Academic literature on the topic 'Glaciology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glaciology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glaciology"

1

Peterson, Beth. "Glaciology." River Teeth: A Journal of Nonfiction Narrative 15, no. 1 (2013): 73–85. http://dx.doi.org/10.1353/rvt.2013.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mair, Douglas. "Glaciology." Progress in Physical Geography: Earth and Environment 36, no. 6 (September 26, 2012): 813–32. http://dx.doi.org/10.1177/0309133312460265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hambrey, Michael J. "Glaciology." Earth-Science Reviews 30, no. 3-4 (June 1991): 326–27. http://dx.doi.org/10.1016/0012-8252(91)90006-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukazawa, Hiroshi. "Space Glaciology." hamon 18, no. 2 (2008): 97–102. http://dx.doi.org/10.5611/hamon.18.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rea, Brice R., Alastair M. D. Gemmell, and Matteo Spagnolo. "Glaciology in Aberdeen." Scottish Geographical Journal 135, no. 3-4 (October 2, 2019): 236–56. http://dx.doi.org/10.1080/14702541.2019.1695891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anonymous. "Polar glaciology proposals sought." Eos, Transactions American Geophysical Union 69, no. 21 (1988): 612. http://dx.doi.org/10.1029/eo069i021p00612-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Warman, Timothy. "Elsevier's dictionary of glaciology." Palaeogeography, Palaeoclimatology, Palaeoecology 100, no. 3 (February 1993): 333. http://dx.doi.org/10.1016/0031-0182(93)90062-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharp, Martin. "Glaciology news in brief." Environmental Earth Sciences 71, no. 6 (January 19, 2014): 2973–78. http://dx.doi.org/10.1007/s12665-014-3045-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cameron, Richard L. "The foundations of Antarctic glaciology." Archives of Natural History 32, no. 2 (October 2005): 231–44. http://dx.doi.org/10.3366/anh.2005.32.2.231.

Full text
Abstract:
Heroic treks inland by Scott, Shackleton, and Amundsen in the early 1900s demonstrated the immensity of the Antarctic ice cover. But it has taken a century to estimate its volume and elucidate its intricate dynamics. Three significant milestones in the development of Antarctic glaciology have been: the memoir Glaciology by Charles Wright and Raymond Priestly arising from the Terra Nova expedition (1910–1913); the Norwegian-British-Swedish Expedition (1949–1952); the International Geophysical Year (1957–1958). Robert Scott thought glaciology so important he appointed a physicist as glaciologist (Wright) and to work with him, a scientist with previous experience of Antarctic ice (Priestley). Their compendium is a classic work. The Norwegian-British-Swedish Expedition was the first true international scientific expedition to Antarctica. Their studies provided the first clear picture of the Antarctic glacial environment, leading to the concept that sea level is controlled principally by the state of the Antarctic ice sheet. Glaciology was one of the main studies in the International Geophysical Year. Research was conducted at coastal and inland stations and on over-snow traverses. Measurements on traverses provided the first glimpse of the surface elevation, magnitude of the ice volume, snow accumulation, and mean annual surface temperatures.
APA, Harvard, Vancouver, ISO, and other styles
10

WATANABE, Okitsugu. "Recent activities in Arctic glaciology." Journal of the Japanese Society of Snow and Ice 59, no. 2 (1997): 111–14. http://dx.doi.org/10.5331/seppyo.59.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Glaciology"

1

Kenneally, James Patrick. "Crevassing and Calving of Glacial Ice." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/KenneallyJP2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jones, Francis Hugh Melvill. "Digital impulse radar for glaciology : instrumentation, modelling, and field studies." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26421.

