Journal articles on the topic 'Glassy Electrolytes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Glassy Electrolytes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Morales, Daniel J., and Steven Greenbaum. "NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review." International Journal of Molecular Sciences 21, no. 9 (May 11, 2020): 3402. http://dx.doi.org/10.3390/ijms21093402.
Full textWheaton, Jacob, and Steve Martin. "Electrochemical Characterization of a Drawn Thin-Film Mixed Oxy-Sulfide Glassy Electrolyte Material for Solid-State Battery Applications." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 489. http://dx.doi.org/10.1149/ma2022-024489mtgabs.
Full textTSIULYANU, D., I. STRATAN, and M. CIOBANU. "INFLUENCE OF GLASSY BACKBONE ON THE PHOTOFORMATION AND PROPERTIES OF SOLID ELECTROLYTES Ag : As-S-Ge." Chalcogenide Letters 17, no. 1 (January 2020): 9–14. http://dx.doi.org/10.15251/cl.2020.171.9.
Full textOkkema, Mary, Madison Martin, and Steve Martin. "Electrochemical Characterization of a Drawn Thin-Film Glassy Mixed Oxy-Sulfide-Nitride Phosphate Electrolyte Material for Applications in Solid-State Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 414. http://dx.doi.org/10.1149/ma2022-024414mtgabs.
Full textMartin, Madison, Mary Okkema, and Steve Martin. "Electrochemical Characterization of a Drawn Thin-Film Glassy Mixed Oxy-Sulfide-Nitride Phosphate Electrolyte for Applications in Solid-State Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 530. http://dx.doi.org/10.1149/ma2022-024530mtgabs.
Full textBin, Wu, and Fan Chun. "Summary of Lithium-Ion Battery Polymer Electrolytes." Advanced Materials Research 535-537 (June 2012): 2092–99. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2092.
Full textIngram, M. "Ion transport in glassy electrolytes." Solid State Ionics 94, no. 1-4 (February 1, 1997): 49–54. http://dx.doi.org/10.1016/s0167-2738(96)00610-8.
Full textChoi, H., H. K. Kim, Y. W. Koo, K. H. Nam, S. M. Koo, W. J. Cho, and H. B. Chung. "Investigation of Electrical Properties in Chalcogenide Thin Film According to Wave Length." Advanced Materials Research 31 (November 2007): 135–37. http://dx.doi.org/10.4028/www.scientific.net/amr.31.135.
Full textVukicevic, Natasa, Vesna Cvetkovic, Nebojsa Nikolic, Goran Brankovic, Tanja Barudzija, and Jovan Jovicevic. "Formation of the honeycomb-like MgO/Mg(OH)2 structures with controlled shape and size of holes by molten salt electrolysis." Journal of the Serbian Chemical Society 83, no. 12 (2018): 1351–62. http://dx.doi.org/10.2298/jsc180913084v.
Full textFettkether, Will, Steve Martin, and Jacob Wheaton. "Development and Optimization of Composite Cathode Materials for Use with Thin-Film Glassy Solid Electrolytes in Solid-State Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 515. http://dx.doi.org/10.1149/ma2022-024515mtgabs.
Full textImrie, C. T., M. D. Ingram, and G. S. McHattie. "Ion Transport in Glassy Polymer Electrolytes." Journal of Physical Chemistry B 103, no. 20 (May 1999): 4132–38. http://dx.doi.org/10.1021/jp983968e.
Full textBunde, A. "Anomalous ionic transport in glassy electrolytes." Il Nuovo Cimento D 16, no. 8 (August 1994): 1053–63. http://dx.doi.org/10.1007/bf02458787.
Full textMena, Silvia, Jesus Bernad, and Gonzalo Guirado. "Electrochemical Incorporation of Carbon Dioxide into Fluorotoluene Derivatives under Mild Conditions." Catalysts 11, no. 8 (July 22, 2021): 880. http://dx.doi.org/10.3390/catal11080880.
