperformed using a Structure-from-Motion reconstruction emanating from images and planar patchesrepresenting the point cloud. The proposed registration method is globally optimal and robust tooutliers. It is based on the theory Sum-of-Squares polynomials and a Branch-and-Bound algorithm.The third set-up consists of uncoupled and uncalibrated 2D cameras. The image sets from thesecameras are registered to the point cloud in a globally optimal manner using a Branch-and-Prunealgorithm. Our method is based on a Linear Matrix Inequality framework that establishes directrelationships between 2D image measurements and 3D scene voxels
Fitiwi, Desta Zahlay. "Strategies, Methods and Tools for Solving Long-term Transmission Expansion Planning in Large-scale Power Systems." Doctoral thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192363.
Full textDriven by several techno-economic, environmental and structural factors, the electric energy industry is expected to undergo a paradigm shift with a considerably increased level of renewables (mainly variable energy sources such as wind and solar), gradually replacing conventional power production sources. The scale and the speed of integrating such sources of energy are of paramount importance to effectively address a multitude of global and local concerns such as climate change, sustainability and energy security. In recent years, wind and solar power have been attracting large-scale investments in many countries, especially in Europe. The favorable agreements of states to curb greenhouse gas emissions and mitigate climate change, along with other driving factors, will further accelerate the renewable integration in power systems. Renewable energy sources (RESs), wind and solar in particular, are abundant almost everywhere, although their energy intensities differ very much from one place to another. Because of this, a significant integration of such energy sources requires heavy investments in transmission infrastructures. In other words, transmission expansion planning (TEP) has to be carried out in geographically wide and large-scale networks. This helps to effectively accommodate the RESs and optimally exploit their benefits while minimizing their side effects. However, the uncertain nature of most of the renewable sources, along with the size of the network systems, results in optimization problems that may become intractable in practice or require a huge computational effort. Thus, the challenge addressed in this work is to design models, strategies and tools that may solve large-scale and uncertain TEP problems, being computationally efficient and reasonably accurate. Of course, the specific definition of the term “reasonably accurate” is the key issue of the thesis work, since it requires a deep understanding of the main cost and technical drivers of adequate TEP investment decisions. A new formulation is proposed in this dissertation for a long-term planning of transmission investments under uncertainty, with a multi-stage decision framework and considering a high level of renewable sources integration. This multi-stage strategy combines the need for short-term decisions with the evaluation of long-term scenarios, which is the practical essence of a real-world planning. The TEP problem is defined as a stochastic mixed-integer linear programming (S-MILP) optimization, an exact solution method. This allows the use of effective off-the-shelf solvers to obtain solutions within a reasonable computational time, enhancing overall problem tractability. Furthermore, in order to significantly reduce the combinatorial solution search (CSS) space, a specific heuristic solution strategy is devised. In this global heuristic strategy, the problem is decomposed into successive optimization phases. Each phase uses more complex optimization models than the previous one, and uses the results of the previous phase so that the combinatorial solution search space is reduced after each phase. Moreover, each optimization phase is defined and solved as an independent problem; thus, allowing the use of specific decomposition techniques, or parallel computation when possible. A relevant feature of the solution strategy is that it combines deterministic and stochastic modeling techniques on a multi-stage modeling framework with a rolling-window planning concept. The planning horizon is divided into two sub-horizons: medium- and long-term, both