Journal articles on the topic 'Glial scar formation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Glial scar formation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Perez-Gianmarco, Lucila, and Maria Kukley. "Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury." Cells 12, no. 14 (July 13, 2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Full textNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis, and Stefano Pluchino. "The role of neural stem cells in regulating glial scar formation and repair." Cell and Tissue Research 387, no. 3 (November 25, 2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Full textBao, Yi, Luye Qin, Eunhee Kim, Sangram Bhosle, Hengchang Guo, Maria Febbraio, Renee E. Haskew-Layton, Rajiv Ratan, and Sunghee Cho. "CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation." Journal of Cerebral Blood Flow & Metabolism 32, no. 8 (April 18, 2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Full textZHANG, H., K. UCHIMURA, and K. KADOMATSU. "Brain Keratan Sulfate and Glial Scar Formation." Annals of the New York Academy of Sciences 1086, no. 1 (November 1, 2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Full textRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, Hiromi Kumamaru, Satoshi Kawase, Matthieu Baudoux, Toshiki Ishibashi, et al. "Regulation of RhoA by STAT3 coordinates glial scar formation." Journal of Cell Biology 216, no. 8 (June 22, 2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Full textGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, Tjoson Tjoa, Nino Maida, Zena Werb, and Linda J. Noble-Haeusslein. "Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing." Journal of Neurosurgery: Spine 99, no. 2 (September 2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Full textHu, Rong, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian, et al. "Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury." Journal of Neurosurgery: Spine 13, no. 2 (August 2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Full textConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh, and Jan M. Schwab. "Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells." Journal of Neurosurgery: Spine 2, no. 3 (March 2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Full textChen, Xuning, and Weiping Zhu. "A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury." Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Full textGraboviy, O. M., T. S. Mervinsky, S. I. Savosko, and L. M. Yaremenko. "Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application." Reports of Morphology 30, no. 3 (September 19, 2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Full textChung, Joonho, Moon Hang Kim, Yong Je Yoon, Kil Hwan Kim, So Ra Park, and Byung Hyune Choi. "Effects of granulocyte colony–stimulating factor and granulocyte-macrophage colony–stimulating factor on glial scar formation after spinal cord injury in rats." Journal of Neurosurgery: Spine 21, no. 6 (December 2014): 966–73. http://dx.doi.org/10.3171/2014.8.spine131090.
Full textOnodera, Junya, Yuji Ikegaya, and Ryuta Koyama. "Involvement of microglial TRPV4 on glial scar formation." Proceedings for Annual Meeting of The Japanese Pharmacological Society 95 (2022): 1—P—020. http://dx.doi.org/10.1254/jpssuppl.95.0_1-p-020.
Full textSutin, Jerome, and Ronald Griffith. "β-Adrenergic Receptor Blockade Suppresses Glial Scar Formation." Experimental Neurology 120, no. 2 (April 1993): 214–22. http://dx.doi.org/10.1006/exnr.1993.1056.
Full textRooney, Gemma E., Toshiki Endo, Syed Ameenuddin, Bingkun Chen, Sandeep Vaishya, LouAnn Gross, Terry K. Schiefer, et al. "Importance of the vasculature in cyst formation after spinal cord injury." Journal of Neurosurgery: Spine 11, no. 4 (October 2009): 432–37. http://dx.doi.org/10.3171/2009.4.spine08784.
Full textClifford, Tanner, Zachary Finkel, Brianna Rodriguez, Adelina Joseph, and Li Cai. "Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration." Cells 12, no. 6 (March 9, 2023): 853. http://dx.doi.org/10.3390/cells12060853.
Full textLiu, Jingzhou, Xin Xin, Jiejie Sun, Yueyue Fan, Xun Zhou, Wei Gong, Meiyan Yang, et al. "Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury." Neural Regeneration Research 19, no. 3 (July 20, 2023): 629–35. http://dx.doi.org/10.4103/1673-5374.380907.
Full textSofroniew, Michael V. "Molecular dissection of reactive astrogliosis and glial scar formation." Trends in Neurosciences 32, no. 12 (December 2009): 638–47. http://dx.doi.org/10.1016/j.tins.2009.08.002.
Full textWang, Haijun, Guobin Song, Haoyu Chuang, Chengdi Chiu, Ahmed Abdelmaksoud, Youfan Ye, and Lei Zhao. "Portrait of glial scar in neurological diseases." International Journal of Immunopathology and Pharmacology 31 (January 2018): 205873841880140. http://dx.doi.org/10.1177/2058738418801406.
Full textKorte, G. E., M. Marko, and G. Hageman. "High-voltage electron microscopy of subretinal scar formation." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 1 (August 1992): 486–87. http://dx.doi.org/10.1017/s0424820100122836.
Full textRodriguez-Grande, Beatriz, Matimba Swana, Loan Nguyen, Pavlos Englezou, Samaneh Maysami, Stuart M. Allan, Nancy J. Rothwell, Cecilia Garlanda, Adam Denes, and Emmanuel Pinteaux. "The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury." Journal of Cerebral Blood Flow & Metabolism 34, no. 3 (December 18, 2013): 480–88. http://dx.doi.org/10.1038/jcbfm.2013.224.
Full textCarvalho, Juliana Casanovas de, César Augusto Abreu-Pereira, Lucas Cauê da Silva Assunção, Rosana Costa Casanovas, Ana Lucia Abreu-Silva, and Matheus Levi Tajra Feitosa. "Correlation of Nogo A release with glia scar formation in spinal cord injury." Research, Society and Development 10, no. 6 (May 29, 2021): e25410615688. http://dx.doi.org/10.33448/rsd-v10i6.15688.
Full textLi, Xin, Yan Qian, Wanling Shen, Shiying Zhang, Hui Han, Yu Zhang, Shuangmei Liu, Shaokun Lv, and Xiuying Zhang. "Mechanism of SET8 Activates the Nrf2-KEAP1-ARE Signaling Pathway to Promote the Recovery of Motor Function after Spinal Cord Injury." Mediators of Inflammation 2023 (March 10, 2023): 1–13. http://dx.doi.org/10.1155/2023/4420592.
Full textBadan, I., B. Buchhold, A. Hamm, M. Gratz, L. C. Walker, D. Platt, Ch Kessler, and A. Popa-Wagner. "Accelerated Glial Reactivity to Stroke in Aged Rats Correlates with Reduced Functional Recovery." Journal of Cerebral Blood Flow & Metabolism 23, no. 7 (July 2003): 845–54. http://dx.doi.org/10.1097/01.wcb.0000071883.63724.a7.
Full textPekny, Milos, Clas B. Johansson, Camilla Eliasson, Josefina Stakeberg, Åsa Wallén, Thomas Perlmann, Urban Lendahl, Christer Betsholtz, Claes-Henric Berthold, and Jonas Frisén. "Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin." Journal of Cell Biology 145, no. 3 (May 3, 1999): 503–14. http://dx.doi.org/10.1083/jcb.145.3.503.
Full textWiemann, Susanne, Jacqueline Reinhard, and Andreas Faissner. "Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation." Biochemical Society Transactions 47, no. 6 (December 17, 2019): 1651–60. http://dx.doi.org/10.1042/bst20190081.
Full textHuang, Lijie, Zhe-Bao Wu, Qichuan ZhuGe, WeiMing Zheng, Bei Shao, Brian Wang, Fen Sun, and Kunlin Jin. "Glial Scar Formation Occurs in the Human Brain after Ischemic Stroke." International Journal of Medical Sciences 11, no. 4 (2014): 344–48. http://dx.doi.org/10.7150/ijms.8140.
Full textBeach, Krista M., Jianbo Wang, and Deborah C. Otteson. "Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina." Stem Cells International 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/1610691.
Full textOtte, Elisabeth, Andreas Vlachos, and Maria Asplund. "Engineering strategies towards overcoming bleeding and glial scar formation around neural probes." Cell and Tissue Research 387, no. 3 (January 14, 2022): 461–77. http://dx.doi.org/10.1007/s00441-021-03567-9.
Full textLi, Ping, Zhao-Qian Teng, and Chang-Mei Liu. "Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury." Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1279051.
Full textCloutier, Frank, Ilse Sears-Kraxberger, Krista Keachie, and Hans S. Keirstead. "Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis." Clinical and Developmental Immunology 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/812456.
Full textSaadoun, S. "Involvement of aquaporin-4 in astroglial cell migration and glial scar formation." Journal of Cell Science 118, no. 24 (December 15, 2005): 5691–98. http://dx.doi.org/10.1242/jcs.02680.
Full textHsu, J. Y. C., L. Y. W. Bourguignon, C. M. Adams, K. Peyrollier, H. Zhang, T. Fandel, C. L. Cun, Z. Werb, and L. J. Noble-Haeusslein. "Matrix Metalloproteinase-9 Facilitates Glial Scar Formation in the Injured Spinal Cord." Journal of Neuroscience 28, no. 50 (December 10, 2008): 13467–77. http://dx.doi.org/10.1523/jneurosci.2287-08.2008.
Full textLeme, Ricardo José de Almeida, and Gerson Chadi. "Distant microglial and astroglial activation secondary to experimental spinal cord lesion." Arquivos de Neuro-Psiquiatria 59, no. 3A (September 2001): 483–92. http://dx.doi.org/10.1590/s0004-282x2001000400002.
Full textRobel, Stefanie. "Astroglial Scarring and Seizures." Neuroscientist 23, no. 2 (July 7, 2016): 152–68. http://dx.doi.org/10.1177/1073858416645498.
Full textYeh, Jue-Zong, Ding-Han Wang, Juin-Hong Cherng, Yi-Wen Wang, Gang-Yi Fan, Nien-Hsien Liou, Jiang-Chuan Liu, and Chung-Hsing Chou. "A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury." Polymers 12, no. 10 (September 29, 2020): 2245. http://dx.doi.org/10.3390/polym12102245.
