Academic literature on the topic 'Glass fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glass fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glass fibers"
Liu, Hao, Xi Tang Wang, Zhou Fu Wang, and Bao Guo Zhang. "Effects of Al2O3 on the Structure and Properties of Calcium-Magnesium-Silicate Glass Fiber." Advanced Materials Research 450-451 (January 2012): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.42.
Full textZhang, H., L. Z. Liu, Z. F. Zhang, K. Q. Qiu, X. F. Pan, H. F. Zhang, and Z. G. Wang. "Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading." Journal of Materials Research 21, no. 6 (June 1, 2006): 1375–84. http://dx.doi.org/10.1557/jmr.2006.0169.
Full textYang, Peng, Qian Zhou, Xiao-Yang Li, Ke-Ke Yang, and Yu-Zhong Wang. "Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system." Journal of Reinforced Plastics and Composites 33, no. 22 (October 16, 2014): 2106–14. http://dx.doi.org/10.1177/0731684414555745.
Full textSherif, Galal, Dilyus I. Chukov, Victor V. Tcherdyntsev, Andrey A. Stepashkin, Mikhail Y. Zadorozhnyy, Yury M. Shulga, and Eugene N. Kabachkov. "Surface Treatment Effect on the Mechanical and Thermal Behavior of the Glass Fabric Reinforced Polysulfone." Polymers 16, no. 6 (March 21, 2024): 864. http://dx.doi.org/10.3390/polym16060864.
Full textBambach, Mike R. "Direct Comparison of the Structural Compression Characteristics of Natural and Synthetic Fiber-Epoxy Composites: Flax, Jute, Hemp, Glass and Carbon Fibers." Fibers 8, no. 10 (September 28, 2020): 62. http://dx.doi.org/10.3390/fib8100062.
Full textAkanda, Md Shahin, Md Shariful Islam, Md Ali Akbar, A. M. Sarwaruddin Chowdhury, M. A. Gafur, and Md Sahab Uddin. "Thermal and Morphological Assessment of the Penta-Layered, Hybrid U-Polyester Composite Reinforced with Glass Fibers and Polypropylene." Advances in Materials Science and Engineering 2024 (January 18, 2024): 1–11. http://dx.doi.org/10.1155/2024/3911466.
Full textKang, Seunggu, Hongy Lin, Delbert E. Day, and James O. Stoffer. "Optically Transparent Polymethyl Methacrylate Composites made with Glass Fibers of Varying Refractive Index." Journal of Materials Research 12, no. 4 (April 1997): 1091–101. http://dx.doi.org/10.1557/jmr.1997.0152.
Full textMishra, Neelam, Ubaid Ahmad Khan, Anshuman Srivastava, and Nidhi Asthana. "Effect of the Glass Fiber Orientation on Mechanical Performance of Epoxy based Composites." Prabha Materials Science Letters 3, no. 2 (September 1, 2024): 175–90. http://dx.doi.org/10.33889/pmsl.2024.3.2.011.
Full textVaiborisut, Napaporn, Chanittha Chunwises, Dararat Boonbundit, Sirithan Jiemsirilers, and Apirat Theerapapvisetpong. "Effect of the Addition of ZrSiO4 on Alkali-Resistance and Liquidus Temperature of Basaltic Glass." Key Engineering Materials 766 (April 2018): 145–50. http://dx.doi.org/10.4028/www.scientific.net/kem.766.145.
Full textSafaei, Shouresh. "E-glass Coated Fibers in Novel Composite System for Constructional Applications." International Journal of Science and Engineering Applications 10, no. 8 (August 2021): 111–13. http://dx.doi.org/10.7753/ijsea1008.1002.
Full textDissertations / Theses on the topic "Glass fibers"
Huang, Jianzhong. "Structural relaxation in thin glass fibers /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487780393264909.
Full textHolmberg, Patrik. "Laser processing of Silica based glass." Doctoral thesis, KTH, Laserfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173929.
Full textHuvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid.
QC 20150924
Shi, Jiawanjun. "Properties of alkaline-resistant calcium-iron-phosphate glasses." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Shi_09007dcc8043f8f6.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed March 25, 2008) Includes bibliographical references (p. 52-54).
Abu-Zahra, Esam. "High Strength E-Glass/CNF Fibers Nanocomposite." Cleveland State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=csu1198878550.
Full textJin, Kun. "Processing characteristics and properites [sic] of glass fiber reinforced composites from post consumer carpets." Thesis, Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04062004-164643/unrestricted/jin%5Fkun%5F200312%5Fms.pdf.
Full textKuo, Chai-Pei. "Characterization of photoinduced gratings in optical glass fibers." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184515.
Full textCheung, Wai-lam, and 張惠林. "The interfacial properties of glass fibre reinforced polypropylene." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B31231792.
Full textCheung, Wai-lam. "The interfacial properties of glass fibre reinforced polypropylene /." [Hong Kong] : University of Hong Kong, 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12718634.
Full textKim, Jong-Kook. "Investigation of High-Nonlinearity Glass Fibers for Potential Applications in Ultrafast Nonlinear Fiber Devices." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28569.
Full textPh. D.
Groulx, Jean-Guy Joseph Carleton University Dissertation Engineering Civil and Environmental. "Investigation of wood flexural members reinforced with glass fibers." Ottawa, 1995.
Find full textBooks on the topic "Glass fibers"
Starr, Trevor F. Glass fibre directory and databook. 2nd ed. London: Chapman & Hall, 1997.
Find full textWallenberger, Frederick T., and Paul A. Bingham. Fiberglass and glass technology: Energy-friendly compositions and applications. New York: Springer, 2010.
Find full textWallenberger, Frederick T., and Paul A. Bingham. Fiberglass and glass technology: Energy-friendly compositions and applications. New York: Springer, 2010.
Find full textMajumbar, A. J. Glass fibre reinforced cement. Oxford: BSP Professional Books, 1991.
Find full textWilliamson, G. R. Evaluation of glass fiber reinforced concrete panels for use in military construction. Champaign, Ill: US Army Corps of Engineers, Construction Engineering Research Laboratory, 1985.
Find full textBallast, David Kent. Glass fiber reinforcement in building materials. Monticello, Ill., USA: Vance Bibliographies, 1988.
Find full textDan, Hewak, INSPEC EMIS Group, and Institution of Electrical Engineers, eds. Properties, processing and applications of glass and rare earth-doped glasses for optical fibres. London: INSPEC, 1998.
Find full textUnited States. Agency for Toxic Substances and Disease Registry. Division of Toxicology. Synthetic vitreous fibers. Atlanta, GA: Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology, 2004.
Find full textLoewenstein, K. L. The manufacturing technology of continuous glass fibres. 3rd ed. Amsterdam: Elsevier, 1993.
Find full textBook chapters on the topic "Glass fibers"
Veit, Dieter. "Glass Fibers." In Fibers, 905–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_43.
Full textAben, Hillar, and Claude Guillemet. "Optical Fibers and Fiber Preforms." In Photoelasticity of Glass, 216–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50071-8_13.
Full textDey, Subir K., and Marino Xanthos. "Glass Fibers." In Functional Fillers for Plastics, 129–47. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605096.ch7.
Full textDey, Subir K., and Marino Xanthos. "Glass Fibers." In Functional Fillers for Plastics, 141–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629848.ch7.
Full textBrückner, Volkmar. "Glass Fibers." In Elements of Optical Networking, 25–65. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-43242-3_3.
Full textChartier, Thierry. "Optical Fibers." In Springer Handbook of Glass, 1405–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_41.
Full textZu, Qun, Mette Solvang, and Hong Li. "Commercial Glass Fibers." In Fiberglass Science and Technology, 1–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72200-5_1.
Full textChandan, Harish C., Ronald D. Parker, and David Kalish. "Fractography of Optical Fibers." In Fractography of Glass, 143–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_5.
Full textMantelli, Andrea, Alessia Romani, Raffaella Suriano, Marinella Levi, and Stefano Turri. "Additive Manufacturing of Recycled Composites." In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 141–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_8.
Full textBrückner, Volkmar. "Nonlinearities in glass fibers." In Elements of Optical Networking, 156–69. Wiesbaden: Vieweg+Teubner Verlag, 2011. http://dx.doi.org/10.1007/978-3-8348-8142-7_10.
Full textConference papers on the topic "Glass fibers"
Haggans, C. W., H. Singh, W. F. Varner, and J. S. Wang. "Analysis of Narrow Depressed-Cladding Fibers for Minimization of Cladding and Radiation Mode Losses in Fiber Bragg Gratings." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.11.
Full textSaad, Mohammed. "Fluoride Glass Fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.somc5.
Full textRighini, Giancarlo C. "Progress in glass optoelectronics." In Fibers '92, edited by Ka-Kha Wong. SPIE, 1993. http://dx.doi.org/10.1117/12.141872.
Full textLaperle, Pierre, Alain Chandonnet, and Réal Vallée. "Photoinduced absorption and photobleaching in thulium-doped fluorozirconate fibers." In Photosensitivity and Quadratic Nonlinearity in Glass Waveguides. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/pqn.1995.pmd.5.
Full textSaad, Mohammed. "Fluoride glass fibers." In 2011 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2011. http://dx.doi.org/10.1109/phosst.2011.6000055.
Full textDrexhage, Martin G. "Infrared glass fibers." In OE/LASE '90, 14-19 Jan., Los Angeles, CA, edited by James A. Harrington and Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.18622.
Full textWang, Ji. "Glass for optical fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.somc1.
Full textLemaire, Paul J., and Turan Erdogan. "Hydrogen-enhanced UV photosensitivity of optical fibers: Mechanisms and reliability." In Photosensitivity and Quadratic Nonlinearity in Glass Waveguides. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/pqn.1995.sua.4.
Full textChen, J. Y., S. Iraj Najafi, and Seppo Honkanen. "Polymer-glass-waveguide all-optical switches." In Fibers '92, edited by Ka-Kha Wong. SPIE, 1993. http://dx.doi.org/10.1117/12.141905.
Full textJiang, Shibin. "2 Micron Fiber Lasers Using Silicate Glass Fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/sof.2014.sotu2b.1.
Full textReports on the topic "Glass fibers"
Smith, W. L., and T. A. Michalske. Inert strength of pristine silica glass fibers. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110576.
Full textBoncek, Raymond K. Development of CdS-Doped Glass Optical Fibers for All-Optical Switching. Fort Belvoir, VA: Defense Technical Information Center, February 1997. http://dx.doi.org/10.21236/ada323630.
Full textMariano Velez. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/926221.
Full textCarpenter, Robert L., and Cody L. Wilson. The Inhalation Toxicity of Glass Fibers -A Review of the Scientific Literature. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada389271.
Full textSmith, W. L., T. A. Michalske, and R. R. Rye. The deposition of boron nitride and carbon films on silica glass fibers. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110580.
Full textJ.F. McClelland and R.W. Jones. On-Line Sensor Systems for Monitoring the Cure of Coatings on Glass Optical Fibers and Assemblies. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/832891.
Full textMcAdams, J. Investigation of leaks in fiberglass-reinforced pressure vessels by direct observation of hollow fibers in glass cloth. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5181172.
Full textSmith, W. L. Automated glass fiber drawing. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5524774.
Full textJones, R. W., and J. F. McClelland. On-line Sensor System fro Monitoring the Cure of Coatings on Glass Optical Fibers. Phase II: Application of the Sensor System to On-line Molecular Analysis Needs in Other Industries of the Future. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/882997.
Full textnone,. Glass and Fiber Glass Footprint, December 2010 (MECS 2006). Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1218646.
Full text