Full text
Abstract:
Several aspects of impulse radar echo sounding of small glaciers are investigated. First, the ranges of values expected for conductivity and relative dielectric permittivity of glacier ice, glacier bed materials and mixtures of ice and rock are established. These parameters, and the fundamentals of electromagnetic wave propagation, are employed in a modelling scheme that examines the reflection of pulses from planar reflectors within the glacier. The glacier bed can be modelled as solid rock or unconsolidated debris and as either frozen or wet. A layer of mixed ice and rock between the glacier ice and bed can also be included. Signal enhancement, especially using multi-channel principal component analysis, is discussed. Discussion of practical application of the technique begins with the description of a portable microprocessor-controlled instrument capable of recording digitized echograms. Then results from experiments on Trapridge Glacier, Yukon Territory are presented. Surveys up to half a kilometer long with soundings at 1 to 20 m intervals were conducted. Bed topography is presented and locally anomalous sections are examined. Smaller-scale parameters such as the attenuation constant of ice and reflector properties are also extracted from the data. Subglacial and englacial temporal variations were studied by automatically recording echoes at one location every 20 minutes over a three-day period. Such experiments are to be used in the future in conjunction with other, concurrent, geophysical and hydrological investigations.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Golledge, Nicholas Robert. "Glacial geology and glaciology of the Younger Dryas ice cap in Scotland." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3789.

Full text
Abstract:
This thesis uses geological field data and numerical ice sheet modelling to study the Younger Dryas ice cap in Scotland. The Younger Dryas stadial is important because it represents the most recent period of high-magnitude global climate change, and was marked by the expansion of ice sheets in North America and Scandinavia, and the regrowth of glaciers in the British Isles. An integrated methodology linking field results and modelling is developed and applied here, specifically focussing on the deposits, landforms, and palaeoglaciology of Younger Dryas glaciers in western Scotland. This combined approach enables data of different scales to be compared, and connected, from local sedimentological investigations and empirically derived reconstructions, to regional ice-sheet simulations from a high-resolution numerical model. Previous geological mapping in western Scotland resulted in contradictory views of the thickness and extent of ice during the Younger Dryas, consequently leading to uncertainty about the dynamics of the former ice cap. By using a ‘landsystem’ method to characterise the terrain, it is argued here that geological evidence in the study area implies a relatively thick central ice cap that fed steep outlet glaciers around its margins. These glaciers oscillated throughout the stadial, and during deglaciation produced suites of moraines that marked successive positions of glacier retreat. Widespread preservation of superimposed landforms, and of sediment sequences pre-dating the Younger Dryas, suggest that, despite being active, the Younger Dryas ice cap was not particularly erosive in its central area and only subtly modified its bed. These geological interpretations are supported by high-resolution numerical modelling of the ice cap, which reveals clear spatial variability in the velocity structure, thermal regime, and flow mechanism of the ice cap; patterns that led to local contrasts in basal processes and diversity in the geological imprint. These model experiments also highlight the non-linear relationship between climate forcing and glacier response, identifying evidence of ice sheet hysteresis and climatically decoupled glacier oscillations – concepts as relevant to geological investigations of former ice masses as they are to the prediction of glacier response under future climate changes.
APA, Harvard, Vancouver, ISO, and other styles
4

Nagostinis, Maria. "Cambiamento dei ghiacciai dell'Alto Adige centro-occidentale dalla Piccola Età Glaciale al 2014." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19424/.

