Dissertations / Theses on the topic 'Gliomi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Gliomi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Redaelli, Marco. "Herpes virus bovino di tipo 4 come vettore per la terapia genica dei gliomi." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426019.
Full textL’ipotesi alla base di questo lavoro è che vi sia la possibilità di impiegare quale vettore virale per la terapia genica dei gliomi l’herpesvirus bovino di tipo 4 (BoHV-4) e di determinare se la via di trasduzione del segnale mediata dalle protein chinasi AMPc-dipendenti (PKA) possa essere utilizzata come bersaglio terapeutico. Infatti i gliomi sono ritenuti essere uno dei più importanti e stimolanti problemi irrisolti della medicina. Questo sia per la evidente complessità della sede anatomica di insorgenza, sia per il fatto che, nonostante gli enormi sforzi in cui gli scienziati di tutto il mondo si sono profusi non si è ancora riusciti a giungere alla messa a punto di un protocollo curativo realmente efficace. Il progetto di ricerca su cui si è basato il presente studio è il risultato della convergenza di due linee di ricerca preesistenti presso le Università di Padova e di Parma. I risultati conseguiti hanno dimostrato la capacità di BoHV-4 di infettare in vitro e in vivo cellule di glioma di ratto. Inoltre tale capacità è stata confermata in vitro sia su cellule immortalizzate di glioma umano che su colture primarie di tumore cerebrale umano. Per quanto riguarda lo studio della relazione tra PKA e tumori cerebrali, è stato in primo luogo rilevata una distribuzione peculiare delle diverse subunità regolatorie delle medesime che è caratteristica delle cellule di glioma. Inoltre diversi esperimenti suggeriscono che la modulazione di tale via possa essere impiegata per il trattamento dei gliomi oltre che per fini diagnostici. Tutti i risultati ottenuti suggeriscono di proseguire ed ampliare il progetto facendo convergere entrambe le sue linee costituenti in un modello da poter esportare nella pratica clinica nel minor tempo possibile.
COMI, ALESSANDRO. "Memoria verbale nei pazienti con glioma cerebrale." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/64636.
Full textVILLANI, UMBERTO. "Dall'imaging di microstruttura alla connettività strutturale: l'utilizzo della risonanza magnetica di diffusione per investigare l'impatto dei gliomi sul cervello umano." Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3450310.
Full textDiffusion-based Magnetic Resonance Imaging (dMRI) is rapidly becoming the instrument of choice to probe the structure of the human brain in vivo. By modelling the properties of water diffusion inside cerebral tissues, it is indeed possible to extract surrogates of histological measures, such as fibre density, conformation and preferential direction, in a non-invasive manner. Furthermore, local orientational features can be used to reconstruct axonal pathways that link different brain regions, allowing the study of how they are structurally connected. Nevertheless, the quantification of dMRI measures must be cautious when the physiological environment of brain tissues is drastically altered. Such is the case of brain tumours. The microstructure of brain tumours is highly heterogeneous, being diverse between and inside specific types and malignancy grade. The wide spectrum of cellular environments they feature invalidates several hypotheses on which diffusion-based microstructure models are built and, contemporarily, poses difficulties in the process of tracking white matter in affected regions. Given these limitations, are these techniques worth using in this complex pathological environment? During the last three years I explored several state of the art diffusion-based methodologies in a cohort of patients suffering from a range of brain tumours. Hence, this thesis strives to be a summary of this work, laying the foundation for future studies aiming to integrate the use of advanced dMRI in the clinical neuro-oncological practice. The thesis is divided in three main parts, which are organized as follows: In the first part, an assessment is made whether two widely known diffusion advanced models, Neurite Orientation Dispersion and Density Imaging (NODDI) and the Spherical Mean Technique (SMT) are properly fitted in the tumoral lesion in terms of goodness-of-fit and parameter precision. Several works, concentrating mainly on NODDI, used such techniques not as biophysical models but as signal representations, trying to find biomarkers that differentiate more and less isotropic environments which contribute to the totality of the diffusion signal in ‘tumoral’ voxels. These studies were performed without first checking whether these diffusion metrics are mathematically reliable. This issue is here assessed from a technical point of view, without giving specific biophysical meaning to the models in exam inside the tumoral tissues The second part features a comparison study between methods for the identification of structurally disconnected white matter (WM) in brain tumour patients. Here, two branches of methodologies were identified, namely direct and indirect approaches. The formers use single-subject tractography to directly investigate which fibre bundles may be affected by the presence of the tumour. The latters, instead, embed the focal lesion on a normative atlas of white matter tracts, identifying the probability of a WM voxel being disconnected by the pathology. Employing known image analysis metrics, both approaches are discussed, highlighting points of convergence, but also of disagreement, in terms of the physio-pathological information they can convey. In the third and last part of this thesis, tumour-related anomalies of diffusion-based structural connectivity (SC) matrices are put in relationship with metabolic measures from [18F]-FDG PET. A procedure for tractography algorithm selection was firstly performed, and after the SC quantification, a statistical method of detecting altered connections in the tumour-affected SC matrix is presented. Within such a framework, the amount of affected SC entries was eventually quantified in the available cohort of patients and put in relationship with standardized uptake values from PET. Finally, a discussion of the results of this association is provided, paying particular attention to the limitations of these imaging modalities in the brain oncological field.
Sadeghi-Meibodi, Niloufar. "Image-based biomarkers for the invivo evaluation of human brain gliomas." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209991.
Full textThe World Health Organization classification of gliomas is the primary basis for guiding therapy and assessing overall prognosis in gliomas. This classification system, based on histological features, often falls short of predicting therapeutic response of individual tumors within the same histological grade. Yet, it still remains the grading method for both research and clinical prospects.
Unlike any other organ the brain has multiple protective layers such as the skull that ensure a homeostatic environment. The resulting reduced access to the brain and the absence of plasmatic brain tumor markers bring neuroimaging in a central position in diagnosis and management of brain tumors. Moreover, neuroimaging has evolved from a purely morphologic investigation into a diagnostic tool that allows characterization of particular physical alterations within brain tissue. Understanding the relationship between the physical characteristics of tumor tissue, studied by MR imaging, and biological characteristics of the tumor is therefore important for the appropriate integration of neuroimaging in brain tumor management. The general objective of this work is to define the relationship between physiologybased MR imaging and biological features of glial tumors. Diffusion and perfusionweighted imaging, physiologybased MR techniques provide the data based on physical characteristics of the tissues. Diffusion weighted imaging (DWI) allows the measurement of water molecules diffusivity within the brain tissue by means of apparent diffusion coefficient (ADC) measurements. Perfusion weighted imaging (PWI) is based on changes of MR signal during the passage of contrast material through the intravascular space and allows hemodynamic measurements such as those of cerebral blood volume (CBV)within the brain tissue.
Highgrade diffuse gliomas are currently differentiated from low grade diffuse gliomas by increased cellularity with nuclear atypia, mitotic activity, endothelial proliferation and necrosis. Components of the extracellular matrix and angiogenesis constitute some other features of gliomas, which have established links with oncogenic processes that influence the proliferative and infiltrative potentials of these tumors. We have specifically targeted these features in our comparative studies with the working hypothesis that physiologybased MR measurements, obtained in vivo, might provide information that is pertinent in terms of tumor malignancy.
We chose to approach the biology of brain tumors in two ways: in vivo, by means of metabolic imaging techniques such as positron emission tomography (PET) and ex vivo, by means of histological and immunohistochemical analyses of tumor specimens.
Many studies have investigated the relation between ADC values and cellularity in gliomas. The underlining theory is based on the premise that water diffusivity within the 9 extracellular compartment is inversely related to the content and attenuation of the constituents of the intracellular space. Therefore when cellularity increases, intracellular space volume increases with a relative reduction of the extracellular space, leading to restricted diffusion of water molecules. However other factors may affect the value of ADC in gliomas such as the extracellular matrix which contains various amounts of hydrophilic macromolecules susceptible to change water molecules diffusivity. Hyaluronic acid is one highly hydrophilic component of the extracellular matrix of gliomas and its level of expression changes significantly during the progression to anaplasia in gliomas. Our hypothesis was that hyaluronan may influence ADC values in high and low grade gliomas.
We demonstrated a positive correlation between ADC values and the immunohistochemical level of hyaluronan in glial tumors.
Previous studies have confirmed the utility of positron emission tomography using C11 Methionine (PETMET) as a prognostic tool in patients with gliomas. Higher MET uptake is associated with greater proliferative potential and a higher level of malignancy in gliomas.
The increased aminoacid uptake in gliomas seems to reflect increased transport mediated by aminoacid carriers located in the endothelial cell membrane. Our hypothesis was that CBV measurements, index of tumor vascularity, may be related to tumor aminoacid metabolism.
We found a positive correlation between maximum CBV values and maximum MET uptake values in gliomas.
A limitation to these preliminary studies was lack of direct correlation between MRbased measurements and histologic and metabolic data. Indeed, glial tumors are known for their remarkable tissue heterogeneity across different grades, within the same grade, and even within a single given tumor. Therefore we used image coregistration and stereotactic biopsies to further assess the relationship between MRbased imaging data and both metabolic and histologic analysis.
The second part of our studies was based on measurements at the exact same localization on both MR and PET images where biopsy specimens were performed. We found a local relationship between CBV and MET uptake values. Both measurements correlated with mitotic activity and endothelial proliferation; two features of tumor aggressiveness.
In order to quantify tumor cellularity and tumor angiogenesis, we respectively measured cell density and vessel density using immunohistochemical markers to identify vessels. We found a regional relationship between CBV and cell density, as well as vessel density in gliomas whereas no correlation was found regionally between ADC and cell density.
We concluded that CBV measurements may be used locally as indices of angiogenesis and cellularity in gliomas; whereas local ADC measurements are more variable and may not be used as a marker of cellularity in heterogeneous tumors such as gliomas.
Doctorat en Sciences médicales
info:eu-repo/semantics/nonPublished
Tartaglia, Sara. "NEUROFIBROMATOSI DI TIPO 1 E GENI MODIFICATORI PREDISPONENTI L’INSORGENZA DI TUMORI (GLIOMA DELLE VIE OTTICHE)." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3425628.
Full textLilja, Åsa. "Psychoneurooncology psychological dynamics in glioma patients /." Lund : Dept. of Psychology, Lund University, 1992. http://books.google.com/books?id=SnZrAAAAMAAJ.
Full textOuedraogo, Zangbewende guy. "Rôle de l'activation de STAT3 dans l'agressivité des glioblastomes. : Cancérologie expérimentale." Thesis, Clermont-Ferrand 1, 2014. http://www.theses.fr/2014CLF1MM26/document.
