Academic literature on the topic 'Glasses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glasses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glasses"
Machinin, A. M., A. Awang, C. F. Pien, and S. K. Ghoshal. "Tuning structural and wettability properties of glass using ellipsoidal TiO2 nanoparticles." Journal of Ovonic Research 18, no. 6 (November 21, 2022): 731–38. http://dx.doi.org/10.15251/jor.2022.186.731.
Full textLusvardi, Gigliola, Francesca Sgarbi Stabellini, and Roberta Salvatori. "P2O5-Free Cerium Containing Glasses: Bioactivity and Cytocompatibility Evaluation." Materials 12, no. 19 (October 8, 2019): 3267. http://dx.doi.org/10.3390/ma12193267.
Full textWójcik, N. A., S. Ali, A. Mielewczyk-Gryń, and B. Jonson. "Two-step synthesis of niobium doped Na–Ca–(Mg)–P–Si–O glasses." Journal of Materials Science 56, no. 12 (January 25, 2021): 7613–25. http://dx.doi.org/10.1007/s10853-021-05781-w.
Full textLu, An Xian, S. J. Liu, X. D. Tang, and S. B. He. "Difference of Properties between Yb3+-Doped Silicate and Phosphate Laser Glasses." Advanced Materials Research 11-12 (February 2006): 213–16. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.213.
Full textB, Eraiah. "Electronic-Ionic Conductivity of Lithium- Vanado- Phosphate Glasses." Mapana - Journal of Sciences 14, no. 1 (July 7, 2017): 9–14. http://dx.doi.org/10.12723/mjs.32.2.
Full textChen, Lu, and Ying Dai. "Effects of Iron Oxide on the Crystallization of Calcium Alumino-Silicate Glass." Key Engineering Materials 680 (February 2016): 293–96. http://dx.doi.org/10.4028/www.scientific.net/kem.680.293.
Full textDe Aza, P. N., A. H. De Aza, P. Pena, and S. De Aza. "Vidrios y Vitrocerámicos Bioactivos." Boletín de la Sociedad Española de Cerámica y Vidrio 46, no. 2 (April 30, 2007): 45–55. http://dx.doi.org/10.3989/cyv.2007.v46.i2.249.
Full textMehrer, Helmut. "Diffusion in Metallic Glasses and in Oxide Glasses - An Overview." Defect and Diffusion Forum 413 (December 17, 2021): 109–24. http://dx.doi.org/10.4028/www.scientific.net/ddf.413.109.
Full textLoehman, Ronald E. "Oxynitride Glasses." MRS Bulletin 12, no. 5 (August 1987): 26–31. http://dx.doi.org/10.1557/s0883769400067476.
Full textConiglio, Antonio. "Spin glasses, glasses and granular materials." Philosophical Magazine B 77, no. 2 (February 1998): 213–19. http://dx.doi.org/10.1080/13642819808204946.
Full textDissertations / Theses on the topic "Glasses"
Leuzzi, Luca. "Thermodynamics of glassy systems glasses, spin glasses and optimization /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/66345.
Full textWootton, Andrew Michael. "Silicon oxycarbide glasses and glass-ceramics." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310015.
Full textRappensberger, Csaba Ferenc. "Novel rare-earth aluminosilicate glasses and glass-ceramics." Thesis, University of Warwick, 1996. http://wrap.warwick.ac.uk/56937/.
Full textZhang, Endang. "Fibre reinforcement of oxynitride glasses and glass-ceramics." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320017.
Full textConca, Luca. "Mechanical properties of polymer glasses : Mechanical properties of polymer glasses." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1050/document.
Full textThis manuscript presents recent extensions to the PFVD model, based on the heterogeneity of theh dynamics of glassy polymers at the scale of a few nanometers et solved by 3D numerical simulation, which aim at providing a unified physical description of the mechanical and dynamical properties of glassy polymers during plastic deformation. Three main topics are treated: Plasticization. Under applied deformation, polymers undergo yield at strains of a few percent and stresses of some 10 MPa.We propose that the elastic energy stored at the scale of dynamical heterogeneities accelerates local dynamics. We observe yield stresses of a few 10 MPa are obtained at a few percent of deformation and that plastification is due to a relatively small amount of local yields. It has been observed that dynamics becomes faster and more homogeneous close to yield and that the average mobility attains a stationary value, linear with the strain rate. We propose that stress-induced acceleration of the dynamics enhances the diffusion of monomers from slow domains to fast ones (facilitation mechanism), accelerating local dynamics. This allows for obtaining the homogeneisation of the dynamics, with the same features observed during experiments. Strain-hardening, in highly entangled and cross-linked polymers. At large strain, stress increases with increasing strain, with a characteristic slope (hardening modulus) of order 10 – 100 MPa well below the glass transition. Analogously to a recent theory, we propose that local deformation orients monomers in the drawing direction and slows dows the dynamics, as a consequence of the intensification of local interactions. The hardening moduli mesured, the effect of reticulation and of strain rate are comparable with experimental data. In addition, strain-hardening is found to have a stabilizing effect over strain localization and shear banding
Brüning, Ralf. "Structural relaxation and the glass transition in metallic glasses." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74345.
Full textIt is found that irreversible relaxation proceeds by many local shear-type motions involving the metal atoms, and that it is accompanied by a small densification. Reversible relaxation at high annealing temperatures entails the same microscopic processes, but it does not change the density of the glass. The type of atomic processes changes continuously as the annealing temperature is lowered, and at sufficiently low temperatures the distribution of metal atoms remains constant, so that reversible relaxation then proceeds via rearrangement of the metalloid atoms. This rearrangement leads to more ordered, but less isotropic atomic sites.
The second part of the thesis is concerned with the motion of the atoms in a metallic glass below and above the glass transition. Mossbauer spectroscopy allows the direct measurement of vibrational and diffusional motion. The increase of the amplitude of atomic vibration has the same temperature dependence as the increase in volume that marks the glass transition, thus the two processes are governed by the same mechanism. The directly measured diffusional motion is in agreement with macroscopic measurements of diffusion.
De, Mestral François. "Calcium phosphate glasses and glass-ceramics for medical applications." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65405.
Full textKansal, Ishu. "Diopside-fluorapatite-wollastonite based bioactive glasses and glass-ceramics." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14827.
Full textBioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.
Os vidros e vitrocerâmicos bioactivos são uma classe de biomateriais que induzem uma resposta especial à sua superfície quando em contacto com fluidos biológicos que conduz a uma forte ligação ao tecido vivo. Esta característica particular conjugada com uma boa aptidão para a sinterização e elevada resistência mecânica torna estes materiais ideais para a fabricação de estruturas de suporte à regeneração óssea. O trabalho apresentado nesta tese pretende dar um contributo para uma melhor compreensão das relações entre composição-estrutura-propriedades em vidros potencialmente bioactivos com composições no sistema CaOMgOP2O5SiO2F, em alguns casos com a adição de Na2O. O estudo da influência exercida pela composição do vidro na estrutura molecular, capacidade de sinterização e nível de bioactividade dos vidros fosfosilicatados foi objecto de especial atenção. As composições vítreas foram concebidas no campo da cristalização primária do pseudo sistema ternário do diópsido (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite, e estudou-se o impacto das variações composicionais na estrutura, nas propriedades e na capacidade de sinterização destes vidros. Todos os vidros investigados neste trabalho foram preparados por fusão e fritagem e caracterizados quanto à sua estrutura molecular, capacidade de sinterização, degradação química e bioactividade, usando uma grande variedade de técnicas experimentais. Ficou demonstrado que em todas as composições de vidro investigadas a rede de silicato era dominada principalmente por unidades Q2 enquanto o fosfato se encontrava coordenado em ambiente de ortofosfato. As composições de biovidros isentas de alcalinos do sistema diópsido–fluorapatite demonstram possuir excelente capacidade de sinterização e elevados níveis de bioactividade, atributos que os qualificam como materiais promissores para a fabricação de estruturas de suporte à regeneração de tecidos ósseos, enquanto os vidros bioactivos contendo alcalinos foram mais difíceis de densificar durante a sinterização e induziram citotoxicidade in vitro, não sendo candidatos ideais para a engenharia de tecidos. Uma das nossas composições de biovidro com um baixo teor de sódio foi testada com sucesso tanto in vivo como em ensaios clínicos preliminares. Mas este trabalho precisa de ser continuado e aprofundado. A dispersão de fritas moídas em meio aquoso ou outros solventes adequados, e o estudo dos factores mais relevantes que condicionam a reologia das suspensões são etapas essenciais para viabilizar o processo de fabrico de suportes porosos com estruturas hierárquicas de poros feitas por medida através de técnicas de processamento avançadas tais como o Robocasting.
Goel, Ashutosh. "Clinopyroxene based glasses and glass-ceramics for functional applications." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2323.
Full textAs piroxenas são um vasto grupo de silicatos minerais encontrados em muitas rochas ígneas e metamórficas. Na sua forma mais simples, estes silicatos são constituídas por cadeias de SiO3 ligando grupos tetrahédricos de SiO4. A fórmula química geral das piroxenas é M2M1T2O6, onde M2 se refere a catiões geralmente em uma coordenação octaédrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catiões numa coordenação octaédrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catiões em coordenação tetrahédrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclínica são designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composições químicas amplo, em conjugação com a possibilidade de ajustar as suas propriedades físicas e químicas e a durabilidade química, têm gerado um interesse mundial devido a suas aplicações em ciência e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicações funcionais. O estudo teve objectivos científicos e tecnológicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formação de fases cristalinas e soluções sólidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicação dos novos materiais em diferentes áreas tecnológicas, com especial ênfase sobre a selagem em células de combustível de óxido sólido (SOFC). Com este intuito, prepararam-se vários vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsídio (CaMgSi2O6) e diopsídio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados através de um vasto leque de técnicas. Todos os vidros foram preparados por fusão-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterização e cristalização de fritas, quer por nucleação e cristalização de vidros monolíticos. Estudaram-se ainda os efeitos de várias substituições iónicas em composições de diopsídio contendo Al na estrutura, sinterização e no comportamento durante a cristalização de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicação como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos à base de enstatite não apresentavam as características necessárias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos à base de diopsídio qualificaram-nos para futuros estudos neste tipo de aplicações. Para além de investigar a adequação dos vitro-cerâmicos à base de clinopyroxene como selantes, esta tese tem também como objetivo estudar a influência dos agentes de nucleação na nucleação em volume dos vitro-cerâmicos resultantes á base de diopsídio, de modo a qualificá-los como potenciais materiais hopedeiros de resíduos nucleares radioactivos.
The pyroxenes are a wide spread group rock-forming silicate minerals found in many igneous and metamorphic rocks. They are silicates that, in their simplest form, contain single SiO3 chains of linked SiO4 tetrahedra. The general chemical formula for pyroxenes is M2M1T2O6, where M2 refers to cations in a generally distorted octahedral coordination (Mg2+, Fe2+, Mn+, Li+, Ca2+, Na+), M1 to cations in a regular octahedral coordination (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), and T to tetrahedrally coordinated cations (Si4+, Al3+, Fe3+). Monoclinic pyroxenes are called clinopyroxenes. The stability of clinopyroxenes over a broad spectrum of chemical compositions, in conjunction with the possibility of achieving desired physical properties and high chemical durability, has generated a worldwide interest due to their applications in material science and technology. The present work deals with the development of clinopyroxene based glasses and glass-ceramics for functional applications. The objective of the study was dual, both scientific and technological; particularly to gain fundamental knowledge on the formation of crystalline phases and solid solutions in selected glass-ceramic systems, and to evaluate the feasibility for application of new materials in different technological areas with emphasis on sealing in solid oxide fuel cells (SOFC). In this pursuit, various glasses and glass-ceramics along Enstatite (MgSiO3) - Diopside (CaMgSi2O6) and Diopside (CaMgSi2O6) – Ca – Tschermak (CaAlSi2O6) joins have been prepared and characterized by a wide array of characterization techniques. All the glasses were prepared by melt-quenching technique while glass-ceramics were produced either by sintering and crystallization of glass powders or by nucleation and crystallization in monolithic glasses. Furthermore, influence of various ionic substitutions/additions in Alcontaining diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant glass-ceramics has been investigated, in relevance with final application as sealants in SOFC. It has been observed that enstatite based glasses/glass-ceramics do not exhibit requisite characteristics in order to qualify for the job of sealing in SOFC while the superior properties exhibited by diopside based glass-ceramics qualify them for further experimentation as SOFC sealants. Apart from investigating the suitability of clinopyroxene based glass-ceramics as sealants, this thesis also aims to study the influence of nucleating agents on the volume nucleation in the resultant diopside based glass-ceramics so as to qualify them for further experimentation as hosts for radioactive nuclear wastes.
