Academic literature on the topic 'Glass-making furnace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glass-making furnace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glass-making furnace"

1

Busby, T. S. "Refractories for Glass Making." MRS Bulletin 14, no. 11 (November 1989): 45–53. http://dx.doi.org/10.1557/s0883769400061200.

Full text
Abstract:
Glass melting has changed very little in general principles since the earliest times, still being produced in fireclay pots or crucibles—even up to the present day. In Europe, experiments to melt glasses in tank furnaces began about 1700 A.D., but this became an important form of glass manufacture after Siemens introduced the regenerative furnace in 1870. This design was the basis for the development of modern furnaces and there is still a considerable similarity to the original.Until the late 1920s the glass contact refractories used in tank furnaces were based on fireclay or sandstone blocks. About this time important changes began when sillimanite and fusion-cast mullite refractories became available. However, because of the higher cost of fusion-cast refractories the introduction of these materials was delayed and they did not come into general use for lining the glass melting tank until the late 1940s.The high performance of tank furnaces today is related to a number of factors such as improved furnace design and regeneration, but the most significant has been an improved melting rate brought about by the use of higher temperatures. This has only been achievable as a result of the improved quality of fusion-cast and other refractory materials, such as those used in the furnace superstructure and regenerators. Garstang showed that there has been a steady increase in melting temperatures in the container glass industry. In data going back to 1920, there has been an increase from about 1300°C to some 1590°C. Bondarev showed that the increase in production achieved by using higher temperatures reduces the specific consumption of fuel.
APA, Harvard, Vancouver, ISO, and other styles
2

Meshka, V. S., V. I. Ureki, and V. Ya Dzyuzer. "Experience in reconstructing a glass-making furnace." Glass and Ceramics 64, no. 5-6 (May 2007): 163–66. http://dx.doi.org/10.1007/s10717-007-0041-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fialko, N. М., V. G. Prokopov, R. O. Navrodska, S. I. Shevchuk, and A. I. Stepanova. "RESULTS OF EXPERIMENTAL STUDIES OF THE HEAT ENGINEERING CHARACTERISTICS OF INDUSTRIAL FURNACE WATER-HEATING HEAT RECOVERY UNITS." Thermophysics and Thermal Power Engineering 44, no. 1 (May 12, 2022): 84–91. http://dx.doi.org/10.31472/ttpe.1.2022.10.

Full text
Abstract:
The results of a complex of experimental studies of thermal and aerodynamic indicators of water-heating heat-recovery exchangers of dusty exhaust gases from glass-making furnaces are presented. The studies were carried out on an experimental installation located behind a glass-melting furnace, and in the process of start-up operations during the introduction into operation of modular-type water-heating heat exchangers (HWM) developed by IET NAS of Ukraine at various glass-producing enterprises. The studies were carried out using modern measuring equipment according to certified methods of the services of metrological adjustment of glass-making enterprises, with the participation of which the experiments were carried out. In the process of research, the heating capacity, average values of the heat transfer coefficients and aerodynamic resistance of heat exchange surfaces, which are assembled from of panel packages formed by pipes with membranes, under conditions of heat-recovery of dusty furnace gases, were determined. The dynamics of the formation of a layer of deposits of technological dust on the surface of the panels on the gas side and the contamination coefficient of surface were also subject to research. According to the data on the heat-recovery exchanger heating capacity, the rational period of its operation between cleaning the working surfaces was determined. The experimental parameters obtained were also compared with their calculated values, as well as with the data of other researchers. According to the results of the studies, it is shown that TVM heat exchangers when used in conditions of dusty furnace gases are characterized by high thermal efficiency due to the layout of the heat exchange surface from the packets of panels formed by pipes with membranes, and the possibility of cleaning these surfaces from deposits of technological dust with practical restoration of the initial indicators. Based on the data obtained, the duration of the cycles for cleaning membrane heating surfaces from dust deposits was determined: for furnaces for the production of glass packaging, this period was 10-14 days, and for furnaces for melting medical glass - 5-7 days.
APA, Harvard, Vancouver, ISO, and other styles
4

Yaitskiy, Serhiy, Liudmyla Bragina, and Yuliya Sobol. "Analysis of the Bacor Refractories after their Service in Glass Furnace." Chemistry & Chemical Technology 10, no. 3 (September 15, 2016): 373–77. http://dx.doi.org/10.23939/chcht10.03.373.