having multiple decision stages. The first sub-horizon is characterized by a set of investments, which are good enough for all scenarios, in each stage while scenario-dependent decisions are made in the second sub-horizon. One of the first modeling challenges of this work is to select the right network model for power flow and congestion evaluation: complex enough to capture the relevant features but simple enough to be computationally fast. The thesis includes extensive analysis of existing and improved network models such as AC, linearized AC, “DC”, hybrid and pipeline models, both for the existing and the candidate lines. Finally, a DC network model is proposed as the most suitable option. This work also analyzes alternative losses models. Some of them are already available and others are proposed as original contributions of the thesis. These models are evaluated in the context of the target problem, i.e., in finding the right balance between accuracy and computational effort in a large-scale TEP problem subject to significant RES integration. It has to be pointed out that, although losses are usually neglected in TEP studies because of computational limitations, they are critical in network expansion decisions. In fact, using inadequate models may lead not only to cost-estimation errors, but also to technical errors such as the so-called “artificial losses”. Another relevant contribution of this work is a domain-driven clustering process to handle operational states. This allows a more compact and efficient representation of uncertainty with little loss of accuracy. This is relevant because, together with electricity demand and other traditional sources of uncertainty, the integration of variable energy sources introduces an additional operational variability and uncertainty. A substantial part of this uncertainty and variability is often handled by a set of operational states, here referred to as “snapshots”, which are generation-demand patterns of power systems that lead to optimal power flow (OPF) patterns in the transmission network. A large set of snapshots, each one with an estimated probability, is then used to evaluate and optimize the network expansion. In a long-term TEP problem of large networks, the number of operational states must be reduced. Hence, from a methodological perspective, this thesis shows how the snapshot reduction can be achieved by means of clustering, without relevant loss of accuracy, provided that a good selection of classification variables is used in the clustering process. The proposed method relies on two ideas. First, the snapshots are characterized by their OPF patterns (the effects) instead of the generation-demand patterns (the causes). This is simply because the network expansion is the target problem, and losses and congestions are the drivers to network investments. Second, the OPF patterns are classified using a “moments” technique, a well-known approach in Optical Pattern Recognition problems. The developed models, methods and solution strategies have been tested on small-, medium- and large-scale network systems. This thesis also presents numerical results of an aggregated 1060-node European network system obtained considering multiple RES development scenarios. Generally, test results show the effectiveness of the proposed TEP model, since—as originally intended—it contributes to a significant reduction in computational effort while fairly maintaining optimality of the solutions.
QC 20160919
Kazazakis, Nikolaos. "Parallel computing, interval derivative methods, heuristic algorithms, and their implementation in a numerical solver, for deterministic global optimization." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45359.
Full textHua, Xiaoqin. "Studies on block coordinate gradient methods for nonlinear optimization problems with separable structure." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199447.
Full textZhang, Fan. "Statistical Methods for Characterizing Genomic Heterogeneity in Mixed Samples." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/419.
Full textLunday, Brian Joseph. "Resource Allocation on Networks: Nested Event Tree Optimization, Network Interdiction, and Game Theoretic Methods." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/77323.
Full textPh. D.
Weeraddana, P. C. (Pradeep Chathuranga). "Optimization techniques for radio resource management in wireless communication networks." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514296550.
Full textTiivistelmä Tässä työssä tutkitaan optimointimenetelmien käyttöä resurssienhallintaan langattomissa tiedonsiirtoverkoissa. Monet ajankohtaiset resurssienhallintaongelmat, kuten esimerkiksi tehonsäätö, datanopeuden säätö, radiolinkkien ajastus, protokollakerrosten välinen optimointi, verkon hyötyfunktion maksimointi ja keilanmuodostus moniantenniverkoissa, liittyvät joko suoraan tai epäsuorasti painotetun summadatanopeuden maksimointiongelmaan (weighted sum-rate maximization, WSRMax). Tästä syystä tämä työ keskittyy erityisesti WSRMax-ongelmaan, joka on tunnetusti NP-kova. Työssä kehitetään yleinen branch and bound -tekniikkaan perustuva menetelmä, joka ratkaisee epäkonveksin WSRMax-ongelman globaalisti ja tuottaa todistuksen ratkaisun optimaalisuudesta. Työssä johdetaan myös tehokkaita analyyttisiä suorituskykyrajojen laskentatekniikoita. Ehdotetun menetelmän käyttö ei rajoitu vain WSRMax-ongelmaan, vaan sitä voidaan soveltaa minkä tahansa suorituskykymetriikan maksimointiin, kunhan se on Lipschitz-jatkuva ja kasvava signaali-häiriö-plus-kohinasuhteen funktiona. Menetelmää voidaan käyttää minkä tahansa WSRMax-ongelmaan perustuvan verkkosuunnittelumenetelmän optimaalisen suorituskyvyn määrittämiseen, ja siksi sitä voidaan hyödyntää myös minkä tahansa heuristisen algoritmin aiheuttaman suorituskykytappion arvioimiseen. Tutkittava linkki-häiriömalli on riittävän yleinen monien erilaisten verkkotopologioiden ja verkkosolmujen kyvykkyyksien mallintamiseen, kuten esimerkiksi yhden tai useamman datapaketin siirtoon sekä yhtäaikaiseen lähetykseen ja vastaanottoon. Koska globaalit menetelmät ovat hitaita suurien ongelmien ratkaisussa, työssä kehitetään WSRMax-ongelmalle myös nopeita paikallisia optimointimenetelmiä. Ensiksi käsitellään yleistä useaa eri yhteyspalvelua tukevaa monikanavaista langatonta monihyppyverkkoa, jossa kaikki vastaanottimet suorittavat yhden käyttäjän ilmaisun, ja kehitetään algoritmeja, joiden perustana ovat homotopiamenetelmät ja komplementaarinen geometrinen optimointi. Ne hyödyntävät tehokkaasti saatavilla olevan monikanavadiversiteetin. Esitetty homotopiamenetelmiin perustuva algoritmi käsittelee tehokkaasti itsehäiriöongelman, joka syntyy, kun laite lähettää ja vastaanottaa samanaikaisesti samalla taajuuskaistalla. Tämä on tärkeää, koska näin voidaan välttää lisäehtojen käyttö yhtäaikaisen lähetyksen ja vastaanoton estämiseksi. Lisäksi algoritmi yhdessä tutkittavan häiriömallin kanssa auttaa arvioimaan, paljonko etua saadaan, kun laitteet käyttävät itsehäiriön poistomenetelmiä erilaisilla tarkkuuksilla. Seuraavaksi tutkitaan vastaavaa langatonta monihyppyverkkoa, jossa kaikki vastaanottimet suorittavat monen käyttäjän ilmaisun. Ratkaisuja WSRMax-ongelmalle saadaan asettamalla lisäehtoja, kuten että vain yksi lähetin kerrallaan voi lähettää tai että vain yksi vastaanotin kerrallaan voi vastaanottaa. Edelleen tutkitaan WSRMax-ongelmaa laskevalla siirtotiellä OFDMA-järjestelmässä, ja johdetaan primaalihajotelmaan perustuva nopea algoritmi, joka yhteisoptimoi monen käyttäjän alikantoaalto- ja tehoallokaation maksimoiden painotetun summadatanopeuden. Numeeriset tulokset osoittavat, että esitetty algoritmi suppenee nopeammin kuin Lagrangen relaksaatioon perustuvat menetelmät. Lopuksi johdetaan hajautettu algoritmi WSRMax-ongelmalle monisoluisissa moniantennilähetystä käyttävissä järjestelmissä laskevaa siirtotietä varten. Esitetty menetelmä perustuu klassisiin primaalihajotelma- ja aligradienttimenetelmiin. Se ei turvaudu nollaanpakotus-keilanmuodostukseen tai korkean signaali-häiriö-plus-kohinasuhteen approksimaatioon, kuten monet muut hajautetut muunnelmat. Algoritmi koordinoi monta paikallista aliongelmaa (yhden kutakin tukiasemaa kohti) ratkaistakseen solujen välisen häiriön siten, että WSR maksimoituu. Numeeriset tulokset osoittavat, että merkittävää etua saadaan jo vähäisellä yhdessä toimivien tukiasemien välisellä viestinvaihdolla, vaikka globaalisti optimaalista ratkaisua ei voidakaan taata
Cerqueira, Tiago F. T. [Verfasser], Silvana Gutachter] Botti, Claudia [Gutachter] Draxl, and Angel [Gutachter] [Rubio. "Structural prediction and materials design : from high throughput to global minima optimization methods / Tiago F.T. Cerqueira ; Gutachter: Silvana Botti, Claudia Draxl, Angel Rubio." Jena : Friedrich-Schiller-Universität Jena, 2017. http://d-nb.info/1177603349/34.
Full textPopov, Mikhail. "Analytic and Numerical Methods for the Solution of Electromagnetic Inverse Source Problems." Doctoral thesis, KTH, Electromagnetic Theory, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3134.
Full textCosta, Jardel da Silva. "Minimização do potencial de Lennard-Jones via otimização global." Universidade do Estado do Rio de Janeiro, 2010. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1604.
Full textDevido à sua importância, o chamado problema de Lennard-Jones tem atraído pesquisadores de diversos campos da ciência pura e aplicada. Tal problema resume-se em achar as coordenadas de um sistema no espaço Euclidiano tridimensional, as quais correspondem a um mínimo de um potencial de energia. Esse problema desempenha um papel de fundamental importância na determinação da estabilidade de moléculas em arranjos altamente ramificados, como das proteínas. A principal dificuldade para resolver o problema de Lennard-Jones decorre do fato de que a função objetivo é não-convexa e altamente não-linear com várias variáveis, apresentando, dessa forma, um grande número de mínimos locais. Neste trabalho, foram utilizados alguns métodos de otimização global estocástica, onde procurou-se comparar os resultados numéricos dos algoritmos, com o objetivo de verificar quais se adaptam melhor à minimização do referido potencial. No presente estudo, abordou-se somente micro agrupamentos possuindo de 3 a 10 átomos. Os resultados obtidos foram comparados também com o melhores resultados conhecidos atualmente na literatura. Os algoritmos de otimização utilizados foram todos implementados em linguagem C++.
Because of its importance, the so-called Lennard-Jones problem has attracted researchers from various fields of pure and applied science. This problem boils down to find the coordinates of a system with three-dimensional Euclidean space, which correspond to minimum potential energy. This problem plays a fundamental role in determining the stability of molecules in highly branched arrangement, such as proteins. The main difficulty in solving the problem of Lennard-Jones from the fact that the objective function is non-convex and highly nonlinear with several variables, thus presenting a large number of local minima. Here, we used some methods of stochastic global optimization, where we seek to compare the results of the numerical algorithm, in order to see which are better suited to the minimization of the potential. In this study, we addressed only micro groups having 3-10 atoms. The results were also compared with the currently best known results in literature. The optimization algorithms were all implemented in C + +.
Desai, Jitamitra. "Solving Factorable Programs with Applications to Cluster Analysis, Risk Management, and Control Systems Design." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28211.
Full textThis dissertation focuses on employing the Reformulation-Linearization Technique (RLT) to enhance model formulations and to design effective solution techniques for solving several practical instances of continuous nonconvex optimization problems, namely, the hard and fuzzy clustering problems, risk management problems, and problems arising in control systems.
Under the umbrella of the broad RLT framework, the contributions of this dissertation focus on developing models and algorithms along with related theoretical and computational results pertaining to three specific application domains. In the basic construct, through appropriate surrogation schemes and variable substitution strategies, we derive strong polyhedral approximations for the polynomial functional terms in the problem, and then rely on the demonstrated (robust) ability of the RLT for determining global optimal solutions for polynomial programming problems. The convergence of the proposed branch-and-bound algorithm follows from the tailored branching strategy coupled with consistency and exhaustive properties of the enumeration tree. First, we prescribe an RLT-based framework geared towards solving the hard and fuzzy clustering problems. In the second endeavor, we examine two risk management problems, providing novel models and algorithms. Finally, in the third part, we provide a detailed discussion on studying stability margins for control systems using polynomial programming models along with specialized solution techniques.
Ph. D.
Samarakoon, S. (Sumudu). "Learning-based methods for resource allocation and interference management in energy-efficient small cell networks." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526216874.
Full textTiivistelmä Langattomien piensoluverkkojen resurssien allokointi ja häiriön hallinta on ollut viime vuosina tärkeä tutkimuskohde. Tutkimuksia on tehty paljon, mutta uudet viidennen sukupolven (5G) verkot vaativat suurta kapasiteettia, luotettavuutta ja energiatehokkuutta. Sen vuoksi on kehitettävä menetelmiä, jotka keskittyy ultratiheisiin ja itseorganisoituviin piensoluverkkoihin. (SCN). Tämän väitöskirjan tärkein tavoite onkin esittää joukko hajautettuja menetelmiä piensoluverkkojen yhteisten resurssien allokointiin ja häiriön hallintaan, kun käytössä on erilaisia verkkoarkkitehtuureja. Tässä väitöskirjassa ehdotetaan ja tutkitaan hajautettuja menetelmiä langattomien piensoluverkkojen hallintaan kolmessa eri tilanteessa: välityskanavan huomioiva häiriönhallinta menetelmä langattomissa piensoluverkoissa, dynaamisiin klustereihin perustuva malli tiheiden langattomien piensoluverkkojen energiatehokkuuden maksimointiin ja yhteinen tehonsäädön ja käyttäjien allokaatio menetelmä ultratiheiden piensoluverkkojen energiatehokkuuden optimointiin. Ultratiheiden piensoluverkkojen optimointi on erittäin haastavaa häiriön sekä jonojen ja kanavatilojen vahvojen kytkösten vuoksi. Lisäksi, koska klustereilla/tukiasemilla ei ole kommunikaatiota, tarvitaan hajautettuja oppimisalgoritmeja, jotta saadaan itsenäisesti valittua optimaaliset lähetys menetelmät hyödyntäen vain paikallista tietoa. Tämän vuoksi kehitetään useita hajautettuja algoritmeja, jotka hyödyntävät koneoppimista, Lyapunov optimointia ja mean-field teoriaa. Kaikki yllä olevat esitetyt menetelmät on validoitu laajoilla simulaatioilla, joilla on voitu todentaa niiden suorituskyky perinteisiin malleihin verrattuna. Perinteiset mallit eivät pysty ottamaan huomioon verkon laajuuden, jonon ja kanavatilojen dynamiikan, eri välityskanavien ja rajallisen kapasiteetin asettamia rajoituksia sekä verkon elementtien välisen koordinoinnin puuttumista. Esitetyt menetelmät tuottavat huomattavia parannuksia energiansäästöön, siirtonopeuteen ja viiveiden vähentämiseen verrattuna perinteisiin malleihin, joita kirjallisuudessa on tarkasteltu
Coelho, Ana Carolina Rios. "Estimação de parâmetros em modelos para eliminação enzimática de substratos no fígado: um estudo via otimização global." Universidade do Estado do Rio de Janeiro, 2009. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=873.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho, abordamos um problema de otimização de parâmetros da biofísica em que o objetivo é a obtenção da taxa média de concentração de substrato no fígado. Este problema é altamente não-linear, multimodal e com função-objetivo não-diferenciável. Resolvemos o mesmo através de métodos de otimização da literatura e introduzimos três métodos de otimização. Os métodos introduzidos neste trabalho são baseados na hibridização de um método estocástico, que explora o espaço de busca, com um método determinístico de busca direta, que faz uma busca local mais refinada nas áreas mais promissoras deste espaço. Os novos métodos são comparados aos da literatura e é verificado que o desempenho dos primeiros é superior.
In this work, we attack a parameter optimization problem from Biophysics, where the aim is to obtain the substrate concentration rate of a liver. This problem is highly non-linear, multimodal, and with non-differentiable objective-function. We solve it using optimization methods from the literature and three methods introduced in this work. The latter methods are based on the hybridization of a stochastic technique which explores the search space, with a direct search deterministic technique which exploits the most promising areas. Our results show that the new optimization methods perform better than those from the literature.
Gouveia, Paulo Sergio da Silva. "Resolução do problema de alinhamento estrutural entre proteínas via técnicas de otimização global." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305964.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-17T18:28:36Z (GMT). No. of bitstreams: 1 Gouveia_PauloSergiodaSilva_D.pdf: 2266379 bytes, checksum: 85bb53a412744c3d168ac6fed4b701e0 (MD5) Previous issue date: 2011
Resumo: A comparação estrutural entre proteínas é um problema fundamental na Biologia Molecular, pois estruturas similares entre proteínas, frequentemente refletem uma funcionalidade ou origem em comum entre as mesmas. No Problema de Alinhamento Estrutural entre Proteínas, buscamos encontrar o melhor alinhamento estrutural entre duas proteínas, ou seja, a melhor sobreposição entre duas estruturas proteicas, uma vez que alinhamentos locais podem levar a conclusões distorcidas sobre as características c funcionalidades das proteínas em estudo. A maioria dos métodos atuais para abordar este problema ou tem um custo computacional muito elevado ou não tem nenhuma garantia de convergência para o melhor alinhamento entre duas proteínas. Neste trabalho, propomos métodos computacionais para o Problema de Alinhamento Estrutural entre Proteínas que tenham boas garantias de encontrar o melhor alinhamento, mas em um tempo computacional razoável, utilizando as mais variadas técnicas de Otimização Global. A análise sobre os desempenhos de cada método tanto em termos quantitativos quanto qualitativos, além de um gráfico de Pareto, são apresentados de forma a facilitar a comparação entre os métodos com respeito à qualidade da solução e ao tempo computacional
Abstract: The structural comparison of proteins is a fundamental problem in Molecular Biology because similar structures often reflect a comrnon origin or funcionality. In the Protein Alignment problem onc seeks the best structural alignment between two proteins, i.e. the best overlap between two protein structures. Merely local alignments can lead to distorted conclusions on the problem features and functions. Most methods addressing this problem have a very high computational cost or are not supported with guarantecs of convergence to the best alignment. In this work we des-cribe computational methods for Protein Structural Alignment with good certificatea of optimality and reasonable computational execution time. We employ several Global Op-timization techniques. The performance is visualized by means of profile graphics and Pareto curves in order to take into account simultaneously emeiency and robustness of the methods
Doutorado
Otimização
Doutor em Matemática Aplicada
Ittiwattana, Waraporn. "A Method for Simulation Optimization with Applications in Robust Process Design and Locating Supply Chain Operations." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1030366020.
Full textVanaret, Charlie. "Hybridation d’algorithmes évolutionnaires et de méthodes d’intervalles pour l’optimisation de problèmes difficiles." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/13807/1/vanaret.pdf.
Full textBilicz, Sandor. "Application of Design-of-Experiment Methods and Surrogate Models in Electromagnetic Nondestructive Evaluation." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00601753.
Full textOuali, Abdelkader. "Méthodes hybrides parallèles pour la résolution de problèmes d'optimisation combinatoire : application au clustering sous contraintes." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC215/document.