Parupudi, Aarti. "Singing wine glasses." Kansas State University, 2015. http://hdl.handle.net/2097/19706.
Full textComputing and Information Sciences
Daniel A. Andresen
One among the many inventions of Benjamin Franklin is the Glass Armonica, a musical instrument whose sound source was a series of resonating glass vessels. However, the Irish musician Richard Pockrich is typically credited as the first to play an instrument composed of glass vessels, called the Glass Harp in 1741, by rubbing his fingers around the rims. In this project “Singing Wine Glasses”, the principle of Franklin’s glass armonica is demonstrated with a wine glass. One hand is used to hold the glass steady at the base. The rim of glass is gently pressed with a moistened finger of the other hand and drawn in a circle around. When the pressure and amount of moisture are just right, the slight friction between the finger and the rim of glass causes vibrations in the sides of the glass. At a particular frequency, called the resonant frequency, the sides of the glass will vibrate most easily. The resonant frequency of wine glasses is typically within the range of human hearing (20-20,000 Hz), so the resulting resonant vibration is heard as a tone. The glass starts to sing when the vibration gets the molecules moving at their natural frequency. The resonant frequency changes with the amount of water filled in the glass. This android application deals with virtual glasses that serve the purpose of wine glasses filled with different amounts of water. Swiping on the glass edges would produce music, as per Franklin’s principle. The users would be free to select the number of glasses they want to play, and the amount of water-level in each glass. This application would also come with an enhanced feature of sustaining a particular note until the finger is released from the glass.
Books on the topic "Glasses"
Reese, Bob. Glasses. Chicago: Childrens Press, 1992.
Find full textGlasses. London: MQ Pub., 1999.
Find full textZawistoski, Ann Gwinn. Glasses. Madison, WI: Peeps Eyewear, LLC, 2014.
Find full textBinoculars, opera glasses and field glasses. Princes Risborough, Buckinghamshire [England]: Shire Publications, Ltd., 1995.
Find full textGemma, Stockdale, Cooper Matthew, and Holliday Liz, eds. Elmer's glasses. Bradford: Horton Print Group, 2003.
Find full textE, Comyns Alan, ed. Fluoride glasses. Chichester [England]: Published on behalf of the Society of Chemical Industry by Wiley, 1989.
Find full textRhude, Steven. Natalie's glasses. Lunenburg, N.S: MacIntyre Purcell Pub., 2011.
Find full textBoccaccini, Aldo R., Delia S. Brauer, and Leena Hupa, eds. Bioactive Glasses. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782622017.
Full textRoth, Connie, ed. Polymer Glasses. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315305158.
Full textRoth, Connie B. Polymer Glasses. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2016] |: CRC Press, 2016. http://dx.doi.org/10.4324/9781315305158.
Full textBook chapters on the topic "Glasses"
Souletie, J. "Spin-Glasses Versus Glassy Glasses." In Structure and Properties of Ionomers, 247–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3829-8_20.
Full textFord, N., and R. Todbunter. "Applications of microporous glasses." In Glasses and Glass-Ceramics, 203–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0817-8_6.
Full textKrause, Dieter. "Glasses." In Springer Handbook of Materials Data, 541–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_19.