Full text
Abstract:
I ghiacciai delle Alpi Europee si stanno ritirando in modo rapido ed accelerato negli ultimi decenni ad opera dei cambiamenti climatici in atto. Per poter avere una visione di come le aree glacializzate si evolveranno nei prossimi anni, è necessario dare uno sguardo al passato e tener traccia dei loro cambiamenti. Per questo motivo negli ultimi decenni sono stati compilati diversi inventari in differenti parti delle Alpi e del mondo. Questi permettono di comprendere le relazioni sussistenti tra la variazione areale ed altri attributi e sono da supporto per studi di modellazione. Oggetto di questa tesi è la compilazione di un inventario multi-temporale nella parte centro-occidentale dell’Alto Adige, derivato dalla delineazione manuale del perimetro dei ghiacciai a partire da fotografie aeree ed immagini satellitari acquisite in nove annate: 1945, 1954, 1985, 1994, 2003, 2006, 2008, 2011 e 2014. Dalle analisi è emerso che, globalmente, nel periodo 1860-2014 la superficie dei ghiacciai in Alto-Adige centro-occidentale si è ritirata del 70,1%, accompagnato dall’estinzione del 77% dei corpi glaciali, con un tasso di contrazione areale medio del -0,19 % a-1. Questi tassi hanno avuto un marcato aumento a partire dal periodo post-1994, in cui la variazione ha raggiunto mediamente valori 5,3 volte rispetto a quelli pre-1994. Nel contempo, la media dell’altitudine minima (fronti) alla quale si trovano i ghiacciai è aumentata con un tasso annuale di 2,1 m a-1, mentre la media dell’altitudine massima è diminuita con un tasso di 0,4 m a-1. Successivamente, per valutare l’entità della variabilità intra-regionale, i ghiacciai sono stati suddivisi ed analizzati in cinque sotto-regioni: Stubai, Venoste, Tessa, O-C est ed O-C ovest. Al fine di valutare la variazione areale intra-regionale dei ghiacciai in un contesto più ampio, sono stati comparati intervalli temporali PEG-1994 e 1994-2008 ai settori lombardi delle Orobie, Disgrazia e Livigno (Scotti et al., 2014).
APA, Harvard, Vancouver, ISO, and other styles
5

Bingham, Robert G. "The hydrology and dynamics of a high arctic glacier." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wuite, Jan. "Spatial and temporal dynamics of three East Antarctic outlet glaciers and their floating ice tongues." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1162225099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davaze, Lucas. "Quantification du bilan de masse des glaciers de montagne à l'échelle régionale par télédétection spatiale optique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU022/document.