Full text
Abstract:
The degree of the baddeleyite-corundum refractories erosion depending on the areas of their location in the glass-making furnace in the float glass production was established. With the use of petrographic analysis the influence of chemical and mineral composition and also temperature and gas environment on corrosion of bacor linings was studied. Due to obtained results the recommendations in relation to the increase of glass-attack resistance of the furnace and its service life length were formulated.
APA, Harvard, Vancouver, ISO, and other styles
5

Sokolov, V. A., M. D. Gasparyan, M. B. Remizov, and P. V. Kozlov. "Selection of refractory materials for vitrification electric furnaces of radioactive waste." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 11 (December 29, 2018): 53–56. http://dx.doi.org/10.17073/1683-4518-2018-11-53-56.

Full text
Abstract:
It was shown that fused-cast chrome-containing refractories are the most promising as the lining material of designed glass-making electric furnaces and smallsized melters of the next generation. To provide a long (up to 10 years) life of the furnace, its elements that are subject to intensive wear must be made of refractories of HPL-85 type with a high chromium content. The bakor furnace masonry of other elements can be replaced with fused-cast refractory material type HAC-26M with a low content of chromium oxide.Ill.2. Ref. 11. Tab. 5.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hui, Su Ping Cui, and Xiao Long Shang. "Optimization Chemical Composition of the Blast Furnace Slag with Uniform Design." Materials Science Forum 743-744 (January 2013): 210–15. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.210.

Full text
Abstract:
Using the industrial limestone, fly ash and pure chemical reagents as raw materials, the blast furnace slag was prepared in the simulation condition of the actual slag-making process. Using uniform design method, the influence of blast furnace slag composition factors such as quaternary alkalinity, ratio of CaO/MgO and ratio of SiO2/Al2O3 on the glass content of blast furnace slag were studied in the present in investigation, the relationship between glass content and the various factors has been obtained through regression analysis, and the main influence factors and the optimum blast furnace slag compositions been found out. The results showed that, the impact of various factors on the glass content of granulated blast furnace slag was quaternary alkalinity > ratio of SiO2/Al2O3 > ratio of CaO/MgO. According to the significance test of the regression equation and the verification experiment, it was concluded that the optimum compositions of granulated blast furnace slag were: the quaternary alkalinity was 0.85, the ratios of CaO/MgO and SiO2/Al2O3 were 11.5 and 6.5 respectively, and in this condition, the glass content of granulated blast furnace slag reached to 98.47%.
APA, Harvard, Vancouver, ISO, and other styles
7

Efremenkov, V. V., and K. Yu Subbotin. "Optimization of the control algorithm for loading glass batch into a glass making furnace." Glass and Ceramics 66, no. 5-6 (May 2009): 153–56. http://dx.doi.org/10.1007/s10717-009-9150-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shiff, V. K. "Calculation of the electric field in a glass making furnace with plane electrodes." Glass and Ceramics 50, no. 7 (July 1993): 283–86. http://dx.doi.org/10.1007/bf00683663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gulyamov, Shuhrat, Azamat Rajabov, and Utkir Kholmanov. "MATHEMATIC SIMULATION OF GLASS MELTING PROCESS IN GLASS PRODUCTION." Technical science and innovation 2021, no. 1 (May 10, 2020): 70–74. http://dx.doi.org/10.51346/tstu-02.21.1-77-0010.