Full textE.A., Il'ina, Raskovalov A.A., Saetova N.S., Antonov B.D., and Reznitskikh O.G. "Composite electrolytes Li7La3Zr2O12–glassy Li2O–B2O3–SiO2." Solid State Ionics 296 (November 2016): 26–30. http://dx.doi.org/10.1016/j.ssi.2016.09.003.
Full textDeshpande, V. K. "Science and technology of glassy solid electrolytes." IOP Conference Series: Materials Science and Engineering 2 (July 1, 2009): 012011. http://dx.doi.org/10.1088/1757-899x/2/1/012011.
Full textHona, Ram Krishna, Mandy Guinn, Uttam S. Phuyal, S’Nya Sanchez, and Gurjot S. Dhaliwal. "Alkali Ionic Conductivity in Inorganic Glassy Electrolytes." Journal of Materials Science and Chemical Engineering 11, no. 07 (2023): 31–72. http://dx.doi.org/10.4236/msce.2023.117004.
Full textHester, Gavin, Tom Heitmann, Madhusudan Tyagi, Munesh Rathore, Anshuman Dalvi, and Saibal Mitra. "Neutron Scattering Studies of Lithium-Ion Diffusion in Ternary Phosphate Glasses." MRS Advances 1, no. 45 (2016): 3057–62. http://dx.doi.org/10.1557/adv.2016.492.
Full textChandra, Angesh, Alok Bhatt, and Archana Chandra. "Ion Conduction in Superionic Glassy Electrolytes: An Overview." Journal of Materials Science & Technology 29, no. 3 (March 2013): 193–208. http://dx.doi.org/10.1016/j.jmst.2013.01.005.
Full textKnödler, D., W. Dieterich, and J. Petersen. "Coulombic traps and ion conduction in glassy electrolytes." Solid State Ionics 53-56 (July 1992): 1135–40. http://dx.doi.org/10.1016/0167-2738(92)90302-6.
Full textBraga, M. H., J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-Azab. "Novel Li3ClO based glasses with superionic properties for lithium batteries." J. Mater. Chem. A 2, no. 15 (2014): 5470–80. http://dx.doi.org/10.1039/c3ta15087a.
Full textSpringer, Renaldo E., Tawanda J. Zimudzi, and Derek M. Hall. "Examining the Impact of Solution and Surface Composition on Positive Electrode Kinetics for the All-Iron Redox Flow Battery." ECS Meeting Abstracts MA2022-02, no. 54 (October 9, 2022): 2054. http://dx.doi.org/10.1149/ma2022-02542054mtgabs.
Full textMunoz, Stephen, and Steven Greenbaum. "Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes." Membranes 8, no. 4 (November 30, 2018): 120. http://dx.doi.org/10.3390/membranes8040120.
Full textBalogun, Sheriff A., and Omolola E. Fayemi. "Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode." Nanomaterials 12, no. 11 (May 30, 2022): 1876. http://dx.doi.org/10.3390/nano12111876.
Full textBaskaran, N. "Conductivity relaxation and ion transport processes in glassy electrolytes." Journal of Applied Physics 92, no. 2 (July 15, 2002): 825–33. http://dx.doi.org/10.1063/1.1487456.
Full textChandra, Angesh, Alok Bhatt, and Archana Chandra. "Synthesis and characterization of Ag+ion conducting glassy electrolytes." European Physical Journal Applied Physics 63, no. 1 (July 2013): 10904. http://dx.doi.org/10.1051/epjap/2013120299.
Full textChan, Chin Han, and Hans-Werner Kammer. "Low Frequency Dielectric Relaxation and Conductance of Solid Polymer Electrolytes with PEO and Blends of PEO and PMMA." Polymers 12, no. 5 (April 27, 2020): 1009. http://dx.doi.org/10.3390/polym12051009.