Full text
Abstract:
Au-delà de leur rôle d’icône du changement climatique, les glaciers de montagne sont une composante essentielle de notre planète. Ils sont, de plus, de véritables « climat-mètres » naturels. Malgré leur faible superficie (0.5% des terres émergées), les glaciers de montagne contribuent à hauteur de 30% à la hausse du niveau des mers. Dans certaines régions, ils constituent de véritables enjeux quant à l’eau potable, l’agriculture, la production hydroélectrique ou les aléas glaciaires. Peu sont en revanche instrumentés (<0.0025%) et leurs fluctuations à l’échelle de régions entières sont mal connues.Grâce au développement de capteurs satellitaires à haute résolution spatiale (métrique à décamétrique), le développement de méthodes automatisées permet aujourd’hui d’augmenter considérablement le nombre de glaciers observés. Après avoir dressé un état de l’art des méthodes existantes et identifié les verrous méthodologiques, nous avons développé deux méthodes en particulier.La première se base sur la détection automatique de l’altitude de la limite glace/neige (i.e. ligne de neige) à la surface du glacier, à partir d’images satellites optiques. Cette altitude, lorsque mesurée à la fin de l’été, est un marqueur du changement de masse à la surface du glacier ayant eu lieu au cours de l’année (appelé bilan de masse de surface). Cette approche nous a permis d’estimer le bilan de masse de surface annuel de 239 glaciers dans les Alpes européennes et de 82 glaciers dans les Andes tropicales pour la période 2000-2016 et 2000-2018, respectivement. La perte moyenne annuelle observée est de -0.74 et de -1.29 m équivalent eau par an pour les deux régions respectivement. A notre connaissance, cette approche a permis d’établir le premier jeu de données de bilans de masse de surface annuels pour des glaciers individuels à échelle régionale à partir d’images satellites optiques. Une dépendance du bilan de masse de surface moyen par glacier à des caractères morpho-topographiques (e.g. pente, altitude médiane …) a été observée, où plus les glaciers sont pentus et hauts en altitude, moins leur perte de masse est importante. Une comparaison avec des mesures in situ dans les Alpes Européennes révèle une surestimation de la perte de masse par ces dernières si on les extrapole spatialement, notamment à cause de la faible représentation de glaciers à forte pente (>20°) dans les mesures in situ. Notre étude sur les Alpes Européennes a de plus permis d’identifier une variabilité interannuelle hétérogène sur cette région, en partie expliquée par des contextes climatiques différents grâce à l’utilisation de données issues de ré-analyses.Le développement d’une autre méthode a permis, à partir de l’analyse de carte d’albédo issues du capteur MODIS, de caractériser le bilan de masse de surface annuel et estival de 30 glaciers dans les Alpes françaises. Cette étude ouvre la porte à l’utilisation de cette méthode pour l’analyse du bilan annuel et saisonnier à l’échelle régionale.Ce travail a permis, à travers des applications dans différentes régions englacées, de développer et valider des méthodes capables, à partir d’images satellites optiques, d’estimer le bilan de masse de surface annuel et saisonnier de glaciers de montagne à l’échelle de régions entières. Ces estimations peuvent ensuite être utilisées pour : (1) étudier l’impact du climat local sur les glaciers de montagne ; (2) d’investiguer de possibles conditions météorologiques favorisant les fluctuations observées ; (3) calibrer et valider les modèles glacio-hydrologiques utilisés pour estimer les contributions actuelles et futures des glaciers de montagne au fonctionnement hydrologique des bassins versants et à l'élévation du niveau des mers
Beyond their iconic role of climate change, mountain glaciers can be considered as Earth’ essential component and natural “climate-meter”. Despite their small spatial coverage (0.5% of emerged land), mountain glaciers contribute as high as 30% of the observed sea-level rise. In some regions, they are considered as essential issues because of their importance in terms of potable water, agriculture, hydroelectricity or natural hazards. A small share is however monitored in situ (<0.0025%) and their fluctuations at regional scale are poorly known.Thanks to the development of high spatial resolution satellite sensors (metric to decametric), new methods are today available to significantly increase the number of monitored glaciers. After a state of the art of the existing methods and an identification of the limitations, we focused our attention on the development of two methods.The first one is based on the automatic detection of the snow/ice interface altitude (i.e. snowline) at the glacier surface from optical satellite images. This altitude, when estimated at the end of summer, is a proxy of the annual glacier-wide mass change at the glacier surface (called surface mass balance, SMB). Using this approach, we estimated the annual SMBs of 239 glaciers in the European Alps and 82 glaciers in the tropical Andes for the period 2000-2016 and 2000-2018, respectively. The mean mass loss are -0.74 and -1.29 m water equivalent per year for the two regions, respectively. This approach allowed to derive the first dataset of annual SMBs for individual glaciers at regional scale from optical remote sensing. We found significant relationships between the computed SMBs and the glacier morpho-topographic features (e.g. slope, median altitude, …), with steeper and higher glaciers, experiencing less mass losses. Comparison with in situ monitored SMBs revealed an overestimation of mass losses from in situ estimates, due to a low representativeness of steep glaciers (>20°) in the in situ datasets. Our study also revealed heterogeneous inter-annual variability across the European Alps, partially explained by the climatic context of the studied sub-regions, thanks to the analysis of climate reanalysis data.We developed a second method to derive the annual and summer SMBs from albedo maps, computed from MODIS images. With an application on 30 glaciers in the French Alps, this work opened the way toward a regional application of this method, in order to estimate both annual and summer SMBs.By performing regional applications on different glacierized regions, we developed and validated methods capable of deriving the annual and summer SMBs of individual mountain glaciers at regional scale, from optical remote sensing data. These data could then be used to (1) assess the impact of peculiar climatic conditions onto mountain glaciers; (2) investigate possible meteorological conditions driving the documented glacier fluctuations; (3) calibrate and validate glacio-hydrological models used to estimate the current and future contributions of mountain glaciers to the hydrological functioning of mountain catchments and to sea level rise
APA, Harvard, Vancouver, ISO, and other styles
8

Steig, Eric J. "Beryllium-10 in the Taylor Dome ice core : applications to Antarctic glaciology and paleoclimatology /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Docquier, David. "Representing grounding-line dynamics in Antarctic ice-sheet models." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209400.