Full textCombinatorial optimization problems have become the target of many scientific researches for their importance in solving academic problems and real problems encountered in the field of engineering and industry. Solving these problems by exact methods is often intractable because of the exorbitant time processing that these methods would require to reach the optimal solution(s). In this thesis, we were interested in the algorithmic context of solving combinatorial problems, and the modeling context of these problems. At the algorithmic level, we have explored the hybrid methods which excel in their ability to cooperate exact methods and approximate methods in order to produce rapidly solutions of best quality. At the modeling level, we worked on the specification and the exact resolution of complex problems in pattern set mining, in particular, by studying scaling issues in large databases. On the one hand, we proposed a first parallelization of the DGVNS algorithm, called CPDGVNS, which explores in parallel the different clusters of the tree decomposition by sharing the best overall solution on a master-worker model. Two other strategies, called RADGVNS and RSDGVNS, have been proposed which improve the frequency of exchanging intermediate solutions between the different processes. Experiments carried out on difficult combinatorial problems show the effectiveness of our parallel methods. On the other hand, we proposed a hybrid approach combining techniques of both Integer Linear Programming (ILP) and pattern mining. Our approach is comprehensive and takes advantage of the general ILP framework (by providing a high level of flexibility and expressiveness) and specialized heuristics for data mining (to improve computing time). In addition to the general framework for the pattern set mining, two problems were studied: conceptual clustering and the tiling problem. The experiments carried out showed the contribution of our proposition in relation to constraint-based approaches and specialized heuristics
Hamdani, Hamid. "Métamodèles pour l’étude fiabiliste des systèmes mécatroniques Métamodélisation pour une conception robuste des systèmes mécatroniques Reliability analysis of tape based chip-scale packages based metamodel Optimization of solder joints in embedded mechatronic systemsvia Kriging-assisted CMA-ES algorithm Metamodel assisted evolution strategies for global optimization of solder joints reliability in embedded mechatronic devices." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR12.
Full textMechatronic system failures are often caused by fatigue failure of the solder joints of its electronic devices. With the increasing miniaturization of electronic devices, the stress on solder joints, which provide the connection between the component outputs and the PCB, has become a major challenge. Indeed, solder joints can accept high deformation rates, but an accumulation of repeated stresses causes their premature ageing which can lead to the rupture of solder joints (thermomechanical fatigue phenomenon). Thus, the studies based on finite element simulation methods are performed to numerically investigate the lifetime of PCB-mounted devices (secondlevel reliability). The high computational costs required to solve such problems may make the optimization and reliability assessment procedure impracticable due to the high computation time of multi-physics finite element simulation. This thesis proposes on the one side, an adaptation of the CMA-ES method Assisted by the kriging metamodel for the global optimization of a given problem. The implementation of this proposed algorithm was performed in the global optimization of the solder joints in a PQFP package. The results of the numerical studies show that the proposed KA-CMA-ES algorithm is more efficient and more efficient than the standard CMA-ES algorithm. On the other side, a general methodology for reliability analysis in fatigue is proposed in this manuscript. It is based on the uncertainty modeling (loading, material properties, geometry) and aims to quantify the reliability level of the system studied for a fatigue failure scenario. A method based on metamodelling techniques is precisely proposed to address the complexity of mechatronic systems in solving the reliability problem. The metamodel is used to emulate the mechanical model behaviour while satisfying both the its efficiency and accuracy. The implementation of the proposed methodology is applied for the reliability analysis of a T-CSP package
Santos, Genasil Francisco dos. "Identificação de danos estruturais utilizando técnicas de otimização." Universidade do Estado do Rio de Janeiro, 2009. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=5647.