Full textProtsenko, V. S., and L. S. Bobrova. "Electrode processes in a deep eutectic solvent containing dissolved chromium(III) chloride." Voprosy Khimii i Khimicheskoi Tekhnologii, no. 5 (October 2022): 84–93. http://dx.doi.org/10.32434/0321-4095-2022-144-5-84-93.
Full textRam, Rakesh, and Sanjib Bhattacharya. "Mixed ionic-electronic transport in Na2O doped glassy electrolytes: Promising candidate for new generation sodium ion battery electrolytes." Journal of Applied Physics 133, no. 14 (April 14, 2023): 145101. http://dx.doi.org/10.1063/5.0145894.
Full textSiekierski, Maciej, Maja Mroczkowska-Szerszeń, Rafał Letmanowski, Dariusz Zabost, Michał Piszcz, Lidia Dudek, Michał M. Struzik, Magdalena Winkowska-Struzik, Renata Cicha-Szot, and Magdalena Dudek. "Ionic Transport Properties of P2O5-SiO2 Glassy Protonic Composites Doped with Polymer and Inorganic Titanium-based Fillers." Materials 13, no. 13 (July 6, 2020): 3004. http://dx.doi.org/10.3390/ma13133004.
Full textIngram, Malcolm D., Corrie T. Imrie, Ioannis Konidakis, and Stephan Voss. "Significance of activation volumes for cation transport in glassy electrolytes." Phys. Chem. Chem. Phys. 6, no. 13 (2004): 3659–62. http://dx.doi.org/10.1039/b314879c.
Full textMusinu, A. "Towards a model of silver halide-silver oxysalt glassy electrolytes." Solid State Ionics 34, no. 3 (May 1989): 187–93. http://dx.doi.org/10.1016/0167-2738(89)90038-6.
Full textKNODLER, D., P. PENDZIG, and W. DIETERICH. "Transport and ac response in a model of glassy electrolytes." Solid State Ionics 70-71 (May 1994): 356–61. http://dx.doi.org/10.1016/0167-2738(94)90336-0.
Full textImrie, Corrie T., Malcolm D. Ingram, and Gillian S. McHattie. "Ion Transport in Glassy Side-Group Liquid Crystalline Polymer Electrolytes." Advanced Materials 11, no. 10 (July 1999): 832–34. http://dx.doi.org/10.1002/(sici)1521-4095(199907)11:10<832::aid-adma832>3.0.co;2-z.
Full textNdeugueu, Jean Léopold, and Masaru Aniya. "Classification of Glassy and Polymer Electrolytes for Lithium-Ion Batteries by the Bond-Strength-Coordination Number Fluctuation Model." Advanced Materials Research 123-125 (August 2010): 1075–78. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.1075.
Full textTorres III, Victor Manuel, Steve Martin, and Presley Philipp. "Preparation of Li-Si-P-S-O-N Glasses: The Impact of Lipon Incorporation on Ionic Conductivity." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 480. http://dx.doi.org/10.1149/ma2022-024480mtgabs.
Full textGurkan, Burcu, William Dean, and Drace Penley. "(Invited) Concentrated Hydrogen Bonded Electrolytes: Definition and Bulk & Interfacial Properties." ECS Meeting Abstracts MA2022-02, no. 55 (October 9, 2022): 2112. http://dx.doi.org/10.1149/ma2022-02552112mtgabs.
Full textSchauser, Nicole S., Katherine J. Harry, Dilworth Y. Parkinson, Hiroshi Watanabe, and Nitash P. Balsara. "Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes." Journal of The Electrochemical Society 162, no. 3 (December 29, 2014): A398—A405. http://dx.doi.org/10.1149/2.0511503jes.
Full textAdams, S. "Ag migration pathways in crystalline and glassy solid electrolytes AgI–AgMxOy." Solid State Ionics 105, no. 1-4 (January 1, 1998): 67–74. http://dx.doi.org/10.1016/s0167-2738(97)00450-5.
Full textSatyanarayana, N., A. Karthikeyan, and M. Venkateswarlu. "Monte Carlo simulation of ion conduction in silver based glassy electrolytes." Materials Science and Engineering: B 47, no. 3 (June 1997): 210–17. http://dx.doi.org/10.1016/s0921-5107(97)00040-8.
Full textPrasada Rao, R., T. D. Tho, and S. Adams. "Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes." Solid State Ionics 192, no. 1 (June 2011): 25–29. http://dx.doi.org/10.1016/j.ssi.2009.12.010.
Full textKarthikeya, A., and N. Satyanarayana. "Solid-state batteries using silver-based fast ionic conducting glassy electrolytes." Journal of Power Sources 51, no. 3 (October 1994): 457–62. http://dx.doi.org/10.1016/0378-7753(94)80113-4.
Full textDeshpande, V. K. "Factors affecting ionic conductivity in the lithium conducting glassy solid electrolytes." Ionics 10, no. 1-2 (January 2004): 20–26. http://dx.doi.org/10.1007/bf02410300.
Full textIngram, Malcolm D., Philipp Maass, and Armin Bunde. "Frequency-Dependent Conductivity. Ionic Conductivity and Memory Effects in Glassy Electrolytes." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 9 (September 1991): 1002–6. http://dx.doi.org/10.1002/bbpc.19910950910.
Full textNOWAK, ANDRZEJ P., and ANNA LISOWSKA-OLEKSIAK. "ELECTROCHEMICAL ACTIVITY OF COMPOSITE MATERIAL POLY(3, 4-ETHYLENEDIOXYTHIOPHENE) MODIFIED BY SILVER HEXACYANOFERRATE." Functional Materials Letters 04, no. 02 (June 2011): 205–8. http://dx.doi.org/10.1142/s1793604711001889.
Full textModak, Sanat Vibhas, Joseph Valle, David G. Kwabi, and Jeff Sakamoto. "(Digital Presentation) Evaluating Stability and Performance of Nasicon Membranes for Crossover Mitigation in Aqueous Redox-Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 48 (July 7, 2022): 1997. http://dx.doi.org/10.1149/ma2022-01481997mtgabs.
Full textModak, Sanat Vibhas, Flora Tseng, Joseph Valle, Jeff Sakamoto, and David G. Kwabi. "Evaluating the Stability and Performance of Nasicon in Low-Cost High Charge Density Redox Flow Battery Electrolytes." ECS Meeting Abstracts MA2022-02, no. 46 (October 9, 2022): 1707. http://dx.doi.org/10.1149/ma2022-02461707mtgabs.
Full textKumar Gupta, Pankaj, Akshay Dvivedi, and Pradeep Kumar. "Effect of Electrolytes on Quality Characteristics of Glass during ECDM." Key Engineering Materials 658 (July 2015): 141–45. http://dx.doi.org/10.4028/www.scientific.net/kem.658.141.
Full textLi, Jing, Hua Qing Xie, and Yang Li. "Template-Free Electrochemical Synthesis of Well-Aligned Polypyrrole Nanofibers for Electrochemical Supercapacitors." Advanced Materials Research 512-515 (May 2012): 1776–79. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1776.
Full textStaacke, Carsten G., Tabea Huss, Johannes T. Margraf, Karsten Reuter, and Christoph Scheurer. "Tackling Structural Complexity in Li2S-P2S5 Solid-State Electrolytes Using Machine Learning Potentials." Nanomaterials 12, no. 17 (August 26, 2022): 2950. http://dx.doi.org/10.3390/nano12172950.
Full textBartolotta, A., G. Di Marco, E. Bonetti, and G. Carini. "Mechanical behavior of polymeric electrolytes in the glassy and rubber-like regions." Solid State Communications 67, no. 5 (August 1988): 561–64. http://dx.doi.org/10.1016/0038-1098(84)90183-2.
Full text