Full text
Abstract:
Since the mid-20th century, global average temperatures have dramatically risen mostly due to the increasing amount of greenhouse gas emissions in the atmosphere. The effects of this recent global warming are already evident and could be exacerbated in the near future if no real action is taken. Recent ice loss in West Antarctica, monitored by satellite measurements and other techniques, gives cause for concern in such a warming world. A major part of this loss has been driven by warm water masses penetrating underneath the ice shelves in this region. This has led to a flow acceleration of the inland outlet glaciers and a greater discharge of ice to the ocean. The actual resulting contribution of West Antarctica to sea-level rise is estimated to be around 0.2 mm per year between 1992 and 2011, i.e. about one third of the ice-sheet contribution (Antarctica and Greenland), and is expected to increase in the near future.

In this thesis, we first clearly demonstrate that modeling grounding-line (the boundary between grounded and floating ice) migration depends on both the numerical approach and the physical approximation of the ice-sheet model used. Ice-sheet models prescribing the ice flux at the grounding line and using appropriate physical level and numerical approach converge to the same steady-state grounding-line position irrespective of the grid size used. However, the transient behavior of those models is less accurate than other models and leads to an overestimated grounding-line discharge. Therefore, they need to be used with particular attention on short time scales. Furthermore, the non-inclusion of vertical shear stress in those models increases the effective viscosity and gives steady-state grounding-line positions further downstream when compared to full-Stokes models.

The second major finding of this thesis is the high control of geometry (glacier width and bedrock topography) on Thwaites Glacier, one of the fastest-flowing outlet glaciers in West Antarctica. A flowline finite-difference Shallow-Shelf Approximation (SSA) model is applied to the glacier and shows that ice-flow convergence (through width parameterization) slows down the grounding-line retreat when compared to simulations where the width is constant. A new buttressing parameterization is also tested on the glacier and permits a better understanding of this effect. Finally, the three-dimensional version of the model above is applied to Thwaites Glacier and highlights the strong control of lateral variations in bedrock topography on grounding-line migration./Depuis le milieu du 20e siècle, les températures moyennes globales ont fortement augmenté principalement à cause de l'augmentation des émissions de gaz à effet de serre d'origine humaine. Les effets de ce réchauffement global récent sont déjà détectables et pourraient s'accentuer dans un futur proche si aucune mesure réelle n'est prise. La perte récente de glace en Antarctique de l'Ouest, enregistrée par mesures satellites et d'autres techniques, est préoccupante dans un monde qui se réchauffe. Une grande partie de cette perte de glace est due à la pénétration de masses d'eau chaude sous les plateformes de glace flottante dans cette région. Cela engendre une accélération de l'écoulement des glaciers émissaires et une plus grande décharge de glace vers l'océan. Ainsi, la contribution récente à la hausse du niveau de la mer de l'Antarctique de l'Ouest s'élève à environ 0.2 mm par an entre 1992 et 2011, c'est-à-dire près du tiers de la contribution des calottes glaciaires (Antarctique et Groenland). On estime que cette contribution va continuer à augmenter dans le futur proche.

Dans cette thèse, nous démontrons clairement que la modélisation de la migration de la ligne d'ancrage (frontière entre glaces posée et flottante) dépend de l'approche numérique et de l'approximation physique du modèle cryosphérique utilisé. Les modèles cryosphériques qui prescrivent le flux glaciaire à la ligne d'ancrage et qui utilisent un niveau de physique et une approche numérique appropriés convergent vers la même position d'équilibre de la ligne d'ancrage quelle que soit la taille de maille utilisée. Cependant, le comportement transitoire de ces modèles est moins précis que d'autres modèles et mène à une surestimation du flux à la ligne d'ancrage. Dès lors, ces modèles doivent être utilisés avec précaution sur de courtes périodes de temps. De plus, la non inclusion des contraintes verticales de cisaillement dans ces modèles augmente la viscosité effective et donne des positions d'équilibre de la ligne d'ancrage plus en aval en comparaison avec les modèles « full-Stokes ».

La seconde découverte majeure de cette thèse est le contrôle important exercé par la géométrie (largeur du glacier et topographie du lit rocheux) sur Thwaites Glacier, l'un des glaciers émissaires les plus rapides en Antarctique de l'Ouest. Un modèle « Shallow-Shelf Approximation » (SSA) résolvant les différences finies le long d'une ligne d'écoulement est appliqué au glacier et montre que la convergence de l'écoulement glaciaire (au travers de la paramétrisation de la largeur) ralentit le retrait de la ligne d'ancrage comparé aux simulations où la largeur est constante. Une nouvelle paramétrisation de l'effet arc-boutant est testée sur le glacier et permet de mieux comprendre cet effet. Finalement, la version en trois dimensions du modèle ci-dessus est appliquée à Thwaites Glacier et met en évidence le contrôle important des variations latérales de l'altitude du lit rocheux sur la migration de la ligne d'ancrage.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
10

Parry, Victoria. "Densification and refreezing in the percolation zone of the Greenland Ice Sheet : implications for mass balance measurements." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3076.

Full text
Abstract:
In order to increase coverage, mass balance changes of the world’s ice sheets are increasingly derived from surface elevation changes measured via satellite. Across the percolation zone of the Greenland Ice Sheet, meltwater, percolation and refreezing cause a re-distribution of mass through densification which may result in elevation change with no associated mass loss. Therefore, densification processes need to be quantified, spatially and temporally, and accounted for in mass balance measurements. This thesis investigates the relationships between patterns of elevation change and temporally and spatially variable accumulation and densification processes. In doing so, it provides an important contribution to the validation of the European Space Agency’s CryoSat-2 mission by placing error bars on the accuracy to which changes in satellite-measured ice-mass surface elevation represent real changes in ice mass. Temporal variability in near-surface (<10 m) snowpack and firn density and structure was measured in snowpits, shallow cores and using a neutron probe in the spring and autumn of 2004 at ~1945 m elevation (T05, 69o 51N, 47o 15W) in the percolation zone of the Greenland Ice Sheet. Results show that average snowpack density increased by 26% from spring to autumn, with a 5% (7.6 cm) increase in elevation, and a corresponding 32% increase in mass. Spatial variability was investigated at 11 sites along two transects at spatial scales of 1 m – 10 km. Whilst there was little variability in small scale (1 - 100 m) density changes, ‘seasonal densification’ increased at lower elevations, rising to 47% 10 km closer to the ice sheet margin at 1860 m a.s.l. The spatial variability in seasonal densification was further investigated in spring 2006 at seven sites located at ~10 km intervals along a 57 km transect spanning a 350 m elevation range. Snowpits and shallow cores reveal no significant variation in spring (prior to melt) snowpack density but following summer melt and refreezing cycles, seasonal densification decreased with increasing elevation at 32 kg m-3 per 100 m. Measurements at three sites ranging in elevation from 1860 – 2015 m and spanning three melt-seasons show inter-annual variation in the seasonal densification gradient. In order to obtain a longer time series of mass balance, a 17 m core retrieved in spring 2004 was analysed for stratigraphy, density and ionic and isotopic concentrations to identify annual layers. Unfortunately, the seasonal melt cycle (whereby on average 10% of the snowpack undergoes melt), results in a complex stratigraphy and density and ionic concentrations that cannot be resolved into a seasonal signature. However, the δ18O and δ D isotopes show clear sinusoidal fluctuations, which have been used to derive annual mass balance from 1986 to 2003. These show a mean annual accumulation of 53.7 cm w.e. (s.d. 12.9 cm w.e.) although the accuracy of these measurements is compromised by the percolation of meltwater through more than more year’s snowpack. These findings confirm that estimates of mass balance cannot be calculated solely from observed changes in surface elevation. However, predicting spatial and temporal variations in densification is not straightforward because of the complex inter-annual variations in the processes of accumulation, melt, percolation and refreezing.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Glaciology"

1

International Symposium on Snow Science (2007 Moscow, Russia). Annals of glaciology. Cambridge, UK: International Glaciological Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Workshop on Ice Drilling Technology (6th 2006 US Fish and Wildlife Service National Conservation Training Center). Annals of glaciology. Cambridge, UK: International Glaciological Society in conjunction with the 6th International Workshop on Ice Drilling Technology, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Workshop on Ice Drilling Technology (6th 2006 US Fish and Wildlife Service National Conservation Training Center). Annals of glaciology. Cambridge, UK: International Glaciological Society in conjunction with the 6th International Workshop on Ice Drilling Technology, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Humlum, Ole. Glaciologi. 2nd ed. [Copenhagen]: Laboratorium for geomorfologi, Københavns universitets Geografiske centralinstitut, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hagg, Wilfried. Glaciology and Glacial Geomorphology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64714-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Evans David J., ed. Glacial landsystems. London: Arnold, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Azizi, Fethi. Engineering aspects of geomechanics, glaciology & geocryology. Plymouth: Fethi Azizi, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deepak, Srivastava, Mukkerji Sharadindu, and Geological Survey of India, eds. Glaciology of Indian Himalaya: A bilingual contribution in 150th year of Geological Survey of India. Kolkata: Geological Survey of India, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aber, James S. Glaciotectonic landforms and structures. Dordrecht [Holland]: Kluwer Academic Publishers, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bentley, Charles R., and Dennis E. Hayes, eds. The Ross Ice Shelf: Glaciology and Geophysics. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/ar042.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Glaciology"

1

Knight, Peter G. "Glaciology." In Encyclopedia of Earth Sciences Series, 440–43. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hambrey, Michael J. "Structural Glaciology." In Encyclopedia of Earth Sciences Series, 1089–91. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rigsby, George P. "Mountain Glaciology." In Geophysics and the IGY: Proceedings of the Symposium at the Opening of the International Geophysical Year, 182–85. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm002p0182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colqui, Benito S. "Argentine Glaciology." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 217–28. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Demuth, Michael N. "LIDAR in Glaciology." In Encyclopedia of Earth Sciences Series, 713–22. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Napieralski, Jacob. "GIS in Glaciology." In Encyclopedia of Earth Sciences Series, 325–28. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wahr, John. "GRACE in Glaciology." In Encyclopedia of Earth Sciences Series, 474–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shumsky, P. A. "Glaciology of Antarctica." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 176–77. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldthwait, Richard P., and Ian C. Mckellar. "New Zealand Glaciology." In Antarctic Research: The Matthew Fontaine Maury Memorial Symposium, 209–16. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm007p0209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

King, Matt A. "GPS in Glaciology, Applications." In Encyclopedia of Earth Sciences Series, 471–74. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glaciology"

1

Forster, Richard R., Ryo Michishita, Jeff VanLooy, and Dorothy K. Hall. "Alaskan Glaciology from Space." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schroeder, Dustin M. "Pathways to Multitemporal Radar Sounding in Terrestrial Glaciology." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsoflias, Georgios P., Julian Ivanov, Sridhar Anandakrishnan, and Richard Miller. "Use of Active Source Seismic Surface Waves in Glaciology." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Environment and Engineering Geophysical Society, 2008. http://dx.doi.org/10.4133/1.2963234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