Full textSistemas estruturais em suas variadas aplicações incluindo-se veículos espaciais, automóveis e estruturas de engenharia civil tais como prédios, pontes e plataformas off-shore, acumulam dano durante suas vidas úteis. Em muitas situações, tal dano pode não ser visualmente observado. Do ponto de vista da segurança e da performance da estrutura, é desejável monitorar esta possível ocorrência, localizá-la e quantificá-la. Métodos de identificação de sistemas, que em geral, são classificados numa categoria de Técnicas de Avaliação Não-Destrutivas, podem ser utilizados para esta finalidade. Usando dados experimentais tais como frequências naturais, modos de vibração e deslocamentos estáticos, e um modelo analítico estrutural, parâmetros da estrutura podem ser identificados. As propriedades estruturais do modelo analítico são modificadas de modo a minimizar a diferença entre os dados obtidos por aquele modelo e a resposta medida. Isto pode ser definido como um problema inverso onde os parâmetros da estrutura são identificados. O problema inverso, descrito acima, foi resolvido usando métodos globais de otimização devido à provável presença de inúmeros mínimos locais e a não convexidade do espaço de projeto. Neste trabalho o método da Evolução Diferencial (Differential Evolution, DE) foi utilizado como ferramenta principal de otimização. Trata-se de uma meta-heurística inspirada numa população de soluções sucessivamente atualizada por operações aritméticas como mutações, recombinações e critérios de seleção dos melhores indivíduos até que um critério de convergência seja alcançado. O método da Evolução Diferencial foi desenvolvido como uma heurística para minimizar funções não diferenciáveis e foi aplicado a estruturas planas de treliças com diferentes níveis de danos.
Structural systems in a variety of applications including aerospace vehicles, automobiles and civil engineering structures such as tall buildings, bridges and offshore platforms, accumulate damage during their service life. In several situations, such damage may not be visually observable. From the standpoint of both safety and performance, it is desirable to monitor the occurrence, location and extent of such damage.System identification methods, which may be classified in a general category of nondestructive evaluation techniques, can be employed for this purpose. Using experimental data, such as eigenmodes, eigenvectors and static displacements, and an analytical structural model, parameters of the structures can be identified. The approach used in the present work is one where the structural properties of the analytical model are varied to minimize the difference between the analytically predicted and empirically measured response. This is an inverse problem where the structural parameters are identified. In this work a reduced number of vibration modes were used as the measured response. For the damage assessment problem a close analytical model of the structural system is available and the model of the damaged structure will be identified. Damage will be represented by a reduction in the elastic stiffness properties of the structure.The problem described above was solved using global methods of optimization due to the fact that depending on the number of variables or the location of damage the resulting design space is nonconvex presenting several local minima. In the present work, the Differential Evolution Optimization Technique (DE) was used. It is a metaheuristic inspired by a population of solutions that is successively updated by arithmetic operations such as mutation and recombination, until convergence. The approach was applied to simple truss structures with different levels of damage.
Schardong, André. "Aplicação de técnicas de programação linear e extensões para otimização da alocação de água em sistemas de recursos hídricos, utilizando métodos de pontos interiores." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3147/tde-01122006-171713/.
Full textThis work presents an optimization tool for analyzing the problems of water allocation in watersheds by utilizing techniques of linear and piecewise linear programming integrated to a pattern of stream flow routing. The optimization is done in a global way with the usage of linear programming packages based upon the Internal Point Methods. The methodology of the usage consists in the acquirement of an optimal solution for situation of insufficient water availability for all conflicting consumptions from the watershed. The tool is being attached and incorporated to AcquaNet, which is a decision support system (DSS) for analysis of water resources systems that utilizes a network flow algorithm, with the purpose of optimizing the water allocation. The formulation that uses the linear programming leads to the analysis of the system as a whole and for this reason it is expected a better usage of the available water with a lower deficit in the supply or a greater storage in the reservoirs. Linear Programming with Internal Point Methods is nowadays a well known and very well developed technique. There are several computational packages with efficient implementations of the Internal Points Methods freely available, and that, has brought great motivation in its usage in the present work.
Tigli, Luca. "Saving local searches in global optimization." Doctoral thesis, 2020. http://hdl.handle.net/2158/1188596.
Full textMoa, Belaid. "Interval methods for global optimization." Thesis, 2007. http://hdl.handle.net/1828/198.
Full textOcloo, Senanu K. "Global optimization methods for adaptive IIR filters." 2007. http://www.lib.ncsu.edu/theses/available/etd-07112007-150000/unrestricted/etd.pdf.
Full text