Academic literature on the topic 'Ginzburg-Landau theory; Mean-field model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ginzburg-Landau theory; Mean-field model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ginzburg-Landau theory; Mean-field model"
DAVIS, R. L. "SUPERFLUID FIELD THEORY." International Journal of Modern Physics A 08, no. 28 (November 10, 1993): 5005–21. http://dx.doi.org/10.1142/s0217751x9300196x.
Full textBonora, L., A. A. Bytsenko, M. Chaichian, and A. E. Gonçalves. "Elliptic genera and q-series development in analysis, string theory, and N=2 superconformal field theory." International Journal of Modern Physics A 34, no. 33 (November 30, 2019): 1950226. http://dx.doi.org/10.1142/s0217751x19502269.
Full textFUCHS, JÜRGEN, and MAXIMILIAN KREUZER. "ON THE LANDAU–GINZBURG DESCRIPTION OF $(A_1^{(1)})^{\oplus N}$ INVARIANTS." International Journal of Modern Physics A 09, no. 08 (March 30, 1994): 1287–304. http://dx.doi.org/10.1142/s0217751x94000583.
Full textDZHUNUSHALIEV, VLADIMIR, and DOUGLAS SINGLETON. "GINZBURG–LANDAU EQUATION FROM SU(2) GAUGE FIELD THEORY." Modern Physics Letters A 18, no. 14 (May 10, 2003): 955–65. http://dx.doi.org/10.1142/s0217732303010776.
Full textTuyen, Le Thi Cam, Bui Duc Tinh, Le Minh Thu, Nguyen Quang Hoc, and Nguyen Khac Man. "Fluctuation diamagnetic susceptibility in type-II superconductors under magnetic field." International Journal of Modern Physics B 34, no. 04 (December 20, 2019): 2050007. http://dx.doi.org/10.1142/s0217979220500071.
Full textLim, Kok Geng, Khian Hooi Chew, Lye Hock Ong, and Makoto Iwata. "Recent Advances in Application of Landau-Ginzburg Theory for Ferroelectric Superlattices." Solid State Phenomena 232 (June 2015): 169–95. http://dx.doi.org/10.4028/www.scientific.net/ssp.232.169.
Full textContreras, Andres, and Xavier Lamy. "Persistence of superconductivity in thin shells beyond Hc1." Communications in Contemporary Mathematics 18, no. 04 (May 3, 2016): 1550047. http://dx.doi.org/10.1142/s0219199715500479.
Full textDI GREZIA, ELISABETTA, SALVATORE ESPOSITO, and ADELE NADDEO. "QUANTUM PHASE EXCITATIONS IN GINZBURG–LANDAU SUPERCONDUCTORS." International Journal of Modern Physics B 20, no. 06 (March 10, 2006): 737–45. http://dx.doi.org/10.1142/s021797920603353x.
Full textDZHUNUSHALIEV, VLADIMIR, DOUGLAS SINGLETON, and DANNY DHOKARH. "Effective Abelian-Higgs Theory from SU(2) gauge field theory." International Journal of Modern Physics A 20, no. 15 (June 20, 2005): 3481–87. http://dx.doi.org/10.1142/s0217751x05026807.
Full textBULAEVSKII, L. N. "MACROSCOPICAL THEORY OF LAYERED SUPERCONDUCTORS." International Journal of Modern Physics B 04, no. 11n12 (September 1990): 1849–77. http://dx.doi.org/10.1142/s0217979290000905.
Full textDissertations / Theses on the topic "Ginzburg-Landau theory; Mean-field model"
Richardson, Giles William. "Vortex motion in type II superconductors." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320582.
Full textCalza, Thiago Cheble Alves. "Modelo de Ginzburg-Landau a partir da teoria de campos a temperatura finita." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8735.
Full textNeste trabalho, utilizamos o formalismo de teorias quânticas de campos a temperatura finita, tal como desenvolvidas por Matsubara, aplicado a uma hamiltoniana de N campos escalares com autointeração quártica a N grande. Obtém-se uma expressão, na primeira aproximação quântica, para o coeficiente do termo quadrático da hamiltoniana ("massa quadrada"), renormalizado, como função da temperatura. A partir dela, estudamos o processo de quebra espontânea de simetria. Por outro lado, a mesma hamiltoniana é conhecida como modelo de Ginzburg-Landau na literatura de matéria condensada, e que permite o estudo de transições de fase em materiais ferromagnéticos. A temperatura é introduzida através do termo quadrático na hamiltoniana, de forma linear: é proporcional à diferença entre a variável de temperatura e a temperatura crítica. Tal modelo, porém, possui validade apenas na regi~ao de temperaturas próximas à criticalidade. Como resultado de nossos cálculos na teoria de campos a temperatura finita, observamos que, numa faixa de valores em torno da temperatura crítica, a massa quadrática pode ser aproximada por uma relação linear em relação à variável de temperatura. Isso evidencia a compatibilidade da abordagem de Ginzburg-Landau, na vizinhança da criticalidade, com respeito ao formalismo de campos a temperatura finita. Discutimos também os efeitos causados pela presença de um potencial químico no sistema.
In this work, we use the formalism of quantum field theories at finite temperature, as developed by Matsubara, applied to a Hamiltonian of N scalar fields with quartic self-interaction at N large. We get an expression in the first quantum approximation to the coeficient of the quadratic term of the Hamiltonian ("square mass"), renormalized as a function of temperature. From it, we study the process of spontaneous symmetry breaking. On the other hand, the same Hamiltonian is known as Ginzburg-Landau model in the literature of condensed matter, and allows the study of phase transitions in ferromagnetic materials. The temperature is introduced through the quadratic term in the Hamiltonian of the linear form: is proportional to the difference between the temperature and the critical temperature. This model, however, is valid only in the region of temperatures close to criticality. As a result of our calculations in the field theory at finite temperature, we observed that in a range of values around the critical temperature, the quadratic mass can be approximated by a linear relation with the temperature. This highlights the compatibility of the Ginzburg-Landau approach, in the vicinity of criticality with respect to the formalism of finite temperature field. We also discuss the effects caused by the presence of a chemical potential in the system.
Martins, Gabriel Weber. "O modelo de Landau-Lifshitz e a integrabilidade em teoria de cordas." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-15052012-150633/.
Full textIn this thesis, we study the quantum integrability of continuous models which arise from consistent truncations of type IIB superstring theory on AdS5 X S5, and, therefore are relevant for improving our current understanding of the AdS/CFT correspondence. For the Landau-Lifshitz and the Alday-Arutyunov-Frolov models, we compute the three-particle scattering amplitude and show the factorizability of the corresponding S matrices at the first non-trivial order. We also propose a new method for quantizing continuous integrable systems and apply it to the su(1;1) Landau-Lifshitz model. Our method provides an alternative solution to the longstanding operator ordering problem and gives a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. Moreover, since it is based on operator regularization and renormalization, as well as on the construction of the self-adjoint extensions, the integrability is preserved during the quantization process
Troussaut-Bertrand, Francine. "Etude du KH2PO4 au voisinage du point tricritique : mesures de biréfringence sous pression et détermination des coefficients d'électrostriction." Grenoble 1, 1987. http://www.theses.fr/1987GRE10039.
Full textBooks on the topic "Ginzburg-Landau theory; Mean-field model"
Provatas, Nicholas. Phase-field methods in materials science and engineering. Weinheim: Wiley-VCH, 2010.
Find full textHoring, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.
Full textHoring, Norman J. Morgenstern. Superfluidity and Superconductivity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0013.
Full textBook chapters on the topic "Ginzburg-Landau theory; Mean-field model"
Zinn-Justin, Jean. "Abelian gauge theories: The framework of quantum electrodynamics (QED)." In Quantum Field Theory and Critical Phenomena, 507–47. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0021.
Full textSwendsen, Robert H. "Phase Transitions and the Ising Model." In An Introduction to Statistical Mechanics and Thermodynamics, 423–46. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198853237.003.0031.
Full textMussardo, Giuseppe. "Minimal Conformal Models." In Statistical Field Theory, 399–442. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788102.003.0011.
Full textMussardo, Giuseppe. "Conformal Field Theories with Extended Symmetries." In Statistical Field Theory, 476–517. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788102.003.0013.
Full textEckle, Hans-Peter. "Phase Transitions, Critical Phenomena, and Finite-Size Scaling." In Models of Quantum Matter, 111–76. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0005.
Full textOndrejkovic, P., P. Marton, V. Stepkova, and J. Hlinka. "Fundamental Properties of Ferroelectric Domain Walls from Ginzburg–Landau Models." In Domain Walls, 76–108. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862499.003.0004.
Full textA.ANSELM, A. "A MODEL OF FIELD THEORY WITH NONVANISHING RENORMALIZED CHARGE." In Under the Spell of Landau, 526–34. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814436571_0051.
Full textFATEEV, V. A., and S. L. LYKYANOV. "THE MODELS OF TWO-DIMENSIONAL CONFORMAL QUANTUM FIELD THEORY WITH Zn SYMMETRY." In 30 Years of the Landau Institute — Selected Papers, 719–32. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814317344_0072.
Full textZAMOLODCHIKOV, ALEXANDER B., and ALEXEY B. ZAMOLODCHIKOV. "Factorized S-Matrices in Two Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Theory Models." In 30 Years of the Landau Institute — Selected Papers, 559–97. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814317344_0065.
Full textConference papers on the topic "Ginzburg-Landau theory; Mean-field model"
Bittner, Elmar, Axel Krinner, and Wolfhard Janke. "Vortex-Line Percolation in a Three-Dimensional Complex Ginzburg-Landau Model." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0247.
Full textKawai, Hiroki, and Yoshio Kikukawa. "A study of N=2 Landau-Ginzburg model by lattice simulation based on a Nicolai map." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0255.
Full textSchrade, David, Bai-Xiang Xu, Ralf Mu¨ller, and Dietmar Gross. "On Phase Field Modeling of Ferroelectrics: Parameter Identification and Verification." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-411.
Full textDhote, Rakesh, and Kamran Behdinan. "Isogeometric Analysis of 3D Dynamic Thermo-Mechanical Phase-Field Model for Cubic-to-Tetragonal Phase Transformations in Shape Memory Alloys." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50643.
Full textAgboola, Babatunde O., Theocharis Baxevanis, and Dimitris C. Lagoudas. "Thermodynamically Consistent Thermomechanical Modeling of Kinetics of Macroscopic Phase Transition in SMA Using Phase Field Theory." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7555.
Full textLandis, Chad M. "Phase Field Modeling of Ferroelectric Domain Wall Interactions With Charge Defects." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16184.
Full textMorikawa, Okuto. "Numerical study of ADE-type $\mathcal{N}=2$ Landau-Ginzburg models." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.363.0145.
Full textUsha, R., and I. Mohammed Rizwan Sadiq. "Weakly Nonlinear Stability Analysis of a Non-Uniformly Heated Non-Newtonian Falling Film." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37201.
Full textDjondjorov, Peter A., Vassil M. Vassilev, and Daniel M. Danchev. "Analytic solutions for the temperature-field behaviour of the Ginzburg-Landau Ising type mean-field model with Dirichlet boundary conditions." In 10TH JUBILEE INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. Author(s), 2019. http://dx.doi.org/10.1063/1.5099022.
Full textHietanen, Ari, and Biagio Lucini. "Interface tension of 3d 4-states Potts model using the Wang-Landau algorithm." In XXIX International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.139.0034.
Full text