Full textHayashi, Noriko, Seiji Miyata, Yutaka Kariya, Ryo Takano, Saburo Hara, and Kaeko Kamei. "Attenuation of glial scar formation in the injured rat brain by heparin oligosaccharides." Neuroscience Research 49, no. 1 (May 2004): 19–27. http://dx.doi.org/10.1016/j.neures.2004.01.007.
Full textRomero-Ramírez, Lorenzo, Manuel Nieto-Sampedro, and MAsunción Barreda-Manso. "All roads go to Salubrinal: endoplasmic reticulum stress, neuroprotection and glial scar formation." Neural Regeneration Research 10, no. 12 (2015): 1926. http://dx.doi.org/10.4103/1673-5374.169619.
Full textZhao, Lina, Xianyu Zhang, and Chunhai Zhang. "Methimazole Inhibits the Expression of GFAP and the Migration of Astrocyte in Scratched Wound Model In Vitro." Mediators of Inflammation 2020 (April 13, 2020): 1–7. http://dx.doi.org/10.1155/2020/4027470.
Full textSong, Byeong Gwan, Su Yeon Kwon, Jae Won Kyung, Eun Ji Roh, Hyemin Choi, Chang Su Lim, Seong Bae An, Seil Sohn, and Inbo Han. "Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion Promotes Recovery from Spinal Cord Injury by Limiting Glial Scar Formation." International Journal of Molecular Sciences 23, no. 11 (June 1, 2022): 6218. http://dx.doi.org/10.3390/ijms23116218.
Full textSun, Daniel, and Tatjana C. Jakobs. "Structural Remodeling of Astrocytes in the Injured CNS." Neuroscientist 18, no. 6 (October 7, 2011): 567–88. http://dx.doi.org/10.1177/1073858411423441.
Full textParry, Phillip V., and Johnathan A. Engh. "Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation." Neurosurgery 70, no. 6 (June 2012): N10—N11. http://dx.doi.org/10.1227/01.neu.0000414941.18107.47.
Full textZhu, Yong-Ming, Xue Gao, Yong Ni, Wei Li, Thomas A. Kent, Shi-Gang Qiao, Chen Wang, Xiao-Xuan Xu, and Hui-Ling Zhang. "Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia–reperfusion brain injury." Neuroscience 356 (July 2017): 125–41. http://dx.doi.org/10.1016/j.neuroscience.2017.05.004.
Full textWang, Yu-Fu, Jia-Ning Zu, Jing Li, Chao Chen, Chun-Yang Xi, and Jing-Long Yan. "Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation." Neuroscience Letters 560 (February 2014): 51–56. http://dx.doi.org/10.1016/j.neulet.2013.11.050.
Full textUesugi, Masafumi, Yoshitoshi Kasuva, Hiroshi Hama, Tomoh Masaki, and Katsutoshi Goto. "The Participation of Endogenous ET-1 in Glial Scar formation after Spinal Cord Injury." Japanese Journal of Pharmacology 73 (1997): 112. http://dx.doi.org/10.1016/s0021-5198(19)44953-6.
Full textOkuda, Akinori, Noriko Horii-Hayashi, Takayo Sasagawa, Takamasa Shimizu, Hideki Shigematsu, Eiichiro Iwata, Yasuhiko Morimoto, et al. "Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats." Journal of Neurosurgery: Spine 26, no. 3 (March 2017): 388–95. http://dx.doi.org/10.3171/2016.8.spine16250.
Full textZhang, Rongyi, Junhua Wang, Qingwen Deng, Xingru Xiao, Xiang Zeng, Biqin Lai, Ge Li, et al. "Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord." Neurospine 20, no. 4 (December 31, 2023): 1358–79. http://dx.doi.org/10.14245/ns.2346824.412.
Full textPasterkamp, R. Jeroen, and Joost Verhaagen. "Semaphorins in axon regeneration: developmental guidance molecules gone wrong?" Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1473 (July 28, 2006): 1499–511. http://dx.doi.org/10.1098/rstb.2006.1892.
Full textZhang, Ce, Jianning Kang, Xiaodi Zhang, Ying Zhang, Nana Huang, and Bin Ning. "Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury." Biomedicine & Pharmacotherapy 153 (September 2022): 113500. http://dx.doi.org/10.1016/j.biopha.2022.113500.
Full textLi, Yi, Jian Wu, Zhen-Yu Zhu, Zhi-Wei Fan, Ying Chen, and Ri-Yun Yang. "Downregulation of EphB2 by RNA interference attenuates glial/fibrotic scar formation and promotes axon growth." Neural Regeneration Research 17, no. 2 (2022): 362. http://dx.doi.org/10.4103/1673-5374.317988.
Full textTysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp, and J. A. Kessler. "Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury." Journal of Neuroscience 28, no. 14 (April 2, 2008): 3814–23. http://dx.doi.org/10.1523/jneurosci.0143-08.2008.
Full text