Full textGliomas are tumors of the central nervous system. The highest degree in glioma malignancy is Glioblastoma (GBM) that is the most frequent of the brain cancers. GBM patients are treated by surgery at first (if it is possible), followed by radiotherapy and concomitant and adjuvant temozolomide. However, this treatment is not curative in part because GBM cells display an outstanding primary radioresistance. The JAK/STAT3 (Janus Kinase/Signal Transducer and Activator of Transcription 3) signaling pathway seems to be involved in the GBM aggressiveness. STAT3 is an intracellular signal transducer protein. It is activated by phosphorylation on its tyrosine 705 (pSTAT3-Y705) and serine 727 (pSTAT3-S727) residues. The tyrosine 705 activation is produced downstream the signal induced by the binding of interleukine-6 (IL-6) cytokine to its gp130-IL-6Rα transmembrane receptor complex. The mechanisms of the serine 727 phosphorylation are less characterized. The role of STAT3 activation in the radioresistance of GBM was studied here. Basal levels of pSTAT3-Y705, pSTAT3-S727 and intrinsic radioresistance were evaluateded in a panel of 15 GBM cel lines. Activation of STAT3 in the glioma cell lines was assessed by western blotting and radioresistance through cell surviving fraction to irradiation. In addition to the description of the basal activation of STAT3 in the glioma cell lines, this study evidenced, for the first time, a correlation between pSTAT3-S727 and GBM intrinsic radioresistance. Using a pharmacological inhibition strategy, we identified Gö6976 as a chemical blocking Y705 phosphorylation of STAT3 in GBM cells. Gö6976 also inhibited pSTAT3-S727 but only in the pSTAT3-Y705-negative cell lines. Treating GBM cell with Gö6976 slowed their growth regardless of STAT3 activation status. Interestingly, Gö6976 showed a highly significant radiosensitizing effect on pSTAT3-Y705-negative cell lines that was consistent with the down-modulation of pSTAT3-S727. The relevance of these results is strengthened by immunohistochemical assay performed of GBM clinical samples that showed a variable level of pSTAT3-S727 positive staining in all tumor cells of all the patients. Furthermore, we are currently running on an in vitro study of the pSTAT3-S727 biological function by the mean of STAT3 dominant positive and dominant negative proteins. In summary, we showed that pSTAT3-S727 is involved in the intrinsic radioresistance and that pSTAT3-Y705 is a negative predicting marker of GBM cell response to Gö6976 as both a pSTAT3-S727 inhibitor and a radiosensitizer. Altogether, our results strengthen the clinical relevance of a specific inhibition of pSTAT3-S727 to radiosensitize GBM and then improve the patient treatment
Selek, Laurent. "Traitement intra-tumoral des gliomes malins par infusion convective de bevacizumab, développement d'un modèle de gliome chez le gros animal, étude anatomique de la diffusion convective dans un encéphale humain." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAS040/document.
Full textHigh grade gliomas are the most frequent primitive central nervous system tumor. The standard treatment is an association of surgery, radiotherapy and chemotherapy. The mains issues with these treatments are the infiltrative properties of the tumour in a highly functional parenchyma, the blood-brain barrier limiting the transvascular transport of chemotherapy and the inherent radioresistance of glioma cells.Upon different strategy to overpass the blood-brain barrier, a direct injection in the brain was advocated. In order to maximize this delivery, the concept of convection enhanced delivery was developed; it consists in a direct injection in the parenchyma with a low flow-rate.Bevacizumab is an anti-VEGF A antibody, VEGF is one of the most important angiogenic factors. The goal of this treatment is to inhibit the angiogenesis and slow down the tumor growth.We propose to study the use of this antibody in a direct intra-cerebral infusion.First, we focalize on the pharmacokinetic properties of an intratumoral injection by convection –enhanced delivery compared to a systemic administration. This shows an equivalent intratumoral concentration with systemic concentrations significantly lower with the intra-tumoral injection. An important result is the similar concentration in the controlateral hemisphere with the two routes of infusion. Convection-enhanced delivery is suitable to carry far from the infusion site high molecular weight proteins. An intra-tumoral bevacizumab may theoretically provide similar efficiency with less systemic side-effect.Then, the efficiency of an intra-tumoral infusion of bevacizumab is compared to a systemic injection on a mouse glioma model. In terms of survival the intra-tumoral treatment is significantly more efficient with an important decrease of angiogenesis and tumoral proliferation.If convection-enhanced delivery rodent study were promising, clinical trials failed to show any efficiency of intra-tumoral injection mainly due to inadequate delivery secondary to backflows and leakages. One of the limits of the rodent model is the absence of cortical sulci, main leakage provider. The development of a model anatomically relevant could simulate real conditions of injection and develop implantable device of injection in realistic conditions. We have developed the first induced model of glioma in a large animal. We choose the pig for the similarity of its brain anatomy and its size. The animals have been treated with ciclosporin to induce an immunosuppression, human glioma cells have been implanted, leading to the development of brain tumor.We have studied the pressure on the infusion line and correlate it to backflow and leakage. We have identified a pattern of pressure for successful infusion. Different pressure pattern have systematically led to backflow or leakage. These pressures criteria could permit to us an early detection of inadequate infusion to replace the catheter and avoid the failure of precedent clinical trials.Next step have been the intra-tumoral injection via an implanted device on pig glioma model. No infectious complication has been related with a good local and neurologic tolerance. The injections have led to a relevant diffusion through the tumor with a rapid flow to the periphery due to the interstitial pressure gradient between the tumor and the periphery.Last step of this work have been the anatomical study of a dye distribution by convection-enhanced delivery in a human encephalon. Indeed if pig brain is similar to human brain, human white matter structure is unique. This work is focalized on the diffusion from the corona-radiata to the main white matter tracts. The distribution is anisotropic following white matter but the diffusion is different depending on the position of the catheter. The infusion seems to open low rheological impedance paths the position of the catheter have to be adapted to the white matter tract to target
Azar, Safa. "Tumeurs cérébrales de bas grade : élaboration de modèles in vitro et in vivo pour le développement de thérapies innovantes." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT017.
Full textLow grade gliomas are low proliferating tumors affecting functional regions of young patients. In most cases, they tend to transform into a more malignant state following surgery. These tumors carry a key mutation in isocitrate dehydrogenase (70-80% of DLGG). Gliomas with IDH1 mutation have improved prognosis compared togliomaswith wild type IDH1. IDH1 protein acquires the ability to convert α-Ketoglutarate (α-KG) to 2-OH-glutarate (2-HG). The new onco-metabolite can interfere with the normal function of α-KG, leading to a general hypermethylation of the genome, thus inducing a blockage of the cellular differentiation. Very good reviews on the molecular mechanisms underlying high grade glioma invasion already exist but little is known about the cellular and molecular mechanisms in diffuse low grade gliomas. To that end, I characterized the profile of IDH1 mutated cells in the different types of DLGG. I have demonstrated that the tyrosine kinase, PDGFRα and EGFR receptors are abundantly expressed by tumor cells eventhough they are not activated. In contrast, a strong phosphorylation of Erk p42 / 44 proteins was detected in these tumors. This phosphorylation has a dual origin: tumor cells and their environment. The use of a series of markers allowed me to better define the state of differentiation of cancerous cells and to demonstrate a preferential expression of Sox8 in oligodendrogliomas while Sox9 is predominant in astrocytomas. In a second time, I have developed a method for the culture of low-grade diffuse gliomas and isolated five cell lines carrying the recurrent mutation IDH1 R132H. Recently Agios has identified very specific inhibitors (particularly AGI-5198) of the mutated IDH1 enzyme which, used in a murine glioma model, contributed to the demethylation of H3K9me3 histones with an increased expression of differentiation related genes as well as a reduction of the tumor mass. On the contrary, I have shown that AGI-5198 increases cell growth of patient cell lines, modifies the cellular migration and various signaling pathways.These studies shed new light on the phenotype of tumor cells, their diversity and The molecular mechanisms governing their proliferation
Bruyère, Céline. "Caractérisation du rôle des chémokines de type CXCL dans le comportement biologique de deux types de cancers naturellement résistants à l'apoptose, le cancer de l'oesophage et le gliome." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209819.
Full textLes chémokines sont des cytokines chémotactiques responsables de la migration des leucocytes et exprimées en réponse à des cytokines inflammatoires, à des facteurs de croissance et à des stimuli pathogènes. De nombreux cancers possèdent un réseau complexe de ces chémokines. Les chémokines de type CXCL et plus particulièrement CXCL8 et CXCL12 sont impliquées dans la biologie des gliomes et du cancer de l’oesophage. Au cours de mon travail de thèse de doctorat, nous avons étudié l’expression des 15 chémokines CXCL et des 9 récepteurs aux chémokines CXCL dans divers modèles de gliomes et de cancers de l’œsophage. Cette étude menée par RT-PCR nous a permis de mettre en évidence la présence d’un patron d’expression complexe de ces chémokines CXCL dans les divers modèles analysés. Nous avons observé une expression plus importante des chémokines CXCL pro-angiogéniques par rapport aux chémokines anti-angiogéniques dans ces deux types de cancers. Nous avons également pu mettre en évidence une implication potentielle des chémokines CXCL2, CXCL3 et CXCL8 dans l’acquisition de la résistance au traitement par témozolomide des gliomes d’origine astrogliale.
Les glioblastomes et les cancers de l’œsophage étant deux types de cancers résistants aux stimuli pro-apoptotiques, et le témozolomide étant la seule molécule dotée de bénéfices thérapeutiques réels dans le cas du glioblastome, nous avons également testé le témozolomide dans nos modèles de cancer de l’œsophage in vitro et in vivo. Nous avons pu ainsi montrer un bénéfice thérapeutique réel apporté par cette molécule in vivo sur des animaux immunodéficients greffés avec des cellules humaines de carcinome épidermoïde de l’œsophage. Ce bénéfice thérapeutique peut être expliqué en partie par différents mécanismes d’action tels que l’induction de processus soutenus d’autophagie suivis par de l’apoptose mais également par des effets anti-angiogéniques. Enfin, nous avons pu montrer que la diminution d’expression même transitoire de la chémokine CXCL2 dans nos modèles in vitro de glioblastome et de carcinome épidermoïde de l’œsophage entraîne une diminution de la croissance de ces populations cellulaires cancéreuses, suggérant un rôle important de cette chémokine dans la biologie de ces deux types de cancers. Enfin, nous avons démontré un effet anti-angiogénique in vivo pour le témozolomide dans un modèle de xénogreffes de cancers oesophagiens humains chez la souris immunodéficiente.
En conclusion, l’ensemble de nos résultats suggèrent que le témozolomide, bien qu’il devienne bientôt un générique sous sa forme d’administration i.v. (la forme orale étant déjà générique), pourrait représenter une molécule d’intérêt pour combattre le cancer de l’œsophage, comme on le sait déjà depuis 2005 en ce qui concerne les glioblastomes. Nos résultats montrent ensuite l’importance du patron d’expression des chémokines CXCL dans la biologie des cellules gliales tumorales et des cellules cancéreuses de l’œsophage. Enfin, nos résultats montrent que le témozolomide détruit en partie ce réseau de chémokines CXCL au sein de ces deux types de cancers.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Gimenez, Paul. "Radiothérapie par photoactivation de nanoparticules et effet Mössbauer." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAS038/document.
Full textAn efficient radiotherapy needs a localized dose to the tumour, which means a high contrast between tumorous and healthy tissues. A synchrotron low energy monochromatic irradiation of a tumour charged in high-Z elements allows maximizing photoelectric interactions in the tumour and spare the healthy tissues. Photoelectrons and high LET Auger electrons thus produced deposit their energy locally, enhancing radiation dose to tumor cells. Another interaction allows to enhance the dose by Auger electrons: the Mössbauer effect. This resonant and recoilless interaction specific to some isotopes like 57Fe has a cross section 450 times bigger than photoelectric effect. This thesis evaluates the in vitro use of magnetite nanoparticles combined with those 2 types of interactions. The nanoparticles evaluated present a high internalisation and a perinuclear distribution inside F98 cells. A dose-enhancement factor of 3 was obtained by photo activation of the iron Nps, this represents a huge increase. This multidisciplinary work encompasses experiments in chemistry, physics and biology in order to evaluate the applications of magnetite nanoparticles to radiotherapy
Capdevielle, Caroline. "Traitement du gliome infiltrant du tronc cérébral par un régulateur épigénétique : rôle d’EBP50 et d'IRSp53." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0405/document.
Full textDiffuse Intrinsic Pontine Glioma (DIPG), is a rare and highly aggressive pediatric tumor. The average survival time after diagnosis is less than one year. A major genetic characteristic of this disease is the mutation of histone H3 (H3K27M). The evolution of knowledge in epigenetics has made it possible to design epigenetic regulatory inhibitors able to modify, or even offset, the effect of this mutation. For example, panobinostat (PS), a histone deacetylase inhibitor, reduces cell growth and induces DIPG cell death, both in vitro and in vivo. Its effectiveness is currently being evaluated in clinical trials. My thesis project aimed at determining the role of two proteins, EBP50 and IRSp53, deregulated in different DIPG cell lines after treatment with PS. EBP50 has already been described as involved in tumor progression but its dual function, both oncogenic and tumor suppressor, has led us to further investigate its role in the DIPG cells. IRSp53 has been poorly studied in solid cancers, though it plays an important role in cell motility and invasion. Down-regulation by RNA silencing of these two proteins in DIPG cell lines induces apoptosis, decreases cell growth and motility, leading us to the hypothesis that these two proteins are oncogenic proteins. In addition, the cytoplasmic and nuclear localization of the EBP50 protein is consistent with its oncogenic role in DIPG cells. Then, I investigated the effect of combinatorial therapy that associates PS with EBP50 or IRSp53 expression inhibitors. My results show an increase in the antitumor effect in vitro for both proteins but also in vivo for EBP50, in a preclinical model, the chicken embryo. In conclusion, these two proteins could be the targets of new treatments for DIPG tumors in combination with PS to enhance its efficacy
Braun, Stefanie Anett. "Analyse des Hedgehog-Signalweges in Zellkulturen maligner Gliome." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102026.
Full textDer Hedgehog (Hh) -Signalweg spielt während der Embryonalentwicklung eine wichtige Rolle, so auch bei der Entstehung des zentralen Nervensystems (Varjosalo & Taipale 2008). Andererseits führt seine unregulierte Aktivität zur Ausbildung verschiedenster Tumore (Bailey et al. 2009; Fiaschi et al. 2009; Shaw et al. 2009; Velcheti & Govindan 2007). Vorausgegangene Studien wiesen durch Immunfluoreszenz und real-time qRT-PCR nach, dass auch in Gliomen, speziell in Glioblastoma multiforme, dem agressivsten Hirntumor des Menschen, Effektoren des Signalweges (Gli1) überexprimiert werden (Wang et al. 2010). Die Aktivierung des Signalweges geschieht über Bindung des Hh-Liganden an den Rezeptor Ptch und endet mit der Aktiverung der Transkriptionsfaktoren der Gli Familie (Kinzler & Vogelstein 1990; Stone et al. 1996). Die aktuell bekannten Vertreter dieser Familie sind der Aktivator der Transkription Gli1, Gli2, der als Aktivator und Repressor agieren kann sowie Gli3 und Gli4, die die Transkription inhibieren (Marine et al. 1997; Ruppert et al. 1988). Ziel dieser Arbeit war es, herauszufinden, inwieweit die Transkriptionsfaktoren der Gli-Familie in Zellen von Glioblastoma multiforme aktiv sind. Dafür wurden Zellen aus Tumormaterial isoliert und daraus Primärkulturen hergestellt. In diese 13 Primärkulturen, wie auch in zwei Gliom-Zelllinien, wurden mittels transienter Transfektion Reporterplasmide eingebracht. Diese enthielten ein Gen der Gaussia-Luciferase, das unter der Kontrolle zweier verschiedener Promotoren (pT109 und pT81) mit Bindungsmotiven für die Transkriptionsfaktoren der Gli-Familie stand. Weiterhin wurde der Einfluss des Inhibitors des Hh-Signalweges Cyclopamin auf die Gli-Aktivität und die Metabolische Aktivität der Zellen untersucht. Die Beobachtungen ergaben, dass die zwei Zelllinien und sechs der primären Kulturen eine erhöhte Luciferaseaktivität und damit gesteigerte Aktivität von Gli1 zeigten. Weiterhin wiesen vier Kulturen eine verminderte Luciferaseaktivität auf. Dies ließ darauf schließen, dass in diesen Zellen Gli3 aktiv war. In den restlichen vier Kulturen zeigte sich keine Veränderung der Luciferaseaktiviät, was für einen Aufhebungseffekt von Gli1 und Gli3 oder gar keinen Effekt spricht. Weiterhin konnte gezeigt werden, dass die Luciferaseaktivität und damit die Aktivität von Gli1 in Zellen der Zelllinie T98G und von vier Primärkulturen nicht durch Cyclopamin beeinflusst wird. Lediglich eine Probe der Primärkulturen reagierte mit einer Abnahme der Luciferaseaktivität. Außerdem konnte Cyclopamin die ATP-Produktion sowohl in Zellen von T98G als auch in Zellen der Zelllinie, deren Gli-Aktivität durch Cyclopamin vermindert wurde, senken. Dies sprach für eine Smo unabhängige Wirkung des Cyclopamins. Da Cyclopamin ein potenzielles Pharmakon für die Antitumortherapie ist, bedarf dieser Umstand näherer Untersuchungen
Zouaoui, Sonia. "Epidémiologie clinique des tumeurs primitives du système nerveux central et en particulier des gliomes." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT002.
Full textGliomas have devastating consequences. Morbidity and mortality are high. Gliomas represent a complex heterogeneous group of pathologic entities and no underlying cause has been identified for the majority of them. Epidemiologic data vary from study to study. The number of each histological subtype is too small, even for a big neurosurgical center, to allow a good research on each subtype of glioma. Oncological and clinical specificities (epilepsy, cognitive disorders, motor impairments, etc) require a specific care and analysis. Indeed, we need to collect and record all new cases and follow up in large area, to allow good basic and clinical studies. Furthermore, population study is the only way to know what clinicians do to the patients, and make possible evaluating the medical care. The French societies involved in Neuro-Oncology (Société Française de Neurochirurgie, Société Française de Neuropathologie, Association des Neuro-Oncologues d'Expression Française) have recently created the French Brain Tumor DataBase (FBTDB). The main objective of the FBTDB is to prospectively record all primary central nervous system tumors (PCNST), in France, for which histological diagnosis is available (1-3). The long-term goals of the FBTDB are to create a histological national registry and a national network to (1) perform epidemiological studies, (2) implement a new database and use it for setting up both clinical and basic research protocols, (3) allow the evaluation of the medical practices of an area or of the entire country, and (4) harmonize the healthcare of patients affected by PCNST at the higher level. The present PhD student, Sonia Zouaoui, will focus her work on gliomas. First, she will collect data, and will analyze prognostic factors, survival and oncological patterns of care for patients with newly diagnosed glioma in France. Secondly, she will participate in the study of geographical distribution of the main types of glioma and in search of causal factors. Thirdly, she will conduct an inventory of cryopreserved material available for translational research
Marand, Sandie. "Identification et caractérisation fonctionnelle de protéines d'intérêt pour le diagnostic et la thérapie des tumeurs gliales." Université Joseph Fourier (Grenoble ; 1971-2015), 2009. http://www.theses.fr/2009GRE10043.
Full textGliomas, particulary glioblastoma, are public health problem because of their dark pronostic. Difficulties to classify and lack of anti-tumor therapy efficiency are due to ignorance about these tumors. To improve diagnosis and also to understand the process leading to glioma formation and so to find new treatment, we choose to study patient sera immuno-reactivity. So we discovered about a hundred of proteins which immune status change between normal and pathological condition. Identifying and studying these proteins, we highlight important mechanisms for cancer and define key targets for therapy. Among these proteins, we studied immuno-reactivity to ten which leads us to define two types of antigens : those which immune status changes with tumor appearance and those who change depending on the sensibility to treatment of the tumor. We then choose three of these proteins for detail analysis : eef1a1, crhsp24, mark3. These three antigens are overexpressed in gliomas. Expression inhibition by siRNA induced a diminution of tumoral cell proliferation, indicating that they are implicated in this mechanism regulation. This essential function makes these potential therapeutic targets. First tests of vaccination toward mark3 show that studying this antigen is of particular interest despite results are not those wished. We show here that auto-antibody associated to glioma presence can be found in sera. These antibodies clearly have diagnosis interest but also can have prognostic interest. Their biological analysis could lead to consider them like potential therapeutic targets
Andreiuolo, Felipe. "Target in context : molecular pathology of pediatric ependymoma and high grade glioma." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00913042.
Full textLe, Boiteux Elisa. "Altération du contrôle de H3K27me3 et dérégulation transcriptionnnelle dans les gliomes : études des clusters HOX." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAS027.
Full textEpigenetic alterations are a well-known signature of cancer cells. However, the causes of these defects, as well as their consequence on gene expression, remain elusive. My thesis project specifically lies in this thematic, and focuses on the causes and consequences of epigenetic alterations in gliomas. These brain tumors can be divided into two subsets, based on IDH mutation status, that are characterized by different methylation profiles. Interestingly, the mutation of IDH is also associated with a better prognosis. Our strategy, based on exhaustive molecular analyses, relies on the study of 70 glioma samples, classified according to their IDH status, and of six glioblastoma stem cell (GSC) lines.We found that most transcriptional alterations in tumor samples were DNA methylation-independent. Instead, altered histone H3 trimethylation at lysine 27 (H3K27me3) was the predominant molecular defect at deregulated genes. Our results also suggest that the presence of a bivalent chromatin signature at CpG island promoters in stem cells predisposes not only to hypermethylation, as widely documented, but more generally to all types of transcriptional alterations in transformed cells. In addition, the gene expression strength in healthy brain cells influences the choice between DNA methylation- and H3K27me3-associated silencing in glioma. Highly expressed genes were more likely to be repressed by H3K27me3 than by DNA methylation. Our findings support a model in which altered H3K27me3 dynamics, more specifically defects in the interplay between Polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of transcriptional alteration in glioma cells. Also, our study revealed that homeodomain genes, and in particular HOX genes, are characterized by an atypical defect in aggressive gliomas (IDHwt), associating a gain of expression with an aberrant gain of methylation. We determined that this alteration affect all the four HOX clusters, and that the reactivation of these genes is likely a consequence of the aberrant loss of H3K27me3 that specifically affect these clusters. This study allows to propose a model whereby global DNA hypomethylation triggers ectopic expression of numerous genes through a cascade of events, in which HOX gene alteration would have a central role.The observation that H3K27me3 is deregulated in gliomas, and particularly on HOX genes, also lead us to investigate for the role of non-coding RNA in these mechanisms. We have identified HOXA-AS2, a yet poorly characterized long non-coding RNA located at HOXA locus, that is specifically and significantly overexpressed in IDHwt gliomas. The inhibition of HOXA-AS2 in well-characterized CSG lines suggests that this transcript play a central role in the biology of these cells. Thus, it would contribute to the aggressiveness of CSG by inhibiting inflammatory pathways and promoting cell proliferation. Altogether, these works revisit the relationship between epigenetic alterations and aberrant transcription, and present the control of H3K27me3 as the main cause of transcriptionnel defects in cancer
Konnully, Augustus Meera Bessy. "Characterization of cellular heterogeneity in Diffuse Low Grade Glioma." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT038.
Full textDiffuse Low-Grade Gliomas (DLGG) are WHO grade II glial tumors affecting younger adults. They are characterized as silent, slow growing tumors with fewer mitotic activities. However, they diffuse and invade the healthy brain via blood vessels and nerve fibers. These, over a period of years develop to malignant Glioblastoma, aggressive brain tumors where patients have an average medial survival of 12-15 months after diagnosis. Ill-defined phenotypic and cellular diversity of DLGG poses serious limitation to treatment and prevention at the early stage.In my PhD thesis, I aimed to address this limitation by characterizing the cellular heterogeneity in IDH1-mutated DLGG. By performing immunofluorescence analysis on grade II astrocytoma and oligodendroglioma, I have identified two largely non-overlapping cellular subpopulations expressing SOX9 and OLIG1 transcription factors, which represent astrocyte-like and oligodendrocyte-like cells, respectively. Upon further investigation, I have shown that these subpopulations express distinct molecular markers. Sox9 cells are associated with APOE, KCNN3, CRYAB and ID4, while Olig1 cells showed strong correlation with the expression of PDGFRA, SOX8, MASH1, and SOX4. In addition, the sox9 cells show a particular activation of signaling pathways including Notch, BMP and their downstream targets.To ascertain the role of Notch signaling in regulating the formation of these tumoral subpopulations, I used magnetic sorting of tumor cells from freshly resected glioma samples and overexpressed Notch Intracellular Domain (NICD), an active form of Notch. Increased Notch activation resulted in an upregulation of Sox9- and downregulation of Olig1-associated cell markers. I have then extended these analyses on one anaplastic IDH1 mutated patient derived cell line which reproduced similar gene expression profile confirming the robustness of the role of Notch signaling in regulating the plasticity of the cells. Parallel experiments performed by activation of Bone Morphogenetic Protein (BMP) signaling on IDH1 mutated cell line did not show a prominent effect on the plasticity. Nevertheless, BMP signal activation highly upregulated CRYAB, a SOX9 related marker and downregulated OLIG1 and OLIG2.In conclusion, I have identified two non-overlapping tumor subpopulations in diffuse low-grade gliomas and demonstrated the deterministic role of Notch signaling pathway in their formation. I believe that these findings would aid in better understanding tumoral heterogeneity in DLGG and be extended in designing new therapeutic strategies against these tumors
Skog, Johan. "The quest for new improved adenovirus gene therapy vectors against glioma tumours." Doctoral thesis, Umeå : Umeå University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-624.
Full textMoncelet, Damien. "Propriétés d'agent de ciblage et de molécules cytotoxiques pour l'IRM et la thérapie de gliomes." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0166/document.
Full textThe aim of this thesis is to improve the diagnostic and the therapy of glioma through both the integrin targeting by RGD and the development of Alkoxyamine as multimodal agent. The RGD internalization is regulated by the cellular density, a histologic parameterfor the glioma classification. In our model, the cellular density increases the contribution of both the clathrin-mediated endocytosis and the metabolism but not the one of the cytoskeletal. A better knowledge about the RGD internalization regulation by the cell density could help the MRI probe development for glioma diagnosis. Properties of alkoxyamine as multimodal agent were evaluated to perform theranostic. The spontaneous alkoxyamine homolysis give a nitroxide radical and a cytotoxic alkylating agent that could induce immune reactivation against the tumor. This nitroxide is an Overhauser enhanced MRI contrast agent. The strong signal enhancement in the nitroxide vicinity gives information in real-time about the release of the alkyl radical. Alkoxyamine adaptation for a conditional homolysis through specific glioma proteolysis activity could induce a localized alkyl therapeutic effect with a real-time monitoring. Physiological barriers limit the drug accumulation in the targeted sites. In this study, the intratracheal instillation of nanoparticles can substitute the intravenous administrationincreasing their intratumoral retention time
Woxius, Jonathan. "Att tvingas dela hjärna med en inkräktare : En undersökning av den psykologiska aspekten av att leva med en hjärntumör." Thesis, Högskolan i Halmstad, Akademin för hälsa och välfärd, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42197.
Full textBackground: Primary malignant brain tumor carries a heavy symptom burden that presents itself in a big variation of physical, cognitive and neurological symptoms that affects the patients functioning and psychological wellbeing. Along with the emotional and existential stress of living with cancer, patients diagnosed with brain cancer also suffer from cognitive dysfunction. Purpose: The aim of this study was to illustrate the psychological strain of adult patients living with primary malignant brain tumor. Method: The study was executed as a general literature review based on ten scientific articles. The articles were quality-tested and analyzed to later be sorted into three main themes. Results: The first theme, The uncertainty in the prognosis, illuminate the uncertainty that occurred due to an unpredictable future and the need of information concerning treatment options and what symptoms to expect. The theme The psychosocial consequences, describes how the patients felt as though they had lost themselves to the disease due to memory loss, personality disorders and the inability to maintain the lifestyle they previously had. The patients shared a fear of being a burden to the people around them and a concern of losing their independency. The existential confrontation speaks about the inevitable thoughts of death and the importance of hope.
Le, Rhun Émilie. "Recherche de biomarqueurs protéiques dans le but de réaliser une classification moléculaire des gliomes : étude GLIOMIC." Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S005/document.
Full textThe annual incidence of gliomas is estimated at 6.6 per 100,000. Suvival varies profoundly by type of glioma, with 5-year survival rates of 48% for World Health Organization (WHO) grade II diffuse astrocytoma, 28% for WHO grade III anaplastic astrocytomas, 80% for WHO grade II oligodendroglioma, 52% for WHO grade III anaplastic oligodendroglioma and 5% for WHO grade IV glioblastoma, the most frequent primary malignant brain tumor. A better understanding of the molecular pathogenesis and the biology of these tumors is required to design better therapies which can ultimately improve the prognosis of patients. The WHO 2016 classification of central nervous system tumors has for the first time integrated molecular data with the histopathological data, in order to improve the classification of the different subgroups of central nervous system tumors and to allow to derive more specific therapeutic strategies for each of the different subgroups.In the present work, we aimed at evaluating the value of a proteomic approach using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry coupled with microproteomic analysis in gliomas through the GLIOMIC clinical study (NCT02473484), we aimed at obtaining a molecular classification of glioblastomas by integrating clinical data to the ones obtained by such technologies. The feasibility of this approach was first demonstrated in a cohort of anaplastic gliomas. In this first analysis, we showed that although proteomic analysis confirmed the heterogeneity of brain tumors already observed with the histological analysis, the two approaches may lead to different and complementary information. Three different groups of proteins of interest were identified: one involved in neoplasia, one related to glioma with inflammation, and one involved neurogenesis. Then, analyses of glioblastomas confirmed the three proteomic patterns of interest already observed in the anaplastic gliomas, which represents new information as compared to histopathological analysis alone. These results have to be confirmed in a larger cohort of patients.We conclude that MALDI mass spectrometry coupled with microproteomic analysis may provide new diagnostic information and may aid in the identification of new biomarkers. The integration of these proteomic biomarkers into the clinical data, histopathological data and data from molecular biology may improve the knowledge on gliomas, their classification and development of new targeted therapies
Knebel, Franciele Hinterholz. "Ação da amilóide sérica A em linhagens celulares de glioma humano." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/9/9136/tde-09092013-140918/.
Full textIn spite of the evidences sustaining the participation of SAA in processes that favor carcinogenesis and metastasis, and the proposal of SAA as a marker of tumor progression, no studies have yet addressed a potential direct activity of SAA on tumor cells. This study examined the direct effect of SAA on two human glioma lineages. Gliomas are primary brain tumors more common in adults and the lineages of this study, A172 and T98G, represent human carcinomas characterized by a highly aggressive biological behaviour and almost always fatal, classified as grade IV. A172 and T98G have some important differences in the invasiveness, they are less invasive and more invasive, respectively. For this study, we evaluated the effect of SAA on the synthesis of compounds representing different classes of substances that are somehow involved in tumor progression, among them we can cite the cytokine IL-8, the messenger molecule NO, the metalloproteinases MMP2 and MMP9 and RECK gene. Furthermore, we wonder if SAA was involved in the processes of proliferation, migration and cell invasion. SAA stimulated the production of IL-8 in lineage A172, while T98G produced high amounts of IL-8 that were not modified by SAA addition. SAA did not stimulate the production of IL-6 and TNF-α. SAA induced the production of NO, increased the expression of MMP-2 and MPP-9 and decreased the regulator of the expression of the MMPs; gene RECK. Moreover, we observed that SAA was a mitogenic stimulus, but it had a dual effect on migration and invasiveness behavior depending on cell lineage. For T98G SAA increased migration and invasion, and for A172 SAA inhibited migration and invasion. SAA was constitutively expressed and produced by both strains, and the isoform SAA1 predominated. The gene expression of all isoforms, SAA1, SAA2, SAA4, and protein synthesis of SAA were increased by the addition of INF-γ. Our findings based on in vitro assays support a direct contribution of SAA to tumor development, progression and metastasis depending on the cell type and concentration of SAA. Besides the role of SAA on tumor growth during an acute phase, the fact that SAA was expressed in tumor cells suggests an intracrine or an autocrine action of SAA.
Alentorn, Agusti. "Caractérisation génomique et génétique des gliomes diffus de bas grade de l’adulte." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T011.
Full textMultildimensional molecular characterization of tumors and more specifically of gliomas is of pivotal importance to identify: (i) new biomarkers (i.e. diagnostic, prognostic, theranostic or predisposing), (ii) new therapeutic targets and (iii) to improve our understanding of molecular oncogenesis.Our work has confirmed and consolidated previous data published in the literature, for example that: (i) 1p/19q co-deletion is associated with better prognosis, (ii) IDH mutation is associated with better prognosis, (iii) TP53 mutations and 1p/19q codeletion are mutually exclusive and (iv) PDGFRA is rarely altered, at genomic level, in low-grade gliomas (LGG).More originally, we have identified several genomic groups, with clinical and biological relevances, in LGG and more specifically in LGG without 1p/19q co-deletion: (i) 19q-deleted, (ii) 11p-deleted, (iii) 7-gained, (iv) 19-gained and (v) unclassified. Interestingly, 19q deletion abrogates the positive prognostic value of IDH mutation in LGG without 1p/19q codeletion.We have also identified new recurrent somatic gene mutations in LGG (i.e. TEP1 and RNF40 mutations), supporting the critical role of telomeres and chromatin remodelling in LGG.Finally, we have characterized further 11p-deleted LGG that exhibit mostly astrocytic phenotype and poor prognosis. This subgroup includes LGG overexpressing genes of inflammatory/immune cells (GIM -Glioma infiltrating microglia-, M1 macrophages and M2 macrophages) and infiltrated by macrophagic/microglial cells. This peculiar microenvironment detected in 11p-deleted LGG might be used as a therapeutic target. In conclusion, our work participates to characterize clinico-biological portrait of LGG and to describe a singular genomic subgroup of LGG characterized by 11p loss
Ben, Abdallah Mériem. "Un modèle de l'évolution des gliomes diffus de bas grade sous chimiothérapie." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0215/document.
Full textDiffuse low-grade gliomas are brain tumors of young adults. In this thesis, we focus on the segmentation and on the modeling of these tumors. In the first part of the manuscript, we study the segmentation of diffuse low-grade gliomas based on different manual and semi-automatic methods. The delineation of these tumors can be problematic because of their very infiltrating and inhomogeneous nature. In clinical practice, the monitoring of diffuse low-grade gliomas is based on the estimation of tumor volume, obtained either through a segmentation followed by a software reconstruction or through the three diameters method. As for the segmentation, it is manual and it is performed by practitioners on FLAIR-weighted or T2-weighted MRI.The three diameters approach is fast but it is difficult to implement in the case of highly infiltrating diffuse low grade gliomas or after a treatment. The manual segmentation and software-based volume reconstruction solution is time-consuming but it remains more accurate in comparison with the three diameters method. We investigate in this work the reproducibility of the manual segmentation with the OsiriX software by performing a subjective test in the Living Lab PROMETEE in TELECOM Nancy. The results of this study show that neither the practitioners' specialty nor their number of years of experience seem to have a significant impact on the quality of the segmentation. We also compare the results to those of a second test where we apply the three diameters method. Finally, we explore two semi-automatic segmentation algorithms which are, respectively, based on active contours and on the level set method. Even if automatic segmentation seems to be a promising avenue, we recommend for now the use of manual segmentation because of the diffuse nature of low-grade gliomas, which makes the tumor's contours complex to delineate. The second part of the manuscript is dedicated to the modeling of diffuse low-grade gliomas themselves or, to be more precise, to the modeling of the evolution of the tumor's diameter during chemotherapy. The therapeutic management of patients with these tumors often includes indeed chemotherapy. For this work, we focus on Temozolomide chemotherapy in first-line treatment. After the beginning of the treatment, the practitioners would like to determine the optimum time of discontinuation. We propose a statistical modeling of tumor diameter under chemotherapy. This modeling is based on linear and exponential regression models. It can predict the tumor diameter from a set of training dataset and can alert the clinician on the state of change in diameter under treatment. We hope that these models will, eventually, be used as a tool in the planning of chemotherapy in a clinical environment
Magne, Nathalie. "Caractérisation du rôle des p21-activated kinases dans la physiopathologie des gliomes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS146.