Full text
Abstract:
A systematic analysis of the technological process of glass melting as an object of automatic control and management has been carried out. As an object of automatic control with distributed parameters, the mathematical description of the glassmaking furnace operation has been developed (considering the main phenomenological features of the technological mode of glassmaking).In this paper, a mathematical description of charge melting process, additional heating by electric current, bubbling, thermal conductivity and heat fluxes during the processing of molten glass have been generated. Initial conditions and simplifying assumptions have been derived. The model is based on the equations of continuity, momentum and energy, as well as kinetic turbulent energy, dissipation of kinetic turbulent energy. An experiment has been conducted on the proposed in order to check for its adequacy to real glass-making processes.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Hui, Su Ping Cui, and Ya Li Wang. "Influence of Cooling Ways on the Structure and Hydraulic Activity of Blast Furnace Slag." Key Engineering Materials 633 (November 2014): 234–39. http://dx.doi.org/10.4028/www.scientific.net/kem.633.234.

Full text
Abstract:
Using the industrial limestone, fly ash and pure chemical reagents as raw materials, the blast furnace slag was prepared in the simulation condition of the actual slag-making process by three different cooling ways, including air cooling, water cooling and liquid nitrogen cooling. Combined with different test methods such as XRD, SEM, IR, the influence of cooling ways on the structure and hydraulic activity of blast furnace slag was studied in the present in investigation. The relationship between glass content, compressive strength and the phase compositions of blast furnace slag has been obtained. The results showed that, the glass content of water cooling slag or liquid nitrogen cooling slag was slightly higher than that of air cooling slag, there was obviously gehlenite crystal phase in air cooling slag. The 7d and 28d compressive strength of three slags did not present positive correlation with vitreous content, the sequence of 28d compressive strength of three slags was water cooling slag > air cooling slag > liquid nitrogen cooling slag. SEM observation found that crystallization phases in water cooling slag had a small grain and uniform distribution, this kind of structure was advantageous to the latter hydration reaction and strength development of blast furnace slag.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Glass-making furnace"

1

Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41528.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук (Ph.D) за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. Дисертація присвячена створенню оптичних кольорових стекол зі спектральними параметрами – коефіцієнтом пропускання на довжині хвилі 1060 τ(λ₁₀₆₀) >65 %, поглинанням у спектральному діапазоні до 950 нм та технологіям їх отримання. На цей час існуючі стекла лише частково виконують ці умови, або технології їх отримання є нерентабельними для масового виробництва, тому було поставлена задача про створення стекол, які б могли задовольняти ці умови з фактором технологічності у виробництві. Вирішення досягнуто завдяки дослідженням поглинальної дії системи барвників Cr₂O₃-Mn₂O₃ у системі R₂O-PbO-SiO₂ та додатковому нанесенню оптичного покриття. Завдяки дослідженням було встановлено механізми забарвлення з урахуванням впливу домішок-барвників (Fe₂O₃/FeO), а також знайдені оптимальні концентрації барвників у склі. При розробці технології отримання оптичного кольорового скла були дослідженні основні технічні операції та методи контролю якості скла, що дозволяє отримувати дане скло у виробничому масштабі. Розроблені параметри контролю протікання процесів гомогенізації та освітлення розплаву скла з метою підвищення якості продукції. Також були розроблені методики обробки деталей зі скла та нанесення оптичних покриттів. Для автоматизації виробництва даної продукції та зменшення впливу людського фактору було розроблено програмне забезпечення автоматичної системи керування технологічними процесами (АСК ТП).
Dissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
APA, Harvard, Vancouver, ISO, and other styles
2

Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41488.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук (Ph.D) за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. Дисертація присвячена створенню оптичних кольорових стекол зі спектральними параметрами – коефіцієнтом пропускання на довжині хвилі 1060 τ(λ₁₀₆₀) >65 %, поглинанням у спектральному діапазоні до 950 нм та технологіям їх отримання. На цей час існуючі стекла лише частково виконують ці умови, або технології їх отримання є нерентабельними для масового виробництва, тому було поставлена задача про створення стекол, які б могли задовольняти ці умови з фактором технологічності у виробництві. Вирішення досягнуто завдяки дослідженням поглинальної дії системи барвників Cr₂O₃-Mn₂O₃ у системі R₂O-PbO-SiO₂ та додатковому нанесенню оптичного покриття. Завдяки дослідженням було встановлено механізми забарвлення з урахуванням впливу домішок-барвників (Fe₂O₃/FeO), а також знайдені оптимальні концентрації барвників у склі. При розробці технології отримання оптичного кольорового скла були дослідженні основні технічні операції та методи контролю якості скла, що дозволяє отримувати дане скло у виробничому масштабі. Розроблені параметри контролю протікання процесів гомогенізації та освітлення розплаву скла з метою підвищення якості продукції. Також були розроблені методики обробки деталей зі скла та нанесення оптичних покриттів. Для автоматизації виробництва даної продукції та зменшення впливу людського фактору було розроблено програмне забезпечення автоматичної системи керування технологічними процесами (АСК ТП).
Dissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glass-making furnace"

1

Jian, Christopher Q. "CFD Modeling of a Fiberglass Furnace." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1664.

Full text
Abstract:
Abstract In the fiberglass production process, glass is produced from various batch ingredients in a glass furnace. The molten glass is then delivered, through a delivery system that is often called the front-end system, to the various downstream forming operations. Multiple complex processes take place in the glass furnace, which include the turbulent reacting flow in the combustion space; laminar flow dominated by natural convection in the molten glass; fusion of raw batch materials to form molten glass; radiation and convective heat transfer between the combustion space and the molten glass; bubbling flows in the glass; and Joule heating within the molten glass, etc. The main task of the glass furnace is to convert raw batch materials into glass and thermally and chemically condition the glass before being delivered to the front-end system. One of the major tasks of a front-end system is to insure that the glass is conditioned to the specifications required by the forming operations while maintaining the highest glass quality. Improperly designed and/or operated furnace and front end delivery system can cause a number of problems to the forming operations, ranging from poor glass quality with defects to shortened furnace service life. CFD has become an increasingly important tool for glass manufacturers to guide and optimize such system designs and operations. The current work is part of an effort to leverage CFD resources in the decision-making processes in engineering, operations, and businesses. The furnace modeling was performed using the recently implemented batch melting model jointly developed by Owens Corning and Fluent, Inc., which features three-dimensional simulation of an entire glass furnace including combustion, bubbling, and electrical boosting. The thermal coupling procedure between the combustion space, batch, and the melting tank along with the associated convergence issues are discussed. The modeling results are presented along with comparison with field measurements.
APA, Harvard, Vancouver, ISO, and other styles
2

Martins, N., N. H. Afgan, M. G. Carvalho, and M. Nogueira. "Heat Flux: A Design, Diagnostic and Control Parameter for Thermal Equipment." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1113.

Full text
Abstract:
Abstract Heat flux is a space and time variable reflecting the state of a thermal system. The evaluation of heat flux properties in thermal systems gives the possibility of making an assessment of their efficiency, safety and availability. In this respect, it was proved that heat flux is an important design, diagnostic and control parameter for many thermal systems. This paper describes the evaluation of different aspects of heat flux properties including heat flux as a design parameter, heat flux as a diagnostic parameter and heat flux as a control parameter. The heat flux is proved to reflect the changes in thermal equipment during operation. The malfunction of this equipment is closely related to the change of the heat flux distribution within the system. In this respect, it was demonstrated that the failure of boilers and furnace operation could be diagnosed by the change in the heat flux distribution on the respective heat transfer surfaces. The heat flux, as a diagnostic variable for the assessment of the operation of thermal systems, will open a challenging opportunity for the design of on-line knowledge-based systems. This can be used for the assessment of efficiency and safety of thermal systems. A new method for heat flux measurement is introduced with reference to its use in boiler and glass furnaces. It shows the advantages of the new method when applied in high temperature and hostile environments.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography