Academic literature on the topic 'Glaciology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glaciology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Glaciology"
Peterson, Beth. "Glaciology." River Teeth: A Journal of Nonfiction Narrative 15, no. 1 (2013): 73–85. http://dx.doi.org/10.1353/rvt.2013.0021.
Full textMair, Douglas. "Glaciology." Progress in Physical Geography: Earth and Environment 36, no. 6 (September 26, 2012): 813–32. http://dx.doi.org/10.1177/0309133312460265.
Full textHambrey, Michael J. "Glaciology." Earth-Science Reviews 30, no. 3-4 (June 1991): 326–27. http://dx.doi.org/10.1016/0012-8252(91)90006-2.
Full textFukazawa, Hiroshi. "Space Glaciology." hamon 18, no. 2 (2008): 97–102. http://dx.doi.org/10.5611/hamon.18.97.
Full textRea, Brice R., Alastair M. D. Gemmell, and Matteo Spagnolo. "Glaciology in Aberdeen." Scottish Geographical Journal 135, no. 3-4 (October 2, 2019): 236–56. http://dx.doi.org/10.1080/14702541.2019.1695891.
Full textAnonymous. "Polar glaciology proposals sought." Eos, Transactions American Geophysical Union 69, no. 21 (1988): 612. http://dx.doi.org/10.1029/eo069i021p00612-02.
Full textWarman, Timothy. "Elsevier's dictionary of glaciology." Palaeogeography, Palaeoclimatology, Palaeoecology 100, no. 3 (February 1993): 333. http://dx.doi.org/10.1016/0031-0182(93)90062-n.
Full textSharp, Martin. "Glaciology news in brief." Environmental Earth Sciences 71, no. 6 (January 19, 2014): 2973–78. http://dx.doi.org/10.1007/s12665-014-3045-8.
Full textCameron, Richard L. "The foundations of Antarctic glaciology." Archives of Natural History 32, no. 2 (October 2005): 231–44. http://dx.doi.org/10.3366/anh.2005.32.2.231.
Full textWATANABE, Okitsugu. "Recent activities in Arctic glaciology." Journal of the Japanese Society of Snow and Ice 59, no. 2 (1997): 111–14. http://dx.doi.org/10.5331/seppyo.59.111.
Full textDissertations / Theses on the topic "Glaciology"
Kenneally, James Patrick. "Crevassing and Calving of Glacial Ice." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/KenneallyJP2003.pdf.
Full textJones, Francis Hugh Melvill. "Digital impulse radar for glaciology : instrumentation, modelling, and field studies." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26421.
Full textScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Golledge, Nicholas Robert. "Glacial geology and glaciology of the Younger Dryas ice cap in Scotland." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3789.
Full textNagostinis, Maria. "Cambiamento dei ghiacciai dell'Alto Adige centro-occidentale dalla Piccola Età Glaciale al 2014." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19424/.
Full textBingham, Robert G. "The hydrology and dynamics of a high arctic glacier." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274106.
Full textWuite, Jan. "Spatial and temporal dynamics of three East Antarctic outlet glaciers and their floating ice tongues." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1162225099.
Full textDavaze, Lucas. "Quantification du bilan de masse des glaciers de montagne à l'échelle régionale par télédétection spatiale optique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU022/document.
Full textBeyond their iconic role of climate change, mountain glaciers can be considered as Earth’ essential component and natural “climate-meter”. Despite their small spatial coverage (0.5% of emerged land), mountain glaciers contribute as high as 30% of the observed sea-level rise. In some regions, they are considered as essential issues because of their importance in terms of potable water, agriculture, hydroelectricity or natural hazards. A small share is however monitored in situ (<0.0025%) and their fluctuations at regional scale are poorly known.Thanks to the development of high spatial resolution satellite sensors (metric to decametric), new methods are today available to significantly increase the number of monitored glaciers. After a state of the art of the existing methods and an identification of the limitations, we focused our attention on the development of two methods.The first one is based on the automatic detection of the snow/ice interface altitude (i.e. snowline) at the glacier surface from optical satellite images. This altitude, when estimated at the end of summer, is a proxy of the annual glacier-wide mass change at the glacier surface (called surface mass balance, SMB). Using this approach, we estimated the annual SMBs of 239 glaciers in the European Alps and 82 glaciers in the tropical Andes for the period 2000-2016 and 2000-2018, respectively. The mean mass loss are -0.74 and -1.29 m water equivalent per year for the two regions, respectively. This approach allowed to derive the first dataset of annual SMBs for individual glaciers at regional scale from optical remote sensing. We found significant relationships between the computed SMBs and the glacier morpho-topographic features (e.g. slope, median altitude, …), with steeper and higher glaciers, experiencing less mass losses. Comparison with in situ monitored SMBs revealed an overestimation of mass losses from in situ estimates, due to a low representativeness of steep glaciers (>20°) in the in situ datasets. Our study also revealed heterogeneous inter-annual variability across the European Alps, partially explained by the climatic context of the studied sub-regions, thanks to the analysis of climate reanalysis data.We developed a second method to derive the annual and summer SMBs from albedo maps, computed from MODIS images. With an application on 30 glaciers in the French Alps, this work opened the way toward a regional application of this method, in order to estimate both annual and summer SMBs.By performing regional applications on different glacierized regions, we developed and validated methods capable of deriving the annual and summer SMBs of individual mountain glaciers at regional scale, from optical remote sensing data. These data could then be used to (1) assess the impact of peculiar climatic conditions onto mountain glaciers; (2) investigate possible meteorological conditions driving the documented glacier fluctuations; (3) calibrate and validate glacio-hydrological models used to estimate the current and future contributions of mountain glaciers to the hydrological functioning of mountain catchments and to sea level rise
Steig, Eric J. "Beryllium-10 in the Taylor Dome ice core : applications to Antarctic glaciology and paleoclimatology /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6745.
Full textDocquier, David. "Representing grounding-line dynamics in Antarctic ice-sheet models." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209400.
Full textIn this thesis, we first clearly demonstrate that modeling grounding-line (the boundary between grounded and floating ice) migration depends on both the numerical approach and the physical approximation of the ice-sheet model used. Ice-sheet models prescribing the ice flux at the grounding line and using appropriate physical level and numerical approach converge to the same steady-state grounding-line position irrespective of the grid size used. However, the transient behavior of those models is less accurate than other models and leads to an overestimated grounding-line discharge. Therefore, they need to be used with particular attention on short time scales. Furthermore, the non-inclusion of vertical shear stress in those models increases the effective viscosity and gives steady-state grounding-line positions further downstream when compared to full-Stokes models.
The second major finding of this thesis is the high control of geometry (glacier width and bedrock topography) on Thwaites Glacier, one of the fastest-flowing outlet glaciers in West Antarctica. A flowline finite-difference Shallow-Shelf Approximation (SSA) model is applied to the glacier and shows that ice-flow convergence (through width parameterization) slows down the grounding-line retreat when compared to simulations where the width is constant. A new buttressing parameterization is also tested on the glacier and permits a better understanding of this effect. Finally, the three-dimensional version of the model above is applied to Thwaites Glacier and highlights the strong control of lateral variations in bedrock topography on grounding-line migration./Depuis le milieu du 20e siècle, les températures moyennes globales ont fortement augmenté principalement à cause de l'augmentation des émissions de gaz à effet de serre d'origine humaine. Les effets de ce réchauffement global récent sont déjà détectables et pourraient s'accentuer dans un futur proche si aucune mesure réelle n'est prise. La perte récente de glace en Antarctique de l'Ouest, enregistrée par mesures satellites et d'autres techniques, est préoccupante dans un monde qui se réchauffe. Une grande partie de cette perte de glace est due à la pénétration de masses d'eau chaude sous les plateformes de glace flottante dans cette région. Cela engendre une accélération de l'écoulement des glaciers émissaires et une plus grande décharge de glace vers l'océan. Ainsi, la contribution récente à la hausse du niveau de la mer de l'Antarctique de l'Ouest s'élève à environ 0.2 mm par an entre 1992 et 2011, c'est-à-dire près du tiers de la contribution des calottes glaciaires (Antarctique et Groenland). On estime que cette contribution va continuer à augmenter dans le futur proche.
Dans cette thèse, nous démontrons clairement que la modélisation de la migration de la ligne d'ancrage (frontière entre glaces posée et flottante) dépend de l'approche numérique et de l'approximation physique du modèle cryosphérique utilisé. Les modèles cryosphériques qui prescrivent le flux glaciaire à la ligne d'ancrage et qui utilisent un niveau de physique et une approche numérique appropriés convergent vers la même position d'équilibre de la ligne d'ancrage quelle que soit la taille de maille utilisée. Cependant, le comportement transitoire de ces modèles est moins précis que d'autres modèles et mène à une surestimation du flux à la ligne d'ancrage. Dès lors, ces modèles doivent être utilisés avec précaution sur de courtes périodes de temps. De plus, la non inclusion des contraintes verticales de cisaillement dans ces modèles augmente la viscosité effective et donne des positions d'équilibre de la ligne d'ancrage plus en aval en comparaison avec les modèles « full-Stokes ».
La seconde découverte majeure de cette thèse est le contrôle important exercé par la géométrie (largeur du glacier et topographie du lit rocheux) sur Thwaites Glacier, l'un des glaciers émissaires les plus rapides en Antarctique de l'Ouest. Un modèle « Shallow-Shelf Approximation » (SSA) résolvant les différences finies le long d'une ligne d'écoulement est appliqué au glacier et montre que la convergence de l'écoulement glaciaire (au travers de la paramétrisation de la largeur) ralentit le retrait de la ligne d'ancrage comparé aux simulations où la largeur est constante. Une nouvelle paramétrisation de l'effet arc-boutant est testée sur le glacier et permet de mieux comprendre cet effet. Finalement, la version en trois dimensions du modèle ci-dessus est appliquée à Thwaites Glacier et met en évidence le contrôle important des variations latérales de l'altitude du lit rocheux sur la migration de la ligne d'ancrage.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Parry, Victoria. "Densification and refreezing in the percolation zone of the Greenland Ice Sheet : implications for mass balance measurements." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3076.
Full textBooks on the topic "Glaciology"
International Symposium on Snow Science (2007 Moscow, Russia). Annals of glaciology. Cambridge, UK: International Glaciological Society, 2008.
Find full textInternational Workshop on Ice Drilling Technology (6th 2006 US Fish and Wildlife Service National Conservation Training Center). Annals of glaciology. Cambridge, UK: International Glaciological Society in conjunction with the 6th International Workshop on Ice Drilling Technology, 2007.
Find full textInternational Workshop on Ice Drilling Technology (6th 2006 US Fish and Wildlife Service National Conservation Training Center). Annals of glaciology. Cambridge, UK: International Glaciological Society in conjunction with the 6th International Workshop on Ice Drilling Technology, 2007.
Find full textHumlum, Ole. Glaciologi. 2nd ed. [Copenhagen]: Laboratorium for geomorfologi, Københavns universitets Geografiske centralinstitut, 1987.
Find full textHagg, Wilfried. Glaciology and Glacial Geomorphology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64714-1.
Full textA, Evans David J., ed. Glacial landsystems. London: Arnold, 2005.
Find full textAzizi, Fethi. Engineering aspects of geomechanics, glaciology & geocryology. Plymouth: Fethi Azizi, 2007.
Find full textDeepak, Srivastava, Mukkerji Sharadindu, and Geological Survey of India, eds. Glaciology of Indian Himalaya: A bilingual contribution in 150th year of Geological Survey of India. Kolkata: Geological Survey of India, 2001.
Find full textAber, James S. Glaciotectonic landforms and structures. Dordrecht [Holland]: Kluwer Academic Publishers, 1989.
Find full textBentley, Charles R., and Dennis E. Hayes, eds. The Ross Ice Shelf: Glaciology and Geophysics. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/ar042.
Full textBook chapters on the topic "Glaciology"
Knight, Peter G. "Glaciology." In Encyclopedia of Earth Sciences Series, 440–43. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_215.
Full textHambrey, Michael J. "Structural Glaciology." In Encyclopedia of Earth Sciences Series, 1089–91. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_544.
Full textRigsby, George P. "Mountain Glaciology." In Geophysics and the IGY: Proceedings of the Symposium at the Opening of the International Geophysical Year, 182–85. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm002p0182.
Full textColqui, Benito S. "Argentine Glaciology." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 217–28. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0217.
Full textDemuth, Michael N. "LIDAR in Glaciology." In Encyclopedia of Earth Sciences Series, 713–22. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_332.
Full textNapieralski, Jacob. "GIS in Glaciology." In Encyclopedia of Earth Sciences Series, 325–28. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_634.
Full textWahr, John. "GRACE in Glaciology." In Encyclopedia of Earth Sciences Series, 474–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_646.
Full textShumsky, P. A. "Glaciology of Antarctica." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 176–77. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0176.
Full textGoldthwait, Richard P., and Ian C. Mckellar. "New Zealand Glaciology." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 209–16. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0209.
Full textKing, Matt A. "GPS in Glaciology, Applications." In Encyclopedia of Earth Sciences Series, 471–74. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_24.
Full textConference papers on the topic "Glaciology"
Forster, Richard R., Ryo Michishita, Jeff VanLooy, and Dorothy K. Hall. "Alaskan Glaciology from Space." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779650.
Full textSchroeder, Dustin M. "Pathways to Multitemporal Radar Sounding in Terrestrial Glaciology." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323765.
Full textTsoflias, Georgios P., Julian Ivanov, Sridhar Anandakrishnan, and Richard Miller. "Use of Active Source Seismic Surface Waves in Glaciology." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Environment and Engineering Geophysical Society, 2008. http://dx.doi.org/10.4133/1.2963234.
Full textP. Tsoflias, Georgios, Julian Ivanov, Sridhar Anandakrishnan, and Richard Miller. "Use Of Active Source Seismic Surface Waves In Glaciology." In 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609-pdb.177.144.
Full textYoucun, Liu, Song Bo, Han Tianding, and Ye Baisheng. "3D GIS interactive editing method: Research and application in glaciology." In 2nd International Conference on Information Science and Engineering (ICISE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5690776.
Full textKelly, Meredith, Victoria Halvorson, Maxwell Cunningham, Grace Mendolia, Michael Kaplan, and Alan Hidy. "QGG DENTON, ANDREWS, PORTER GLACIOLOGY AWARD: CONSTRAINING THE TIMING OF DEGLACIAL WARMING IN COSTA RICA." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-382006.
Full textKordzakhia, George, Larisa Shengelia, Gennady Tvauri, and Guguli Dumbadze. "Morphology and Exposure Studies in the Autonomous Republic of Abkhazia (West Georgia) on the Background of Modern Climate Change." In 3rd International Congress on Engineering and Life Science. Prensip Publishing, 2023. http://dx.doi.org/10.61326/icelis.2023.19.
Full textReports on the topic "Glaciology"
Piper, D. J. W. Surficial geology and physical properties 7: paleo-oceanography and paleo-glaciology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/210699.
Full textMennis, Jeremy. GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7221.
Full textSteig, E. J. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/527444.
Full textCampbell, Seth, Zoe Courville, Samantha Sinclair, and Joel Wilner. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45303.
Full textBibliography on Meteorology, Hydrology and Glaciology of Nepal. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.185.
Full textBibliography on Meteorology, Hydrology and Glaciology of Nepal. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.185.
Full text