Full textGliomas are the most common and lethal adult primary brain tumors. Their complex heterogeneity is evidenced by numerous genomic studies showing distinct molecular entities in glioma. P21-activated-kinases (PAK) are serine threonine kinases involved in multiple signal transduction pathways as downstream effectors of Rac and Cdc42. They regulate several key cancer-relevant pathways like cell division and movement. PAK1 and PAK3 are highly expressed in the brain; PAK1 is frequently overexpressed and/or over-activated in several human cancers whereas PAK3 is involved in neural differentiation and the developmental proneural pathway. The role of these two kinases in brain tumor pathophysiology is unknown. We have observed that PAK3 expression was associated with a longer survival for patients with glioma and was higher in 1p/19q gliomas. In vitro, PAK3 was highly expressed in a glioma cell line with a proneural signature that did not induce tumor after xenograft. Its increasing expression upon a set of differentiation paradigms was correlated with those of neural and/or neuronal markers in glioma cell lines. Inhibition of PAK3 expression increased cell renewal and tumorigenicity. It impaired cell differentiation, promoting the glial lineage
Lefranc, Florence. "Caractérisation de divers effets biologiques provoqués par la gastrine au niveau de gliomes et de gliosarcomes expérimentaux." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211044.
Full textNous avons au préalable tenté de caractériser par une technique de RT-PCR l’expression d’ARN pour divers récepteurs à la gastrine au sein de tumeurs du système nerveux central et périphérique (comprenant des gliomes, des méningiomes et des schwannomes), au sein de gliomes et d’un gliosarcome expérimentaux, et au sein de cellules endothéliales humaines de veines ombilicales HUVEC et de manchons vasculaires obtenus par microdissection au laser d’un glioblastome humain. Nous avons également développé un modèle de neurochirurgie expérimentale chez le rat consistant en la résection microchirurgicale de la tumeur cérébrale après un bilan iconographique par IRM. Nous avons ainsi montré que l’administration de gastrine dans le foyer opératoire après résection tumorale augmente significativement la période de survie de rats immunodéficients porteurs du modèle de gliome humain U373 et de rats conventionnels porteurs du modèle C6 de rat. In vitro, nous avons montré grâce au test colorimétrique MTT que la gastrine induit une diminution significative du taux global de croissance de ces deux modèles avec une accumulation des astrocytes tumoraux dans la phase G1 de leur cycle cellulaire. Par la technique de Western blotting nous avons également montré que la gastrine induit une diminution significative des taux protéiques du complexe cycline D3-Cdk4 dans les deux modèles expérimentaux. Nous avons montré que la gastrine est capable de réduire significativement l’invasion des modèles C6 de rat, U373 humain et de gliosarcome 9L de rat au travers d’une matrice de collagène et de réduire l’invasion des cellules U373 en chambre de Boyden. La gastrine modifie également significativement la motilité des cellules C6 et U373 et l’organisation de leur cytosquelette d’actine.
Nous avons découvert que la gastrine administrée en intracérébral dans le foyer tumoral U373 augmente significativement le taux d’angiogenèse au sein de la tumeur. Nous avons alors investigué l’effet de la gastrine et des antagonistes des récepteurs à cholécystokinine sur le taux d’angiogenèse in vitro en utilisant le modèle des cellules HUVEC cultivées sur Matrigel. L’effet pro-angiogénique in vitro et in vivo de la gastrine est significativement contrecarré par le produit L365,260, un antagoniste relativement spécifique du récepteur CCK-B de la gastrine. La gastrine est chémoattractante sur les cellules HUVEC et augmente significativement leur sécrétion d’IL-8. Toutefois l’effet pro-angiogénique de la gastrine serait en partie dépendant de la modification du taux d’expression des sélectines par les cellules HUVEC, et non de la sécrétion d’IL-8. Nous avons réalisé une revue de la littérature pour tenter de comprendre pourquoi les astrocytes tumoraux migrants sont résistants à la chimiothérapie conventionnelle. A la fin du chapitre Discussion, dans le sous-chapitre intitulé « Quels sont les espoirs thérapeutiques dans le cas des gliomes dits diffus? », nous tentons d’analyser les implications thérapeutiques potentielles qu’il serait possible de tirer du présent travail.
Doctorat en sciences médicales
info:eu-repo/semantics/nonPublished
Dumont-Girard, Philippe. "Chimiothérapies intra-veineuses des tumeurs astrocytaires de haut grade : revue de la littérature et évaluation d'un protocole associant fotémustine, platine et VP16." Montpellier 1, 1998. http://www.theses.fr/1998MON11064.
Full textKritter, Thibaut. "Utilisation de données cliniques pour la construction de modèles en oncologie." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0166/document.
Full textThis thesis deals with the use of clinical data in the construction of models applied to oncology. Existing models which take into account many biological mechanisms of tumor growth have too many parameters and cannot be calibrated on clinical cases. On the contrary, too simple models are not able to precisely predict tumor evolution for each patient. The diversity of data acquired by clinicians is a source of information that can make model estimations more precise. Through two different projets, we integrated data in the modeling process in order to extract more information from it. In the first part, clinical imaging and biopsy data are combined with machine learning methods. Our aim is to distinguish fast recurrent patients from slow ones. Results show that the obtained stratification is more efficient than the stratification used by cliniciens. It could help physicians to adapt treatment in a patient-specific way. In the second part, data is used to correct a simple tumor growth model. Even though this model is efficient to predict the volume of a tumor, its simplicity prevents it from accounting for shape evolution. Yet, an estimation of the tumor shape enables clinician to better plan surgery. Data assimilation methods aim at adapting the model and rebuilding the tumor environment which is responsible for these shape changes. The prediction of the growth of brain metastases is then more accurate
Deluche, Mouricout Elise. "Implication des biomarqueurs NTRK2 et CHI3L1 dans la nouvelle classification histo-moléculaire des gliomes." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0063/document.
Full textGliomas, primary brain tumours of the central nervous system, are often of poor prognosis.The absence of clear criteria to identify them makes their diagnosis and management particularly difficult. The combined analysis of a cohort of 64 glioma patients and an international cohort of 671 patients from the TCGA revealed two prognostic groups of a differential expression panel of 26 genes (p = 0.007). This stratification into two prognostic groups was confirmed independently of the grade and molecular group of the tumor (p <0.0001). We have established a new diagnostic strategy based on the molecular classification of gliomas by integrating two prognostic biomarkers CHI3L1 and NTRK2. Multivariate analysis confirms that these biomarkers are independent of IDH status and tumor grade.While we have demonstrated by the protein analysis of CHI3L1 concordance with the transcripts, the results are different for TrkB. Therefore, a high expression of TrkB and its p75NTR co-receptor would be associated with tumor aggressiveness regardless of IDH status. Lastly, TrkB and p75NTR are present in exosomes from plasma of healthy controls and glioma patients, but their expression increases with the aggressiveness of tumor
Coget, Arthur. "Etude et modélisation de la plasticité cérébrale chez des patients porteurs de lésions gliales de bas grade opérés en chirurgie éveillée." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS053.
Full textIntroductionDiffuse low-grade gliomas (DLGG) are slow-growing brain tumors occurring in young adults. This slow progression induces extensive neuroplasticity and explains why patients most of the time do not show any obvious neurological deficit at the time of diagnosis although tumors are located in ‘eloquent’ areas. Therefore DLGG provide an interesting model in understanding mechanisms of neuroplasticity.Awake surgery with direct cortical and subcortical electrostimulation mapping is recommended as first-line treatment of DLGG, allowing to maximize tumoral resection and limiting postoperative neurological deficit, maintaining patients quality of life.Resting-state fMRI, based on BOLD signal analysis, is used to study functional connectivity and neural plasticity. This technique allows robust evaluation of neural networks without performing a task. Consequently, it bypasses the impact of confusion, sedation or neurological deficits on task execution. In this thesis, we aimed to investigate perioperative functional connectivity modifications in order to evaluate neural plasticity after awake surgery.Subsequently we explained the functional results using multimodal MRI imaging to analyze anatomic connectivity and hemodynamic parameters.Methods82 patients with DLGG who underwent awake surgical resection were included in the principal study. MRI acquisitions were performed successively before, within 36 h after and three months post-surgery. All scans were executed on the same MRI magnet for each patient, i.e. either a 3.0 T magnet (Skyra, Siemens) or a 1.5 T magnet (Avanto, Siemens). First, data were preprossed using a standardized classical pipeline and analyzed with the CONN toolbox v16.a.Second, anatomic connectivity was evaluated using diffusion tensor imaging of the corpus callosum.Finally hemodynamic changes induced by surgery were assessed with traditional perfusion imaging as well as using an innovative analysis of the BOLD signal’ s temporal shift.ResultsSurprisingly, it was found that specifically a diffuse transient postoperative interhemispheric disconnectivity occurred between homologous regions, known as homotopic connectivity.In parallel, immediate and long-term postoperative alterations in the anatomic connectivity of the corpus callosum were observed. Immediate and long-term postoperative modifications were also found regarding both regional and global hemodynamics characteristics. Yet, no significant link between the homotopic connectivity findings and the anatomical and hemodynamic changes could have been established at this point.Nevertheless, the hemodynamic analysis allowed the identification of a a specific brain region : the striatum. It was hypothesized that it acts as a central region for the maintenance of homotopic connectivity, explaining simultaneously the decreased post-surgical homotopic connectivity observed.ConclusionThe highlighted transient postoperative functional homotopy is probably due to multifactorial causes To start entangling these causes, the use of anatomic and hemodynamic imaging data analyses seems crucial to interpret functional connectivity data both immediate and long-term postoperative.Cerebral vasoreactivity and modelling studies provide thereby a very promising tool to better understand the interrelated processes underlying postoperative functional connectivity modifications
El, Houfi Younas. "PKCα interagit avec la sous-unité catalytique de la m1A58 ARNt méthyltransférase Trm6-Trm61." Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON1T008/document.
Full textProtein kinase C alpha (PKCα) is a ubiquitous serine/threonine kinase. It is involved in the regulation of various cellular functions by interacting with many intracellular proteins. Among these, we were able to identify Trm61, the catalytic subunit of the tRNA m1A58 methyltransferase which plays an essential role in the stability of the tRNAiMet. Localization studies of PKCα, Trm6 and Trm61 demonstrated that these two subunits do not always share the same subcellular compartment: while Trm6 is strictly nuclear, Trm61 is both in the nucleus and in the cytoplasm where it co-localizes with PKCα. We also provided the evidence that the increased expression of PKCα induces a decrease in that of Trm61, while reduced PKCα expression is accompanied by an increase in both Trm61 and tRNAiMet levels. These changes in expression are accompanied by a significant increase in cell proliferation at high-density. This work has also shown that Trm61 subunit is essential for the survival of the C6 glioma cell line. Our results suggest that Trm6 is the essential determinant of functional tRNA m1A58 methyltransferase level and we discuss the possibility of a secondary role for cytoplasmic Trm61 in the regulation of the proliferation independently of Trm6-Trm61 action. Interestingly, human grade II and III gliomas expressed higher levels of PKCα mRNA than glioblastomas and inversely for TRM6 and TRM61 mRNA levels, arguing for a relevance of our observations for human gliomagenesis
Di, Stefano Anna Luisa. "Molecular markers of gliomas : implications for diagnosis and new target therapies." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066015.
Full textThis work is devoted to the characterization of a specific oncogenic fusion between FGFR and TACC genes in gliomas. Overall, we screened 907 gliomas for FGFR3-TACC3 fusions. We found that FGFR3-TACC3 fusions exclusively affect IDH wild-type gliomas (3%), and are mutually exclusive with the EGFR amplification and the EGFR vIII variant, whereas it co-occurs with CDK4 amplification, MDM2 amplification and 10q loss. FGFR3–TACC3 fusions were associated with strong and homogeneous FGFR3 immunostaining. We show that FGFR3 immunostaining is a sensitive predictor of the presence of FGFR3-TACC3 fusions. FGFR3-TACC3 glioma patients had a longer overall survival than those patients with IDH wild-type glioma. We treated two patients with FGFR3–TACC3 rearrangements with a specific FGFR-TK inhibitor and we observed a clinical improvement in both and a minor response in one patient. In the second section, we developed a non-invasive diagnostic tool by 1H-magnetic resonance spectroscopy in IDH mutant gliomas. We optimized a uniquely different spectroscopy sequence called MEGA-PRESS for the detection of the oncometabolite 2-hydroxyglutarate (2 HG) that specifically accumulates in IDH mutant gliomas. We analysed a prospective cohort of 25 patients before surgery for suspected grade II and grade III gliomas and we assessed specificity and sensitivity, correlation with 2 HG concentrations in the tumor and associations with grade and genomic background. We found that MEGA-PRESS is highly specific (100%) and sensitive (80%) for the prediction of IDH mutation and correlated with 2 HG levels measured by gas chromatography-tandem mass spectrometry (GC-MS/MS) in frozen tissue
Goiran, Thomas. "Étude de la protéine PINK1 dans la maladie d'Alzheimer et le cancer cérébral." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4153/document.
Full textOne third of the European populations is affected by a brain disorder. Thus, Alzheimer’s disease and gliomas represent the most frequent human brain dementia syndrome and tumor type, respectively. Several epidemiological studies have shown an inverse relationship between the risk of developing a neurodegenerative disease and a brain tumor, suggesting the existence of common molecular denominators between these pathologies. Interestingly, both pathologies are characterized by a mitochondrial dysfunction. The mitochondrial kinase associated to autosomal recessive Parkinson’s disease, PINK1, is particularly implicated in the control of mitochondrial homeostasis. The main objective of my thesis was to study the molecular mechanisms underlying PINK1 gene regulation and their link with the mitochondrial dysfunction observed in either Alzheimer’s disease or gliomas. Thus, during my thesis we have examined the ability of PINK1 to control mitochondria homeostasis in an Alzheimer’s pathological context. We demonstrate that AICD, a cleavage product of the trans-membrane protein βAPP by γ-secretase, impacts mitochondrial physiology via its ability of positively controlling PINK1 transcription. In addition, we show that the signaling cascade linking γ-secretase and PINK1 is initiated by parkin transcriptional regulation of presenilins, the main component of γ-secretase catalytic complex. Finally, we also establish that the tumor suppressor p53 can negatively regulate PINK1 transcription in vitro and in vivo suggesting that the misregulated autophagic response associated to brain tumors development may be caused by defective p53-PINK1 interplay
Ikemori, Rafael Yamashita. "Analise de possiveis mecanismos e consequencias funcionais da expressão de galectina-3 em celulas de glioma expostas a condições hipoxicas." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316961.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-13T19:24:03Z (GMT). No. of bitstreams: 1 Ikemori_RafaelYamashita_M.pdf: 4516080 bytes, checksum: 6a332c77058e884f308075bb69496592 (MD5) Previous issue date: 2009
Resumo: Gliomas são tumores primários do sistema nervoso central e o glioblastoma multiforme é sua forma clínica mais comum e de pior prognóstico. Na tentativa de entender sua biologia, a linhagem NG97 foi estabelecida, demonstrando características de glioblastoma com atipia nuclear e elevadas taxas de mitose. Recentemente, descobriu-se que esta é uma linhagem híbrida humano-murina derivada da fusão de células de astrocitoma humano e estroma murino que provavelmente ocorreu no processo de estabelecimento desta linhagem, a qual foi posteriormente denominada NG97ht. Esta linhagem apresenta crescimento de massas tumorais quando inoculada em camundongos imunodeficientes, demonstrando características histopatológicas de pseudopaliçada, comuns a glioblastomas. Estas são regiões hipercelulares que margeiam ambientes necróticos e postula-se que sejam células migrantes de ambientes necróticos/hipóxicos. Além disso, estas áreas têm como característica a expressão de moléculas relacionadas à adaptação a hipóxia, como o fator induzido por hipóxia (HIF), atuando na sobrevivência celular pela indução de diferentes genes. É visto que em hipóxia há aumento da produção de galectina-3, a qual está envolvida em diversos processos celulares e que é somente expressa nestas regiões de pseudopaliçada, não sendo detectada em suas áreas tumorais adjacentes. A galectina-3 é uma lectina que possui ligação a beta-galactosídeos e se relaciona com o aumento da mobilidade, adesão, crescimento e progressão tumoral. Além disso, estudos indicam que em alguns tipos tumorais, a metilação do promotor de galectina-3 é responsável pela modulação de sua expressão. Nossos resultados apresentados neste trabalho demonstraram que a hipóxia é capaz de modular positivamente a expressão de galectina-3, tanto em câmara de hipóxia quanto em cloreto cobaltoso, composto químico capaz de mimetizar a hipóxia, apresentando aumento de expressão de galectina-3 em meio completo ou privado de soro fetal bovino, mimetizando ambientes necróticos com pouco oxigênio e nutrientes. Além disso, foi demonstrado que a regulação da expressão gênica de galectina-3 in vitro e in vivo não é realizada pela metilação de seu promotor. Ensaios utilizando a técnica de interferência por RNA demonstraram que o knockdown de galectina-3, em situação in vitro com privação de oxigênio e nutrientes, induziu aumento das taxas de morte celular. Estes dados podem indicar também que a galectina-3 protege as células tumorais dentro de ambientes necróticos em glioblastomas, criando as áreas de pseudopaliçada. Em conclusão, estes experimentos demonstram as propriedades da galectina-3 de proteção contra a morte em privação de oxigênio e nutrientes, comuns dentro de tumores, destacando sua importância como alvo para agentes anti-neoplásicos.
Abstract: Gliomas are primary Central Nervous System tumors. Among them, glioblastomas are the most common clinical forms and have the worst prognosis. In an attempt to understand glioma biology, the NG97 cell line was established. This cell line presents glioblastoma's characteristics, showing nuclear atipia and high growth rate. Recently, it was discovered that this is a human-murine hybrid cell line derived from the fusion between human astrocytoma and murine stroma cells that likely occurred in the process of cell line establishment. The cell line was therefore renamed NG97ht. This cell line grows as tumors in immunodeficient mice displaying histopathological characteristics of pseudopalisades commonly seen in glioblastomas. These areas are comprised by hypercellular regions in the edge of necrotic environments and are possibly constituted by actively migrating cells out of necrotic/hypoxic environments. Besides, these pseudopalisades show the expression of molecules related to adaptation to oxygen deprivation, like Hypoxia Inducible Factor (HIF), which is involved in cell survival through the induction of many genes. Also, it has been shown that under hypoxia, galectin-3 production is stimulated, a protein involved in diverse cellular processes and that is only present in these pseudopalisades in glioblastomas, not being detected in its adjacent areas. Galectin-3 is a lectin that binds to beta-galactosides and is related to increased motility, adhesion, tumor growth and progression. Also, studies describe that galectin-3 expression is related to its promoter methylation degree in some tumor types. Our results presented here demonstrated that assays performed in hypoxic chamber and in a chemical condition mimicking hypoxia (incubation with cobaltous chloride) showed galectin-3 induction in either complete medium or deprived of fetal bovine serum, mimicking tumor's necrotic areas deprived of oxygen and nutrients. Besides, it was demonstrated that galectin-3 modulation in vitro and in vivo is not due to promoter methylation. Tests related to galectin-3 knockdown in oxygen and nutrient deprivation demonstrated that this protein has a key role in protection against cell death. It is possible that these results may indicate that galectin-3 can also protect tumor cells inside glioblastoma's necrotic areas, acting as a survival factor in disadvantageous environments with low concentrations of oxygen and nutrients. In conclusion, these experiments demonstrate galectin-3 properties related to protection against cell death in environments deprived of oxygen and nutrients, commonly found inside tumors, highlighting its importance as a target to antineoplastic agents.
Mestrado
Imunologia
Mestre em Genética e Biologia Molecular
Lima, Rute Maria Ferreira. "Caracterização fenotípica de esp12, uma nova linhagem de células tumorais de glioblastoma humano, e desenvolvimento de um modelo in vitro para avaliar a resistência de gliomas a quimioterápicos." Centro de Pesquisas Gonçalo Moniz, 2014. https://www.arca.fiocruz.br/handle/icict/8176.
Full textMade available in DSpace on 2014-08-11T13:38:16Z (GMT). No. of bitstreams: 1 Rute Maria Ferreira Lima. Caracterização... 2013.pdf: 5129350 bytes, checksum: c7d761267de05b2aa805d0323bc5f557 (MD5) Previous issue date: 2014
Fundação Oswaldo Cruz. Centro de Pesquisa Gonçalo Moniz. Salvador, BA, Brasil
O astrocitoma grau IV ou glioblastoma multiforme (GBM) é o mais maligno e com prognóstico ruim entre os gliomas. Esse prognóstico sombrio está associado, em parte, à quimiorresistência (QR). Ao lado disso, a classificação atual dos gliomas não consegue responder a heterogeneidade da resposta ao tratamento. Assim, parece existir subtipos de GBM com características distintas. Dessa forma, o objetivo desse trabalho foi caracterizar fenotipicamente uma nova linhagem, ESP12, e, desenvolver um modelo in vitro para a avaliação da QR. Amostras obtidas de glioma humano foram estudadas quanto aos achados característicos de malignidade e subtipadas quanto aos fenótipos proliferativo e pró-neural, imunohistoquimicamente. As culturas obtidas das amostras foram mantidas a 37 ºC em atmosfera com 5% de CO2. A caracterização de ESP12 incluiu: a) subtipagem por imunocitoquímica e por citometria de fluxo; b) investigação de um fenótipo de resistência, através da identificação de células CD133+ e de proteínas de resistência às múltiplas drogas, glicoproteína-P (Pgp) e MRP1; c) avaliação da cinética de crescimento, através da determinação do tempo de duplicação celular (TDPC); d) verificação da produção do fator de crescimento endotelial vascular (VEGF); e) avaliação da viabilidade celular, através do teste com MTT, quando exposta a carmustina (BCNU), a vimblastina (VIM) e a temozolomida (TMZ). Por fim, investigamos a atividade quimiossensibilizante do 8-metoxipsoraleno (8-MOP) utilizando o modelo estabelecido. Foram obtidos 6 casos de GBM e 3 casos de gliomas de graduação III, pela Organização Mundial de Saúde, com idade média de 52,6 14,1 anos, a maioria homens. As manifestações clínicas mais frequentes foram crises convulsivas e cefaleia, e, a localização tumoral foi variada. Os achados de imagem se correlacionaram com os achados histoquímicos confirmando o diagnóstico. A sobrevida dos pacientes variou entre 11 dias e 24 meses, com mediana de 11,5 meses. As células formaram monocamadas e revelaram intenso pleomorfismo. A maior parte das amostras apresentou fenótipo proliferativo na imunohistoquímica. As proteínas que caracterizam os fenótipos pró-neural, proliferativo e mesenquimal foram detectadas tanto por imunohistoquímica quanto por imunocitoquímica, em ESP12. Quantitativamente, o fenótipo proliferativo foi mais evidente detectado por citometria de fluxo. Células CD133+ representaram menos que 1%. Além disso, 38,6% das células foram positivas para a Pgp. Não houve diferença entre a produção do VEGF por ESP12 quando comparada a outras linhagens de GBM já estabelecidas. O TDPC de ESP12 foi de 31 h. ESP12 se mostrou mais sensível do que outras linhagens de GBM já estabelecidas a BCNU, a VIM e a TMZ. Por fim, o 8-MOP mostrou atividade quimiossensibilizante significativa.
The astrocytoma grade IV also known as glioblastoma multiforme (GBM) is the most malignant and has a poor prognosis among gliomas. This poor prognosis is associated, in part, to chemoresistance (QR). Furthermore, the current classification of gliomas cannot answer the heterogeneity of treatment response. Therefore, it seems to exist GBM subtypes with distinct characteristics. The aim of this study was to characterize phenotypically a new cell line, ESP12, and to develop an in vitro model for the assessment of QR. Human glioma samples were studied by immunohistochemistry for the characteristic findings of malignancy and subtyped as to proliferative and proneural phenotypes. Primary cultures were obtained from samples and maintained at 37 °C in an atmosphere with 5% CO2. The characterization of ESP12 included: a) subtyping by immunocytochemistry and flow cytometry; b) investigation of a resistance phenotype by identifying CD133+ cells and the multidrug resistance proteins, P-glycoprotein (Pgp) and MRP1; c) evaluation of the growth kinetics, by determining the cell doubling time (TDPC); d) assaying of vascular endothelial growth factor (VEGF) production; e) the assessment of cell viability by the MTT test after exposure to carmustine (BCNU), vinblastine (VIM), and temozolomide (TMZ). Finally, we investigated the chemosensibilizing activity of 8-methoxypsoralen (8-MOP) using the established model. Six cases of GBM and 3 cases of grade III gliomas were obtained, with a mean age of 52.6 14.1 years, mostly men. The most common clinical manifestations were seizures and headache, and the tumor location was varied. Imaging findings were correlated with the histochemical findings confirming the diagnosis. The median survival was 11.5 months (range: 11 days to 24 months). The cells formed monolayers and showed intense pleomorphism. Most samples showed proliferative phenotype in immunohistochemistry. Proteins that characterize the proneural, proliferative and mesenchymal phenotypes were detected both by immunohistochemistry and by immunocytochemistry on ESP12. The proliferative phenotype was more quantitatively evident by flow cytometry. CD133+ cells represented less than 1%. Moreover, 38.6 % of cells were positive for Pgp. There was no difference between the production of VEGF between ESP12 and other GBM cell lines already established. The TDPC of ESP12 was 31 h. ESP12 was more sensitive than other cell lines already established of GBM to BCNU, TMZ and VIM. Finally, the 8-MOP showed significant chemosensibilizing activity.
Rooney, Alasdair Grant. "Depression in glioma." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5964.
Full textColin, Christian. "Identificação de genes diferencialmente expressos em linhagens de glioma de rato e sua potencialidade como novos alvos terapêuticos para gliomas humanos." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-06102015-184842/.
Full textOrtis, Fernanda. "Papel de BRG1 e Brm, reguladores globais de transcrição, na reversão fenotípica de células ST1 pela ação de glicocorticóides." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-26072007-053713/.
Full textGlucocorticoid hormones (GCs) have been used as anti-inflammatory and anti-tumor agents, acting via nuclear receptors (GR) and being dependent on remodeling of the chromatin structure. As components of the global chromatin remodeling transcription complex (SWI/SNF), Brm and BRG-1 proteins play a key role in the action of GR. In order to study the mechanisms of action of GCs, we have been using the ST1 and P7 cell lines, derived from the C6, a rat glioma cell line. P7 is insensitive to the GC treatment, while ST1 displays a complete phenotypic reversion from tumoral to normal, including a G1-specific block in the cell cycle. A Brm and BRG1-specific polyclonal antiserum was generated, in rabbit, using recombinant hBRG1 protein as antigen. This antiserum was used to analyze the levels of Brm and BRG1 in these two cell lines, under GC treatment. While Brm is induced by GC, in ST1 cells, the basal level of Brm, in P7 cells, is relatively high, remaining unchanged under GC treatment. The possibility of brm mutations occurring in the P7 cells, was analyzed by DNA sequencing. Overexpression of brm and BRG1 in P7 cells led to morphological alterations (cell flattening) and decreased colony formation in agarose suspension and in solid substrate. Some of these clones became partially responsive to GC, when compared to the ST1 cell line. Co-immunoprecipitation assays revealed some differences in the SWI/SNF complex between ST1 and P7 cells.
Laprie, Anne. "Imagerie métabolique par spectrométrie de résonnance magnétique des tumeurs gliales de haut-grade irradiées de l'adulte et de l'enfant." Toulouse 3, 2007. http://www.theses.fr/2007TOU30332.
Full textLe, Mercier Marie. "La galectine-1 influence fortement les caractéristiques biologiques des cellules gliales tumorales humaines." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210330.
Full textNous avons tout d’abord montré que la galectine-1 est impliquée dans la chimiorésistance des gliomes. En effet, nous avons démontré que la diminution du taux d’expression de la galectine-1, au moyen d’un siRNA au sein d’un modèle de gliome expérimental, permet d’augmenter le bénéfice thérapeutique du témozolomide in vivo sans toutefois induire d’apoptose, d’autophagie ou de perméabilisation de la membrane des lysosomes. Nous avons également montré que la diminution du taux d’expression de la galectine-1 au sein de ce modèle de gliome expérimental affecte les processus d’angiogenèse in vivo et de « vasculogenic mimicry » in vitro. Nous avons identifié la protéine ORP150 comme l’une des principales cibles de l’effet pro-angiogénique de la galectine-1, sachant que la protéine ORP150 contrôle la maturation du facteur VEGF. Nous avons ensuite montré que le rôle de la galectine-1 dans la chimiorésistance des gliomes et dans l’angiogenèse est directement lié à l’implication de la galectine-1 dans le processus de réponse au stress du réticulum endoplasmique. Via ce processus, la galectine-1 modulerait l’expression d’un certain nombre de gènes tels que ATF3, DUSP5 et HERP, qui sont impliqués dans la chimiorésistance et des gènes tels que ORP150 et MDG1 qui sont impliqués dans l’angiogenèse.
Enfin, nous avons également montré que la galectine-1 régule l’expression du gène BEX2 et que celui-ci joue un rôle important dans la biologie des gliomes, notamment dans les processus d’angiogenèse et de migration cellulaire.
En conclusion, notre travail suggère que l’étiquette « biomarqueur » pourrait être attribuée à la galectine-1 pour qualifier l’agressivité biologique des gliomes malins et que la galectine-1 pourrait représenter une nouvelle cible thérapeutique dans le combat contre les gliomes malins en général, et le glioblastome en particulier.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Close, Helen Judith. "Immune evasion in glioma." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/16103/.
Full textMasliantsev, Konstantin. "Rôle des signalisations STAT3 et Hippo dans les gliomes : Identification de nouveaux biomarqueurs pronostiques et cibles thérapeutiques." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT1407/document.
Full textMalignant gliomas are the most common tumors of central nervous system. Glioblastomas represent more than 50% of all glioma and constitute the most aggressive form of the tumor which is particularly resistant to radiotherapy. The presence of the subpopulation of glioblastoma stem cells (GSC) could be involved in tumor initiation, progression and therapeutic resistance. Hence, these processes are governed by signaling pathways which are mostly constitutively activated and their study is necessary for a better understanding of gliomagenesis. The aim of this PhD thesis was to assess STAT3 and Hippo signaling pathways in glioma to identify new prognostic markers and potential therapeutic targets. The first part on this work showed that pS727 phosphorylation of STAT3 could be involved in radioresistance and its inhibition induced GCS radiosensitization. Additionally, this work showed that YAP1 and TEAD3, two effectors of Hippo signaling, are associated with poor patient survival and could be involved in GSC proliferation and phenotype maintenance by inhibiting proneural gene signature. Thereby, this work aims to offer new therapeutic avenues, on the one hand the inhibition of pS727-STAT3 for radiotherapy potentiation and on the other hand the effectors of Hippo signaling as prognostic biomarkers and potential therapeutic targets
Leventoux, Nicolas. "Etude des foyers d’hétérogénéité tumorale dans les gliomes diffus de bas grade de l’adulte mutés IDH1." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT037.
Full textGliomas are the main primary brain tumours affecting around 4000 new patients in France each year. Half of gliomas are detected in the advanced stage of glioblastoma (grade IV) while 15% of tumours are diagnosed in stage II (diffuse low-grade gliomas-DLGG). These tumors affect young patients and bear characteristic mutations, including a mutation for the enzyme IDH1 commonly found in secondary glioblastomas. These low-grade tumours are treated by surgery, ideally in awake condition but due to their diffuse nature, the residual part will progress inexorably to stage III or IV with overall survival between 5 and 15 years after diagnosis. Tumor progression is highly variable and unpredictable from one patient to another. Foci of tumor progression have been identified in 20% of patients with DLGG. These foci show a higher cell density and an increased Ki67. My thesis work consisted in studying the cellular and molecular changes associated with tumor progression. From the RNA profile of the foci and adjacent territories, I was able to highlight through high-throughput techniques significant decrease in gene expression in the foci, particularly of AGXT2L1/ETNPPL, carboxypeptidase E, EDNRB, SFRP2. I hypothesized that SFRP2 and ETNPLL could oppose cell proliferation and that their decrease would pave the way for tumor transformation. An inverse correlation between the amount of ETNPPL and the survival of patients with hepatocarcinoma has been published. By limiting the amount of phospholipid precursors in the cell, ETNPPL could act as a brake against proliferation and indeed, its decrease in glioma transformation foci could remove this inhibition. My PhD work will have been innovative in the comparative approach of the different tumors’ compartments for each patient studied and will have revealed ETNPPL as correlated to gliomagenesis and as potential therapeutic target
Lourenço, Blandine. "Monitorage des paramètres pressionnels et vasculaires cochléaires au moyen du potentiel microphonique cochléaire : Étude chez le patient." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAS004/document.
Full textThe last years, healthcare and living conditions of patients have been of growing interest in medical advances with the goal to bring more efficiency and less risk. In this context, three clinical researches have been conducted with cochlear microphonic potential (CMP) to assess the abilities of this cochlear response in unusual medical applications and propose monitoring tools of major interests for patients’ management.The first study is interested in the occurrence of deafness following vestibular schwannoma resection, in particular hearing loss due to vascular origin. The CMP amplitude detected all the surgical events responsible for the alteration of the cochlear vascularization and thus provided a better understanding of the origin of the hearing losses during surgeries in the cerebellopontine angle.The other two studies examined the reliability of non-invasive intracranial pressure (ICP) monitoring, by the CMP phase, over a long period to follow patients for whom a change in ICP is expected. The CMP has shown good ability to detect changes in ICP over time, both in a slow installation of a high ICP (progression of malignant glioma) and in the transient and acute onset of increased ICP (intracranial hypertension, hydrocephalus).Several observations, sometimes unexpected, have been obtained with the CMP and open up new track of interest and reflections on the mechanisms of ICP and cochlea functioning. These discoveries included: episodic repercussion of cerebral aneurysm embolization on ICP, ability of CMP phase to predict the next occurrence of a Meniere crisis, and preoperative prediction of cochlear fragility during the drilling of the internal auditory meatus when the MRI signal of the cochlear fluids on the affected side (vestibular schwannoma) is hypointense
Safdar, Shahana. "Peptide-targeted nitric oxide delivery for the treatment of glioblatoma multiforme." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45797.
Full textCarvalho, Guilherme Luiz de Castro. "Estudo de análogo da subtância P para desenvolvimento de radiofármaco com aplicação na terapia de tumores cerebrais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-25092015-090446/.
Full textCurrently gliomas represent about 81% of malignant brain tumors with increased incidence in children and in adults over 45 years. A large number of type 1 neurokinin receptor (NK-1) are expressed in glioma cells, being the binding of substance P (SP) to these receptors, involved in the development and progression of this tumor type. The SP conjugated at DOTA chelator (SP-DOTA), radiolabeled, have been tested for use in the treatment of gliomas, and the lutetium-177 (177 Lu), due to its lower tissue range, has been the most suitable radioisotope for tumors located in critical areas brain. However, studies indicate the necessity of adding an excess of methionine to prevent the peptide SP-DOTA-177Lu oxidation in order to increase the stability and capacity to bind to tumor cells. To overcome this challenge, there is the prospect of using a new analog of SP with a modified structure, to prevent peptide oxidation. In this context, the aim of this work was study the labeling of a new analog of SP with 177Lu and characterize their properties in vitro and in vivo, in order to obtain a novel radiopharmaceutical with potential application in brain tumor therapy, and perform preliminary studies labeling of this new analog with yttrium-90 (90Y). The new analog was obtained by replacement of the amino acid methionine (Met) by the amino acid norleucine (Nle) at position 11 of the peptide chain of SP, and these peptides were called SP(Met11)-DOTA and SP(Nle11)-DOTA respectively. After analysis of the oxidation for the two peptides, the radiolabeling parameters of the SP(Nle11)-DOTA with 177LuCl3 were studied to determine the best labeling condition. The SP(Nle11)-DOTA was also radiolabeled with 90Y, using standard condition, and the stability in vitro of the SP(Nle11)-DOTA-90Y assessed under refrigeration (2-8 °C) and under freezing (-20° C), after radiolabeling with high activity and use of stabilizing agent. The stabilities in vitro of the SP (Nle11)-DOTA-177Lu under refrigeration (2-8 °C), under freezing (-20 °C) and in human serum (37 °C) were determined after radiolabeling with high activity, with use of stabilizing agents and after dilution. The ability of in vitro binding to tumor cells (U-87 MG and M059J) and the biodistribution in vivo in healthy BALB/c mice were determined for the 177Lu-DOTA-SP(Nle11) and compared to 177Lu-DOTA-SP(Met11). The plasma protein binding and biodistribution in Nude mice with tumor model were also evaluated. The results obtained from analysis of oxidation for the two peptides confirmed the importance of adding excess methionine to prevent peptide oxidation and indicated a high stability of the DOTA- SP(Nle11), during and after the radiolabeling process. The addition of 148 MBq (4 mCi) of 177LuCl3 solution in 0.05N HCl at 10 μg DOTA-SP(Nle11) diluted in 0.4 M sodium acetate buffer pH 4.5 followed by incubation at a temperature of 90 °C for 30 minutes under constant agitation to 350 rpm was defined as standard labeling condition. The freezing (-20 °C), the use of stabilizing agents and the dilution were presented as effective methods to ensure high stability in vitro 177Lu-DOTA-SP(Nle11), after labeling with high activity. Good results were also observed for labeling DOTA-SP(Nle11) with 90YCl3 and for stability in vitro of the 90Y-DOTA-SP(Nle11) after freezing (-20 °C) and when gentisic acid was used as a stabilizer. The 177Lu-DOTA-SP(Nle11) showed good specificity to tumor cells, particularly human glioma cells (M059J), suggesting that substitution of the amino acid norleucine for methionine at position 11 does not compromise the capacity of SP(Nle11) binding to tumor cells. A low percentage of plasma protein binding and rapid blood clearance were observed for the 177Lu-DOTA-SP(Nle11), being this radiopharmaceutical preferably eliminated by the kidney. The 177Lu-DOTA-SP(Nle11) showed good stability in vivo and inability to cross the blood brain barrier, being its use indicated through intratumoral or intracavitary injection. The biodistribution studies in animals with tumor model showed that the radiopharmaceutical binds to the tumor cells by specific receptor binding. Based on this data was concluded that the 177Lu-DOTA-SP(Nle11), can be presented as a novel radiopharmaceutical that due to its favorable properties in vitro and in vivo, presents a potential application in the therapy of brain tumors, representing a new possibility within the limited therapeutic options for this type of tumor.
Viotti, Julien. "Contribution de la fonction transcriptionnelle de la parkine dans les maladies du système nerveux central : études des maladies d'Alzheimer, de Parkinson et des cancers cérébraux." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4085/document.
Full textGliomas are the most common form of brain tumor, the etiology of which remains unknown. Several epidemiological studies have shown the existence of a correlation between neurodegenerative diseases and brain tumor. We hypothesis that these two pathology share common molecular denominators. Here I study the role of parkin (PK) an ubiquitin ligase responsible of early onset Parkinson diseases. Several arguments support the involvement of PK in glioma. Studies have shown that PK expression is alterated in many types of cancers. PK is also a transcription factor which can bind to p53 DNA and inhibits its transcription. P53 is a tumor suppressor often find inactivate in cancers (50%). There is evidence of specific somatic mutations found in glioma. My work was organize according to three axes 1- PK and Alzheimer disease: PK activates préséniline 1 expression and inhibits préséniline 2. 2- PK through XBP-1 regulates p53, a transcription factor activated by reticulum stress, which in turn regulates the expression of DJ-1. 3- PK and Glioma: There is a decrease in parkin expression that can be correlated to p53 expression increase in glioma biopsies. I show that p53 is able to activate PK synthesis, a mechanism abolish by p53 mutations in tumors
Falha, Layal. "Implication du facteur de transcription dans Nkx2.2 gliomagenesis." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20065.
Full textGlioblastoma represent the most common primary brain tumor with an overall survival of less than 2 years. These tumors are highly infiltrative and angiogenic and contain a sub population of cancer stem cells. Nkx2.2 is a homeodomain transcription factor which is implicated in the formation of oligodendrocytes during development. Nkx2.2 is central in tumorogenesis of Ewing'sarcoma. Using QPCR and glioma tissue array, we found that Nkx2.2 is highly expressed in glioblastoma. Nkx2.2 was also detected in 3 glioma stem-like cell cultures (neurospheres) where it is co-expressed with stem cell markers such as CD133 and CD15. It was recently proposed that overexpression of Nkx2.2 could induce terminal oligodendrocytic differentiation of glioma stem-like cell and inhibit tumor formation in xenotransplantation (Cancer Res. 2011 Feb 1;71(3):1135-45).To explore this possibility further, we used retroviruses to overexpress Nkx2.2 in our cell cultures. Surprisingly, we found that Nkx2.2, induce glioma stem cell proliferation and had no oligodendrocyte differentiating effect. Microarray analyses confirmed that Nkx2.2 overexpression had no influence in oligodendrocyte differentiation. This analysis further revealed that Nkx2.2 was able to induce a strong expression of YKL40 protein in the supernatant of glioma stem cells and increase YKL-40 promoter activity. YKL-40 is a secreted glycoprotein which is involved in inflammation, angiogenesis and proliferation and which is often associated with a bad prognosis in several cancers. In addition, we performed orthotopic transplantation to explore the role of Nkx2.2 in gliomagenesis in vivo and found that Nkx2.2 did not reduce the aggressiveness of glioblastoma. In the other part of my thesis we used Taqman low-density arrays (TLDA) and individual miRNA QPCR validation to find the microRNA (miRNA) signature in human glioblastoma cell cultures. Then we investigated the role of miRNA in the 3'UTR of Nkx2.2 transcript. Site directed mutagenesis (SDM) and dual-Luciferase reporter assay results showed that the Nkx2.2 expression is downregulated by mir-133b and mir-202
Etxaniz, Ulazia Olatz. "Investigación de las mutaciones de los genes de IDH1 y 2 en los gliomas de bajo grado." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405523.
Full textEl manejo de los gliomas de bajo grado se basa en las características clínicas y radiológicas, incluyendo la clasificación pronóstica de Pignatti, que clasifica a los pacientes como de bajo o de alto riesgo de recaída. Para determinar si los datos moleculares pueden definir de una forma más sensible el pronóstico del paciente, hemos examinado varias alteraciones moleculares en una cohorte de 58 pacientes. Hemos registrado los datos clínicos y radiológicos que permiten obtener la clasificación pronóstica según los criterios de Pignatti, y hemos llevado a cabo el estudio de las mutaciones de IDH, las mutaciones de TP53, la codeleción 1p / 19q, y la metilación del promotor de MGMT. Hemos correlacionado nuestros hallazgos con la supervivencia libre de progresión (SLP) y la supervivencia global (SG). La edad media de los pacientes fue de 45 años; 69% de pacientes se clasificaron como de bajo riesgo de recaída. Se detectaron mutaciones de IDH en el 62% de casos, mutaciones de TP53 en el 17%, codeleción 1p / 19q en el 46%, y metilación de MGMT en 40% de los pacientes. Los análisis de supervivencia se realizaron en los 49 pacientes que no presentaban captación de contraste en la resonancia magnética basal. En el análisis univariante, las mutaciones de IDH, la codeleción de 1p / 19q, y la combinación de las mutaciones IDH con la codeleción 1p / 19q se asociaron con una mejor SLP (P = 0,006, P = 0,037 y P = 0,003, respectivamente) y SG (P <0,001, P = 0,02 y P <0,001, respectivamente). El análisis multivariante identificó la ausencia de mutaciones de IDH como factor de riesgo en relación a la progresión ([HR] = 3,1; P = 0,007) y la muerte (HR = 6,4; P <0.001). Podemos concluir de acuerdo con nuestros resultados, que el estado mutacional de IDH es un marcador pronóstico independiente de las variables clínicas, radiológicas y otras moleculares y por tanto se plantea como una herramienta decisiva a la hora de definir el tratamiento post- quirúrgico de los pacientes con gliomas de bajo grado.
Management of low-grade gliomas (LGG) is based on clinical and radiologic features, including the Pignatti prognostic scoring system, which classifies patients as low- or high-risk. To determine whether molecular data can offer advantages over these features, we have examined the prognostic impact of several molecular alterations in LGG. In a cohort of 58 patients with LGG, we have retrospectively analyzed clinical and molecular characteristics, including the Pignatti criteria, IDH mutations, TP53 mutations, the 1p/19q deletion, and MGMT methylation, and correlated our findings with progression-free survival (PFS) and overall survival (OS). Mean age of patients was 45 years; 69% were classified as low-risk by the Pignatti system. IDH mutations were detected in 62%, p53 mutations in 17%, the 1p/19q codeletion in 46%, and MGMT methylation in 40% of patients. Survival analyses were performed in the 49 patients without contrast enhancement. In the univariate analysis, IDH mutations, the 1p/19q codeletion, and the combination of IDH mutations with the 1p/19q codeletion were associated with both longer PFS (P = 0.006, P = 0.037, and P = 0.003, respectively) and longer OS (P < 0.001, P = 0.02, and P < 0.001, respectively). The multivariate analysis identified absence of IDH mutations as a factor for greater risk of progression (hazard ratio [HR] = 3.1; P = 0.007) and death (HR = 6.4; P < 0.001). We conclude that IDH mutations may be more effective than the Pignatti score in discriminating low- and high-risk patients with LGG.