Full textZarzycki, J., G. H. Frischat, and D. M. Herlach. "Glasses." In Fluid Sciences and Materials Science in Space, 599–636. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46613-7_17.
Full textDoremus, R. H. "Glasses." In Materials Sciences in Space, 447–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82761-7_18.
Full textKurchan, Jorge. "Glasses." In Glasses and Grains, 1–24. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0084-6_1.
Full textBolton, William, and R. A. Higgins. "Glasses." In Materials for Engineers and Technicians, 321–28. Seventh edition. | Abingdon, Oxon ; New York, NY : Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9781003082446-22.
Full textDupree, R., and D. Holland. "MAS NMR: a new spectroscopic technique for structure determination in glasses and ceramics." In Glasses and Glass-Ceramics, 1–40. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0817-8_1.
Full textPrewo, Karl M. "Fibre reinforced glasses and glass-ceramics." In Glasses and Glass-Ceramics, 336–68. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0817-8_10.
Full textPettifer, R. F. "X-ray absorption studies of glass structure." In Glasses and Glass-Ceramics, 41–58. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0817-8_2.
Full textConference papers on the topic "Glasses"
Ojovan, Michael, Guenter Mo¨bus, Jim Tsai, Stuart Cook, and Guang Yang. "On Fluidization of Borosilicate Glasses in Intense Radiation Fields." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16055.
Full textWalton, D. "The glass transition in orientational glasses." In Slow dynamics in condensed matter. AIP, 1992. http://dx.doi.org/10.1063/1.42449.
Full textBouchaud, J. Ph. "Aging in glassy systems: Traps and Mode-Coupling theory." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301451.
Full textMicoulaut, Matthieu. "Solvable models of glass transition." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301468.
Full textBarrat, Jean-Louis. "Mode coupling theories." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301450.
Full textSchober, H. R. "Molecular dynamics in amorphous solids and liquids." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301459.
Full textTeichler, H. "The liquid-glass transition in the." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301460.
Full textBuchenau, U. "Neutron and X-ray scattering from glasses." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301447.
Full textPelous, J., C. Levelut, and F. Terki. "Relaxations and vibrations in glasses: Experiments." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301448.
Full textGaskell, Philip H. "Medium-range structure in amorphous and crystalline." In PHYSICS OF GLASSES. ASCE, 1999. http://dx.doi.org/10.1063/1.1301449.
Full textReports on the topic "Glasses"
Yu, Clare. "Coulomb Glasses". Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/835841.
Full textGal'perin, Yu M., V. G. Karpov, and Володимир Миколайович Соловйов. Density of vibrational states in glasses. Springer, November 1988. http://dx.doi.org/10.31812/0564/1005.
Full textGafney, Harry D. Photodeposition in Glasses. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada336810.
Full textMatyas, Josef, Adam R. Huckleberry, Carmen P. Rodriguez, Jesse B. Lang, Antionette T. Owen, and Albert A. Kruger. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1062511.
Full textBeaudet, Madison. Memory Through Dark Glasses. Portland State University Library, January 2013. http://dx.doi.org/10.15760/honors.7.
Full textPolk, Donald. Raman Spectra of Glasses. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada203343.
Full textHrma, Pavel R., Gregory F. Piepel, John D. Vienna, Scott K. Cooley, Dong-Sang Kim, and Renee L. Russell. Database and Interim Glass Property Models for Hanford HLW Glasses. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/787351.
Full textHrma, Pavel R., Gregory F. Piepel, John D. Vienna, Scott K. Cooley, Dong-Sang Kim, and Renee L. Russell. Database and Interim Glass Property Models for Hanford HLW Glasses. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/965691.
Full textEllison, A., S. Wolf, E. Buck, J. S. Luo, N. Dietz, J. K. Bates, and W. L. Ebert. Laboratory testing of LITCO glasses. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/80967.
Full textEllison, A. G. J., D. L. Price, M. L. Saboungi, R. Z. Hu, T. Egami, and W. S. Howells. Extended-range order in glasses. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10188255.
Full text