P. Tsoflias, Georgios, Julian Ivanov, Sridhar Anandakrishnan, and Richard Miller. "Use Of Active Source Seismic Surface Waves In Glaciology." In 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609-pdb.177.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Youcun, Liu, Song Bo, Han Tianding, and Ye Baisheng. "3D GIS interactive editing method: Research and application in glaciology." In 2nd International Conference on Information Science and Engineering (ICISE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5690776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kelly, Meredith, Victoria Halvorson, Maxwell Cunningham, Grace Mendolia, Michael Kaplan, and Alan Hidy. "QGG DENTON, ANDREWS, PORTER GLACIOLOGY AWARD: CONSTRAINING THE TIMING OF DEGLACIAL WARMING IN COSTA RICA." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-382006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kordzakhia, George, Larisa Shengelia, Gennady Tvauri, and Guguli Dumbadze. "Morphology and Exposure Studies in the Autonomous Republic of Abkhazia (West Georgia) on the Background of Modern Climate Change." In 3rd International Congress on Engineering and Life Science. Prensip Publishing, 2023. http://dx.doi.org/10.61326/icelis.2023.19.

Full text
Abstract:
The degradation of glaciers is one of the most obvious signals of climate change in the current period of Earth's history. Modern glaciation is unevenly distributed between different regions of the Earth and some river basins. Glaciers in Georgia are spread over the Great Caucasus Range, concentrated in the basins of the Enguri, Rion, Kodori, Tergi and other rivers, where there are mountain peaks of 3500 m and higher. The study of the melting of glaciers due to the ongoing climate change is extremely important to clarify natural events of a glacial nature, to ensure the rise of the sea level and the safety of the population living in the coastal zone, to determine the change in glacial water runoff and to assess the risks related to the melting of glaciers in general, to develop adaptation strategies and mitigation measures to the melting of glaciers. In the article, the glaciers of the Autonomous Republic of Abkhazia (hereafter “Abkhazia”) and their characteristics are studied. High-resolution satellite remote sensing (SRS) is the only way to study the current state of glaciers in the Autonomous Republic of Abkhazia, because on the one hand, there is no local glaciology school, and on the other hand, the current political situation does not allow conducting expeditions and studying glaciers in field conditions. The objective of the article is to study the morphology and exposure of these glaciers and snowfields based on the data from the catalogue of the former USSR (hereafter “catalogue”) which is called initial data and is obtained from more than one century of observations and is issued between 1960 -1975 and satellite data, at several time points, namely 2010 and 2015 that are derived from high-resolution (30 m) LANDSAT satellite data, and the latest 2020 data are processed from satellite MODIS (1.5 m resolution). Complexly using the best international practices, processed SRS data and several SRS databases, historical data and expert knowledge define the reliability of received data. It should be noted that the authors had to overcome several difficulties and ambiguities in the data to discuss the problem relevantly.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Glaciology"

1

Piper, D. J. W. Surficial geology and physical properties 7: paleo-oceanography and paleo-glaciology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/210699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mennis, Jeremy. GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steig, E. J. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/527444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, Seth, Zoe Courville, Samantha Sinclair, and Joel Wilner. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45303.

Full text
Abstract:
We collected ∼1300 km of ground-penetrating radar profiles over McMurdo Ice Shelf, Antarctica, using frequencies between 40 and 400 MHz to determine extent, continuity and depth to the brine. We also used profiles to determine meteoric ice thickness and locate englacial features, which may suggest ice shelf instability. The brine extends 9–13 km inland from the ice shelf terminus and covers the entire region between Ross, White and Black Islands. Jump unconformities and basal fractures exist in the brine and ice shelf, respectively, suggesting prior fracturing and re-suturing. One 100 MHz profile, the most distal from the ice shelf edge while still being situated over the brine, simultaneously imaged the brine and bottom of meteoric ice. This suggests a negative brine salinity gradient moving away from the terminus. The meteoric ice bottom was also imaged in a few select locations through blue ice in the ablation zone near Black Island. We suggest that brine, sediment-rich ice and poor antenna coupling on rough ice attenuates the signal in this area. When combined with other recent mass-balance and structural glaciology studies of MIS, our results could contribute to one of the most high-resolution physical models of an ice shelf in Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
5

Bibliography on Meteorology, Hydrology and Glaciology of Nepal. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bibliography on Meteorology, Hydrology and Glaciology of Nepal. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography