Dissertations / Theses on the topic 'Ginzburg-Landau equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ginzburg-Landau equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, Weigang. "A General Study of the Complex Ginzburg-Landau Equation." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90886.
Full textDoctor of Philosophy
The complex Ginzburg-Landau equation is one of the most studied nonlinear partial differential equation in the physics community. I study this equation using both analytical and numerical methods. First, I employed the field theory approach to extract the critical initial-slip exponent, which emerges due to the breaking of time translation symmetry and describes the intermediate temporal window between microscopic time scales and the asymptotic long-time regime. I also numerically solved this equation on a two-dimensional square lattice. I studied the scaling behavior in non-equilibrium relaxation processes in situations where defects are interactive but not subject to strong fluctuations. I observed nucleation processes when the system under goes a transition from a strongly fluctuating disordered state to the relatively stable “frozen” state where its dynamics cease. I extracted a finite dimensionless barrier for systems that are quenched deep into the frozen state regime. An exponentially decaying long tail in the nucleation time distribution is found, which suggests a discontinuous transition. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-SC0002308.
Braun, Robert, and Fred Feudel. "Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation." Universität Potsdam, 1996. http://opus.kobv.de/ubp/volltexte/2007/1409/.
Full textCruz-Pacheco, Gustavo. "The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187238.
Full textHorsch, Karla 1968. "Attractors for Lyapunov cases of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282419.
Full textAguareles, Carrero Maria. "Interaction of spiral waves in the general complex Ginzburg-Landau equation." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5854.
Full textEn aquesta tesi s'analitza l'equació de Ginzburg-Landau complexa general, que és una equació en derivades parcials de reacció-difusió que s'utilitza sovint com a model matemàtic per a descriure sistemes oscil·latoris en dominis extensos. En particular estudiem els patrons que sorgeixen en el pla quan s'imposa que el grau de Brouwer de la solució no sigui nul. Aquests patrons estan formats per ones de rotació en forma d'espirals, és a dir, les corbes de nivell de la solució formen espirals que emanen dels punts on la funció s'anul·la. Quan la solució s'anul·la només en un punt i per tant només hi ha una espiral, tota la dependència temporal apareix en el terme de freqüència. Així doncs, la funció solució es pot expressar com a funció del radi polar i en termes del seu grau topològic i la freqüència de l'ona. Per tant, aquestes solucions es poden expressar en termes d'un sistema d'equacions diferencials ordinàries. Aquestes solucions només existeixen per una certa freqüència que depèn unívocament dels paràmetres de l'equació i, com a conseqüència i degut a la relació de dispersió entre el nombre d'ones i la freqüència, el nombre d'ones a l'infinit, l'anomenat nombre d'ones asimptòtic, ve també determinat unívocament pels paràmetres. Quan les solucions tenen més d'un zero aïllat la condició sobre el grau de la funció fa que de cada zero sorgeixi una espiral diferent i aquestes es mouen en el pla mantenint la seva estructura local. En aquest treball s'usen tècniques d'anàlisi asimptòtica per trobar equacions del moviment per als centres de les espirals i es troba que aquesta evolució temporal és lenta. En concret, per la distàncies relatives grans entre els centres de les espirals, l'escala de temps per a la seva dinàmica ve donada pel logaritme de l'invers d'aquesta distància. Es demostra que aquestes equacions del moviment són diferents en funció de la relació entre els paràmetres de l'equació de Ginzburg-Landau complexa i la separació entre els centres de les espirals, i que la forma com es passa d'unes equacions a les altres és molt singular. També es demostra que el nombre d'ones asimptòtic per al cas de sistemes amb diverses espirals també està unívocament determinat pels paràmetres però no obstant, el cas de sistemes amb diverses espirals es diferencia del cas d'una única ona en què deixa de ser constant i evoluciona al mateix ritme que la velocitat dels centres de les espirals.
Many physical systems have the property that its dynamics is driven by some kind of spatical diffusion that is in competition with a reaction, like for instance two chemical species that react at the same time that there is a diffusion of each of them into the other. This interplay between reaction and diffusion produce non-homogeneous patterns that can sometimes be very rich. The mathematical models that describe this kind of behaviours are usually nonlinear partial differential equations whose solutions represent these patterns.
In this thesis we focus on an especific reaction-diffusion equation that is the so-called general complex Ginzburg-Landau equation that is used as a model for oscillatory systems in extended domains. In particular we are interested in the type of patterns in the plane that arise when the solutions have a non-vanishing Brouwer degree. These patterns have the property that they exhibit rotating waves in the shape of spirals, which means that the contour lines arrange in the shape of spirals that emerge from the points where the solution vanishes. When the solution vanishes only at one point all the time dependence appears as a frequency term so the solutions can be expressed as a function of the polar radius and in terms of the topological degree of the solution and the frequency of the wave. Therefore, these solutions can be expressed in terms of a system of ordinary differential equations. These solutions do only exist with a given frequency, and as a consequence and due to the existence of a dispresion relation, the wavenumber far from the origin, the so-called asymptotic wavenumber, is also unique. When the solutions have more than one isolated zero, the condition on the degree of the function has the effect of producing several spirals that emerge from the different zeros of the solution. These spirals evolve in time keeping their structure but moving around on the plane. In this work we use asymptotic analysis techniques to derive laws of motion for the centres of the spirals and we show that the time evolution of these patterns is slow and, for large relative separations of the centres of the spirals, the time scale for the their dynamics is logarithmic in the inverse of this distance. These laws of motion are different depending on the relation between the parameters of the complex Ginzburg-Landau equation and the relative separation of the spirals. We show that the way these laws change as the spirals separate or approach is highly singular. We also show that the asymptotic wavenumber in the case of multiple spirals is as well unique and that it evolves in time at the same rate as the velocity of the centres.
Banaji, Murad. "Clustering and chaos in globally coupled oscillators." Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249289.
Full textSNOUSSI, SEIFEDDINE. "Etude du comportement asymptotique des solutions d'une equation de ginzburg-landau generalisee." Paris 11, 1996. http://www.theses.fr/1996PA112060.
Full textSauvageot, Myrto. "Modèle de Ginzburg-Landau : solutions radiales et branches de bifurcation." Paris 6, 2002. http://www.theses.fr/2002PA066548.
Full textAttanasio, Felipe [UNESP]. "Numerical study of the Ginzburg-Landau-Langevin equation: coherent structures and noise perturbation theory." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92029.
Full textNesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo kink - onde apresentamos novos resultados sobre defeitos de dois kinks
In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological kink solution - where we present new results on two-kink defects
Attanasio, Felipe. "Numerical study of the Ginzburg-Landau-Langevin equation : coherent structures and noise perturbation theory /." São Paulo, 2013. http://hdl.handle.net/11449/92029.
Full textBanca: Raquel Santos Marques de Carvalho
Banca: Ricardo D'Elia Matheus
Resumo: Nesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo "kink" - onde apresentamos novos resultados sobre defeitos de dois kinks
Abstract: In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological "kink" solution - where we present new results on two-kink defects
Mestre
Stark, Donald Richard. "Structure and turbulence in the complex Ginzburg-Landau equation with a nonlinearity of arbitrary order." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187363.
Full textMancas, Ciprian. "DISSIPATIVE SOLITONS IN THE CUBIC–QUINTIC COMPLEX GINZBURG–LANDAU EQUATION:BIFURCATIONS AND SPATIOTEMPORAL STRUCTURE." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2912.
Full textPh.D.
Department of Mathematics
Sciences
Mathematics PhD
Nersesyan, Vahagn. "Contrôle et mélange pour des équations stochastiques de Ginzburg-Landau et Schrödinger." Paris 11, 2008. http://www.theses.fr/2008PA112157.
Full textThis thesis aims to study the problems of controllability and mixing for systems of Ginzburg-Landau and Schrödinger. It is divided into three parts. We begin with the problem of ergodicity for the complex Ginzburg-Landau equation perturbed by an unbounded random kick-force. Randomness is introduced both through the kicks and through the times between the kicks. We show that the Markov process associated with the equation in question possesses a unique stationary distribution and satisfies aproperty of polynomial mixing. In the second part, we consider the finite-dimensional approximations of the Schrödinger equation. The system is driven by a multiplicative scalar noise. Using the coupling method and a measure transformation theorem, we show that, under some natural hypotheses on vector field, the system has a unique stationary measure u on the unit sphere S in C^n, and any solution converges exponentially fast to the measure u in the variational norm. The third part is devoted to the problem of stabilization of the Schrödinger equation. We construct a feedback law u(z),which forces the trajectories of system to approach the eigenstatein H^2-weak sense. Then we give an application of our result. We consider the Schrödinger equation with a potential which has a random time-dependent amplitude. We show that if the distribution of the amplitude is sufficiently non-degenerate, then any trajectory of system is almost surely non-bounded in Sobolev spaces
Chugreeva, Olga [Verfasser], Christof Erich [Akademischer Betreuer] Melcher, and Maria Gabrielle [Akademischer Betreuer] Westdickenberg. "Stochastics meets applied analysis : stochastic Ginzburg-Landau vortices and stochastic Landau-Lifshitz-Gilbert equation / Olga Chugreeva ; Christof Erich Melcher, Maria Gabrielle Westdickenberg." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1156922305/34.
Full textKamagate, Aladji. "Propagation des solitons spatio-temporels dans les milieux dissipatifs." Thesis, Dijon, 2010. http://www.theses.fr/2010DIJOS068/document.
Full textThis thesis presents a semi-analytical approach for the search of (3+1)D spatio-temporal soliton solutions of the complex cubic-quintic Ginzburg-Landau equation (GL3D).We use a semi-analytical method called collective coordinate approach, to obtain an approximate profile of the unknown pulse field. This ansatz function is chosen to be a function of a finite number of parameters describing the light pulse.By applying this collective corrdinate procedure to the GL3D equation, we obtain a system of variational equations which give the evolution of the light bullet parameters as a function of the propagation distance. We show that the collective coordinate approach is uncomparably faster than the direct numerical simulation of the propagation equation. This permits us to obtain, efficiently, a global mapping of the dynamical behavior of light bullets, which unveils a rich variety of dynamical states comprising stationary, pulsating and rotating light bullets.Finally the existence of several types of light bullets is predicted in specific domains of the equation parameters. Altogether, this theoretical and numerical work may be a useful tool next to the efforts undertaken these last years observing light bullets experimentally
Miot, Evelyne. "Quelques problèmes relatifs à la dynamique des points vortex dans les équations d'Euler et de Ginzburg-Landau complexe." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00444820.
Full textLebellego, Marion. "Phénomènes ondulatoires dans un modèle discret de faille sismique." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1400/.
Full textIn this thesis, we consider a simple version of the spring-block model of Burridge-Knopoff for seismic faults, in which stick-slip instabilities have been numerically observed (phenomena corresponding to earthquakes). In the first part, we consider the version of this model introduced by Carlson and Langer, in which the friction law is of type velocity-weakening. This law is nonsmooth and multivalued at zero sliding velocity. As equations of motion, we obtain an infinite system of coupled differential inclusions. We prove, using the Lyapounov-Schmidt reduction, that there exist periodic travelling waves in this system in a limit of weak coupling between the masses. In the second part, we consider the model combined with a rate-and-state friction law, taking into account the ageing of the interface. The friction law is smooth but depends on an additive variable accounting for the state of the surface. In this part, we formally derive a Ginzburg-Landau equation as a modulation equation and prove that there exist small solutions in our system, that can be described by this equation in a sufficiently large time-scale, when the system lies at the threshold of instability
Brusch, Lutz. "Complex Patterns in Extended Oscillatory Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1006416783250-74051.
Full textPascolati, Mauro Cesar Videira [UNESP]. "Dinâmica de vórtices em filmes finos supercondutores de superfície variável." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/99728.
Full textO interesse em conhecer o comportamento supercondutor tem sido cada vez maior nas últimas décadas. Na busca de melhores características supercondutoras, descobriu-se que amostras volumétricas apresentam características muito diferentes de amostras mesoscópicas (amostras com dimensões próximas dos comprimentos de penetração de London e coerência). Como exemplo, podemos citar a não formação de rede de Abrikosov, como consequência do efeito de confinamento (efeito associado às dimensões reduzidas da amostra) e também uma mudança considerável nos valores dos campos críticos. Neste trabalho foram resolvidas as equações de Ginzburg-Landau dependentes do tempo (TDGL), para fazer uma análise detalhada da dinâmica de vórtices em filmes finos mesoscópicos. Para revolvê-las, utilizamos o método das variáveis de ligação com invariância de calibre, adaptado para o algoritmo de diferenças finitas, utilizado para obter a densidade dos pares de Cooper e também curvas de magnetização. O estudo dessa dinâmica de vórtices, foi feito em três amostras com superfícies geométricas diferentes (côncova, convexa e rugosa). Observamos que na comparação entre as duas primeiras, há uma diferença considerável nos valores dos campos críticos, bem como no comportamento da magnetização comparado com um filme plano. Já para a amostra de superfície rugosa, observamos que existe uma competição entre o efeito de confinamento e a rugosidade em relação à configuração dos vórtices. Apresentamos também, uma tabela que mostra resumidamente os estados estacionários dos vórtices nas três amostras.
The interest to investigate the investigate the behavior of a superconductor has grown in the last few decades. Having in mind to search for better superconducting characteristics, it has been found that bulk samples present characteristics much more different than mesoscopic samples (samples with dimensions of the same order of the same order of the London penetration length and the coherence length). As an example, we can mention the non-formation of an Abrikosov vortex lattice as a consequence of the confinement effect (effect associated with the reduced dimensions of the sample) and also considerable change in the critical field values. In the present work we solved the time dependent Ginzburg-Landau equation (TDGL), in order to make a detailed analysis of the vortex dynamics in mesoscopic thin films. To solve these equations, we have used the link variables method which is gauge invariant. From this, we obtain the Cooper pair density and the magnetization curves. The vortex dynamics was investigated for three different surfaces of the film (concave, convex, and irregular). We have observed that, with respect to the parabolic geometries, there is a considerable difference for the critical fields, as well as for the behavior of the magnetization compared to a flat film. On the other hand, for a sample with an irregular surface, we have seen that there is a competition between the confinement effect and rugosity with respect to vortex configurations. We also present a table which summarizes the vortex stationary states for the three topologies mentioned above.
Pascolati, Mauro Cesar Videira. "Dinâmica de vórtices em filmes finos supercondutores de superfície variável /." Bauru : [s.n.], 2010. http://hdl.handle.net/11449/99728.
Full textAbstract: The interest to investigate the investigate the behavior of a superconductor has grown in the last few decades. Having in mind to search for better superconducting characteristics, it has been found that bulk samples present characteristics much more different than mesoscopic samples (samples with dimensions of the same order of the same order of the London penetration length and the coherence length). As an example, we can mention the non-formation of an Abrikosov vortex lattice as a consequence of the confinement effect (effect associated with the reduced dimensions of the sample) and also considerable change in the critical field values. In the present work we solved the time dependent Ginzburg-Landau equation (TDGL), in order to make a detailed analysis of the vortex dynamics in mesoscopic thin films. To solve these equations, we have used the link variables method which is gauge invariant. From this, we obtain the Cooper pair density and the magnetization curves. The vortex dynamics was investigated for three different surfaces of the film (concave, convex, and irregular). We have observed that, with respect to the parabolic geometries, there is a considerable difference for the critical fields, as well as for the behavior of the magnetization compared to a flat film. On the other hand, for a sample with an irregular surface, we have seen that there is a competition between the confinement effect and rugosity with respect to vortex configurations. We also present a table which summarizes the vortex stationary states for the three topologies mentioned above.
Orientador: Paulo Noronha Lisboa Filho
Coorientador: Edson Sardella
Banca: Wilson Aires Ortiz
Banca: Clelio Clemente de Souza Silva
Mestre
Chiron, David. "Etude mathématique de modèles issus de la physique de la matière condensée." Paris 6, 2004. http://www.theses.fr/2004PA066053.
Full textBlockley, Edward William. "Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/41950.
Full textMacKenzie, Tony. "Create accurate numerical models of complex spatio-temporal dynamical systems with holistic discretisation." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001466/.
Full textKomninos, Paulo Guilherme. "Análise da dinâmica do funcionamento de lasers de fibra dopada com Érbio sob a óptica da equação de Ginzburg-Landau." Universidade Presbiteriana Mackenzie, 2011. http://tede.mackenzie.br/jspui/handle/tede/1404.
Full textThis work presents a study based on the numerical analysis of Erbium-doped fiber lasers using the technique of passive mode-locking for the laser working in pulsed regime. The equation describing the dynamics of a laser cavity is known as Ginzburg-Landau Equation, that in this work is solved numerically by the Split-Step Fourier Method. By this method, an algorithm was developed which was incorporated into the MATLAB environment so taht numerical calculations were made. The method was validated by comparing the results generated by the program (temporal pulse width due to the gain of the cavity with and without dispersion and nonlinearity) with the results published in literature. After validation of the method an experimental results were reproduced of an Erbium-doped fiber laser using thin films of carbon nanotubes as saturable absorbers. The laser generates a bandwidth of 5.7 nm for a cavity with a total length of 9 m. This experimental result was used as a calibration parameter in the initial simulations. Just by varying the length of the cavity in the simulation, results very close to the experiment were obtained. These results have helped in understanding some of the experimental variables.
Neste trabalho é apresentado um estudo baseado em análise numérica de lasers à fibra dopada com Érbio utilizando a técnica de acoplamento passivo de modos para que o mesmo opere em regime pulsado. A equação que descreve a dinâmica de uma cavidade laser é conhecida como Equação de Ginzburg-Landau, que neste trabalho é resolvida numericamente pelo Método Split-Step Fourier. Por este método, foi desenvolvido um algoritmo que foi incorporado ao ambiente MATLAB para serem feitos os cálculos numéricos. O método foi validado comparando os resultados gerados pelo programa (largura temporal do pulso devido ao ganho da cavidade com e sem dispersão e não-linearidade) com os resultados publicados na literatura. Após a validação do método, foram reproduzidos resultados experimentais de um laser a fibra dopada com Érbio usando como absorvedor saturável filmes finos de nanotubos de carbono. O laser gera uma largura de banda de 5,7 nm para uma cavidade de comprimento total de 9 m. Este resultado experimental foi utilizado como parâmetro de calibração inicial nas simulações. Apenas variando o comprimento da cavidade na simulação, foram obtidos resultados bem próximos ao do experimento. Esses resultados ajudaram na compreensão de algumas variáveis do experimento.
Risler, Ronan Thomas. "Comportement critique d'oscillateurs couplés : groupe de renormalisation et classe d'universalité." Paris 6, 2003. https://tel.archives-ouvertes.fr/tel-00004449v2.
Full textBesse, Valentin. "Dynamique spatiale de la lumière et saturation de l’effet Kerr." Thesis, Angers, 2014. http://www.theses.fr/2014ANGE0030/document.
Full textWe present a study of light dynamics and measurements of the nonlinear optical characteristics of carbon disulphide. In the first part, we calculate using the classical model, the nonlinear susceptibilities up to the fifth order taking into account local field corrections. We express different assumptions that we confirm or refute by measuring the nonlinear absorption coefficient and the nonlinear refractive index. The measurements are performed by means of two nonlinear characterization methods combined with an imaging 4f system. We analyse the experimental data using a newly developed method which numerically inverts the analytical solutions of the differential equations which describe the evolution of the beam, using Newton’s method. In the second part, we observe light filamentation at wavelength 532 nm, in the picoseconds regime. Then we measure the effective third order nonlinear refractive index n2,eff versus the incident intensity. By fitting the curve of the Kerr effect saturation, we develop a new model. Numerically solving this model, allows us to reproducethe experimentally observed filamentation. The last part is dedicated to the study of dissipative solitons dynamics. The complex Ginzburg-Landau equation with cubic-quintic nonlineraties is numerically solved in various configurations : soliton fundamental dipole, quadrupole, vortex and square rhombic
Baraket, Sami. "Quelques résultats sur des équations aux dérivées partielles non linéaires provenant de problèmes géométriques." Cachan, Ecole normale supérieure, 1994. http://www.theses.fr/1994DENS0012.
Full textNguyen, Hoang Phuong. "Résultats de compacité et régularité dans un modèle de Ginzburg-Landau non-local issu du micromagnétisme. Lemme de Poincaré et régularité du domaine." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30315.
Full textIn this thesis, we study some boundary value problems involving micromagnetic models and differential forms. In the first part, we consider a nonlocal Ginzburg-Landau model arising in micromagnetics with an imposed Dirichlet boundary condition. The model typically involves S²-valued maps with an energy functional depending on several parameters, which represent physical quantities. A first question concerns the compactness of magnetizations having the energies of several Néel walls of finite length and topo- logical defects when these parameters converge to 0. Our method uses techniques developed for Ginzburg-Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of S²-valued vector fields by S¹-valued vector fields away from the vortex balls. We also carry out in detail the proofs of the C^infinite regularity in the interior and C(^1,alpha) regularity up to the boundary, for all alpha belong to (0, 1/2), of critical points of the model. In the second part, we study the Poincaré lemma, which states that on a simply connected domain every closed form is exact. We prove the Poincaré lemma on a domain with a Dirichlet boundary condition under a natural assumption on the regularity of the domain: a closed form ƒ in the Hölder space C(^r,alpha) is the differential of a C(^r+1,alpha) form, provided that the domain itself is C(^r+1,alpha). The proof is based on a construction by approximation, together with a duality argument. We also establish the corresponding statement in the setting of higher order Sobolev spaces
Kamagaté, Aladji. "Propagation des solitons spatio-temporels dans les milieux dissipatifs." Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00671172.
Full textHerbert, Geoffrey M. "Stability analysis of the Fisher and Landau-Ginzburg equations." Thesis, University of Warwick, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307124.
Full textCross, Simon. "Localised solutions of the parametrically driven Ginzburg-Landau and nonlinear Schrӧdinger equations." Master's thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/4876.
Full textThis thesis deals with localised solutions of the parametrically driven Ginzburg-Landau equation and its nonlinear Schrӧdinger limit. We begin with a detailed analysis of the Faraday Resonance experiment, in which the driven complex Ginzburg-Landau equation (CGLE) arises, and an examination of how the CGLE appears as the amplitude equation for the modes excited near a Hopf bifurcation.
Lam, Chun-kit, and 林晉傑. "The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40887881.
Full textLam, Chun-kit. "The dynamics of wave propagation in an inhomogeneous medium the complex Ginzburg-Landau model /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40887881.
Full textRadulescu, Vicentiu. "Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1995. http://tel.archives-ouvertes.fr/tel-00980811.
Full textCarty, James George. "Studies of coated and polycrystalline superconductors using the time dependant Ginzburg-Landau equations." Thesis, Durham University, 2006. http://etheses.dur.ac.uk/2656/.
Full textHaas, Tobias [Verfasser], and Guido [Akademischer Betreuer] Schneider. "Amplitude equations for Boussinesq and Ginzburg-Landau-like models / Tobias Haas ; Betreuer: Guido Schneider." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1211649709/34.
Full textAydi, Hassen. "Vorticité dans le modèle de Ginzburg-Landau de la supraconductivité." Phd thesis, Université Paris XII Val de Marne, 2004. http://tel.archives-ouvertes.fr/tel-00297136.
Full textEn première partie, on prouve pour des certeins champs magnétiques appliqués $h_{ex}$ à la surface du supraconducteur de l'ordre du premier champ critique $H_{c_1}=\frac{|\log\e|}{2}$ que pour les minimiseurs périodiques de Ginzburg-Landau, le nombre des vortex par période est de l'ordre de $h_{ex}$ et leur répartition est uniforme. En outre, en prenant des champs $h_{ex}$ proches de $H_{c_1}$ de la forme $h_{ex}=H_{c_1}+f(\e)$ où $f(\e)\rightarrow +\infty$ et $f(\e)=o(|\log\e|)$, on montre que le nombre de vortex des minimiseurs périodiques par période est de l'ordre de $f(\e)$ et leur répartition est aussi uniforme.
Dans une deuxième partie, toujours dans le modèle périodique, on construit une suite de points critiques ayant des vortex répartis sur un nombre fini de lignes horizontales.
Dans une troisième partie, on construit dans le cas d'un disque une suite de points critiques telle que les vortex sont répartis sur un nombre fini de cercles concentriques de rayon strictement positif et de centre, le centre du disque. Dans le cas où il y a un seul cercle de vorticité, le rayon est bien caractérisé.
Finalement, dans un modèle de Ginzburg-Landau avec "pinning", on s'intéresse à l'étude du signe des degrés des vortex et on donne des résultats partiels indiquant que les degrés ne sont pas toujours positifs.
Côte, Delphine. "Vortex et données non bornées pour les équations de Ginzburg-Landau paraboliques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066002.
Full textWe are interested in this thesis in evolution equations related to the Ginzburg-Landau functionals, of parabolic nature. Our goal is to describe the temporal behavior of limiting solutions as a small penalisation parameter tends to 0.In the first chapter, we retrace in a synthetic way the remarkable study by Bethuel, Orlandi and Smets on the parabolic Ginzburg-Landau equation in dimension 2 : the evolution of point vortices is governed by the gradient flow of the Kirchoff-Onsager functionnal modified by a drift term ; it is smooth away from the merging and splitting times ; these phenomenon are subject to conservation of the local degree and energy dissipation.In the second chapter, we consider the Cauchy problem for systems of semi-linear parabolic equations. Motivated by the example of the vortices, we construct, for defocusing nonlinearities, global solutions to the associated integral equation with intial data unbounded in space (allowed to grow like exp(x^2)). In the case of focusing nonlinearities, we show a phenomenon of instantaneous blow-up.In the third chapter, we go back to the parabolic Ginzburg-Landau equation. We replace the energy bound of Bethuel, Orlandi et Smets by a local-in-space bound on the energy. This allows to consider general configurations of vortices without the help of « vanishing vortices ». We extend their analysis, and show various results of decomposition of the renormalized energy, and that the concentrated energy moves according to the mean curvature flow
Jefferson, Daniel Richard. "A numerical and analytical approach to turbulence in a special class of complex Ginzburg Landau equations." Thesis, Heriot-Watt University, 2002. http://hdl.handle.net/10399/412.
Full textMiranda, Adalberto Gomes de. "Estudo sobre a teoria de Ginzburg-Landau e o conhecimento de mapas conceituais." Universidade Federal do Amazonas, 2013. http://tede.ufam.edu.br/handle/tede/3452.
Full textFundação de Amparo à Pesquisa do Estado do Amazonas
The objective of this work is to present a proposal for a theoretical analysis of the theory of superconductivity together with an analysis of the Ginzburg-Landau equations in this context, in which the superconducting state is characterized by an order parameter, given by constructing a wave function Ψ (r, t) to describe the quantum behavior of particles and to show the knowledge of concept maps as a didactics tool. We will present the theoretical aspects of the phenomenon of superconductivity and its applications, and examples of conceptual maps including some models containing concepts of superconductivity. The specific objective is to use the maps as a conceptual study of physics theory in the academic, they are methodological tools to help in understanding the concepts with the interpretations, through hierarchical diagrams, shown in a conceptual framework. The research methods adopted are the development of the Ginzburg-Landau equations, the research that includes students enrolled in undergraduate courses in Physics, as individual basis and for last the implementation of a short course, with the participation of undergraduate and graduate students in physics and related areas, distributed in groups or individually to analyze the results. The survey instrument adopted for the last two methods, in order to obtain the scores for the students performance, will be a simple questionnaire, using pencil, black ballpoint pen and A4 paper, containing eleven questions in the first method and in the second method (short course) it will be ten conceptual questions (open or closed) about the concepts related to the topics provided by the instructor and finally it will be presented the analyzes of the results.
O objetivo deste trabalho é apresentar uma proposta de análise teórica da teoria da supercondutividade conjuntamente com uma análise das equações de Ginzburg-Landau neste contexto, em que um estado do supercondutor é caracterizado por um parâmetro de ordem, dado pela construção de uma função de onda Ψ(r,t) para descrever o comportamento quântico das partículas e mostrar o conhecimento de mapas conceituais como ferramenta didática. Serão apresentados os aspectos teóricos do fenômeno da supercondutividade e suas aplicações, e exemplos de mapas conceituais incluindo alguns modelos contendo conceitos da Supercondutividade. O objetivo específico é o de utilizar os mapas conceituais como um estudo da teoria Física no âmbito acadêmico, porque são instrumentos metodológicos para ajudar na compreensão dos conceitos com as interpretações, através de diagramas hierárquicos, mostrados em uma estrutura conceitual. Os métodos da pesquisa adotados são os de desenvolvimento das equações de Ginzburg-Landau, os da investigação que contarão com discentes matriculados nos cursos de graduação em Física, de forma individual e por ultimo a aplicação de um minicurso, com a participação de graduandos e graduados em Física e áreas afins, distribuídos em grupos ou individual para análise dos resultados. O instrumento de pesquisa adotado para estes dois últimos métodos, fins de obter os escores referentes ao desempenho dos discentes, será um questionário simples, utilizando lápis, caneta esferográfica preta e papel A4 contendo, no primeiro método onze questões e no segundo método (minicurso) dez questões conceituais (abertas ou fechadas) sobre os conceitos relacionados aos temas fornecidos pelo instrutor e finalmente, serão apresentados as análises dos resultados.
Bochard, Pierre. "Vortex, entropies et énergies de ligne en micromagnétisme." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112119/document.
Full textThis thesis is motivated by mathematical questions arising from micromagnetism. One would say that a central topic of this thesis is curl-free vector fields taking value into the sphere. Such fields naturally arise as minimizers of micromagnetic-type energies. The first part of this thesis is motivated by the following question : can we find a kinetic formulation caracterizing curl-free vector fields taking value into the sphere in dimension greater than 2 ? Such a formulation has been found in two dimension by Jabin, Otto and Perthame in \cite. De Lellis and Ignat used this formulation in \cite{DeLellis_Ignat_Regularizing_2014} to caracterize curl-free vector fields taking value into the sphere with a given regularity. The main result of this part is the generalization of their kinetic formulation in any dimension and the proof that if $d>2$, this formulation caracterizes only constant vector fields and vorteces, i. e. vector fields of the form $\pm \frac$. The second part of this thesis is devoted to a generalization of the notion of \textit, which plays a key role in the article of De Lellis and Ignat we talked about above. We give a definition of entropy in any dimension, and prove properties quite similar to those enjoyed by the classical two-dimensional entropy. The third part of this thesis, which is the result of a joint work with Antonin Monteil, is about the study of an Aviles-Giga type energy. The main point of this part is a necessary condition for such an energy to be lower semi continuous. We give in particular an example of energy of this type for which the viscosity solution of the eikonal equation is \textit a minimizer. The last part, finally is devoted to the study of a Ginzburg-Landau type energy where we replace the boundary condition of the classical Ginzburg-Landau energy introduced by Béthuel, Brezis and Helein by a penalization within the energy at the critical scaling depending on a parameter. The core result of this part is the description of the asymptotic of the minimal energy, which, depending on the parameter, favorizes vortices-like configuration like in the classical Ginzburg-Landau case, or configurations singular along a line
Rodiac, Rémy. "Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1108/document.
Full textThis thesis is devoted to the mathematical analysis of some variational problems. These problem sare motivated by the Ginzburg-Landau model related to the super conductivity. In the first part we study existence of solutions of the Ginzburg-Landau equations without magnetic eld but with semi-sti boundary conditions. These conditions are obtained by prescribing the modulus of the function on the boundary of the domain along with its topological degree. This is a particular case of free boundary problems, where the function on the boundary is an unknown of the problem. Existence of solutions of that problem does not necessary hold. Indeed we can not apply the direct method of the calculus of variations since the degree on the boundaryis not continuous with respect to the weak convergence in an appropriated Sobolev space. This is problem with loss of compactness. By studying the bublling" phenomenon which come upin such problems we obtain some existence and non existence results .In Chapter 1 we study conditions under which the dierence between two energy levels is strictly optimal. In order to do that we adapt a technique due to Brezis-Coron. This allow us to recover known existence results (previously obtained by Berlyand and Rybalko and DosSantos) for stable solutions of the Ginzburg-Landau equations in multiply connected domains. In Chapter 2 we are interested in harmonic maps with values in $R^2$ with prescribed degree boundary condition in an annulus. We make a link between this problem and the minimal surface theory in $R^3$ thanks to the so-called Hopf quadratic differential. This leads us to study immersed minimal surfaces bounded by two circles in parallel planes. We prove the existence of such surfaces die rent from catenoids by using a bifurcation argument. We then apply the results obtained to deduce existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees. This is done in Chapter 3 where the results are obtained for large ".Chapter 4 is devoted to prescribed degree problems in dimension n3 . We prove the non existence of minimizers of the Ginzburg-Landau energy in simply connected domains. We then study min-max critical points of a perturbed energy. The second part is devoted to the asymptotic analysis of solutions of the Ginzburg-Landau equations when "goes to zero. Sandier and Serfaty studied the asymptotic behavior of the vorticity measures associated to these equations. They derived critical conditions on the limiting measures both with and without magnetic Field. We are interested by these conditions when there is no magnetic Field. The problem of the local regularity of the limiting measures is then equivalent to the study of regularity of stationary harmonic functions whose Laplacianis a measure. We show that locally such measures are concentrated on a union of lines which belong to the zero set of an harmonic function
Román, Carlos. "Analysis of singularities in elliptic equations : the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and conformal geometry." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066343/document.
Full textThis thesis is devoted to the analysis of singularities in nonlinear elliptic partial differential equations arising in mathematical physics, mathematical biology, and conformal geometry. The topics treated are the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and the prescribed scalar curvature problem. The Ginzburg-Landau model is a phenomenological description of superconductivity. An essential feature of type-II superconductors is the presence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. We are interested in the regime of small epsilon, where epsilon is the inverse of the Ginzburg-Landau parameter (a material constant). In this regime, the vortices are at main order co-dimension 2 topological singularities. We provide a quantitative three-dimensional vortex approximation construction for the Ginzburg-Landau energy, which gives an approximation of vortex lines coupled to a lower bound for the energy, which is optimal to leading order and valid at the epsilon-level. By using these tools we then analyze the behavior of global minimizers below and near the first critical field. We show that below this critical value, minimizers of the Ginzburg-Landau energy are vortex-free configurations and that near this value, minimizers have bounded vorticity. The Lin-Ni-Takagi problem arises as the shadow of the Gierer-Meinhardt system of reaction-diffusion equations that models biological pattern formation. This problem is that of finding positive solutions of a critical equation in a bounded smooth three-dimensional domain, under zero Neumann boundary conditions. In this thesis, we construct solutions to this problem exhibiting single bubbling behavior at one point of the domain, as a certain parameter converges to a critical value. Chemotaxis is the influence of chemical substances in an environment on the movement of organisms. The Keller-Segel model for chemotaxis is an advection-diffusion system consisting of two coupled parabolic equations. Here, we are interested in radial steady states of this system. We are then led to study a critical equation in the two-dimensional unit ball, under zero Neumann boundary conditions. In this thesis, we construct several families of radial solutions which blow up at the origin of the ball and concentrate on the boundary and/or an interior sphere, as a certain parameter converges to zero. Finally, we study the prescribed scalar curvature problem. Given an n-dimensional compact Riemannian manifold, we are interested in finding bubbling metrics whose scalar curvature is a prescribed function, depending on a small parameter. We assume that this function has a critical point which satisfies a suitable flatness assumption. We construct several metrics, which blow-up as the parameter goes to zero, with prescribed scalar curvature
Martelli, Pierre-William. "Modélisation et simulations numériques de la formation de domaines ferroélectriques dans des nanostructures 3D." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0119/document.
Full textIn this thesis, we study the formation of ferroelectric domains in nanostructures by modeling based on the Ginzburg-Landau and Electrostatics equations, together with boundary conditions that are suitable for real applications. In the first part of the thesis, the nanostructures are made up of a ferroelectric layer, fully enclosed in a paraelectric environment. We introduce a model based on the coupled system of equations and then develop, for its investigation, a numerical scheme using Finite Elements. Numerical simulations show the efficiency of this scheme, which allows us to establish, for instance, the existence of hysteresis cycles under the influence of physical or geometric parameters. In the second part, the nanostructures are made up of a partially enclosed ferroelectric layer that lies between two paraelectric layers. Two models are introduced from a variant of the coupling performed in the first part, and differ in the prescription of the boundary conditions. Neumann type conditions are prescribed in the first model, for which a numerical scheme also based on Finite Element approximations is developed. In the second model, periodic conditions are taken into account; a numerical scheme based on a combination of Finite Difference and Finite Element methods is presented. Numerical simulations from these schemes allow us, for instance, to investigate the so-called effective permittivities, of the nanostructures, or the formation of ferroelectric domain walls
Metikas, Georgios. "Aspects of thermal field theory with applications to superconductivity." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312156.
Full textDuerinckx, Mitia. "Topics in the mathematics of disordered media." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/262390.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Thorel, Alexandre. "Équation de diffusion généralisée pour un modèle de croissance et de dispersion d'une population incluant des comportements individuels à la frontière des divers habitats." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMLH07/document.
Full textThe aim of this work is the study of a transmission problem in population dynamics between two juxtaposed habitats. In each habitat, we consider a partial differential equation, modeling the generalized dispersion, made up of a linear combination of Laplacian and Bilaplacian operators. We begin by studying and solving the same equation with various boundary conditions in a single habitat. This study is carried out using an operational formulation of the problem: we rewrite this PDE as a differential equation, set in a Banach space built on the spaces Lp with 1 < p < +∞, where the coefficients are unbounded linear operators. Thanks to functional calculus, analytic semigroup theory and interpolation theory, we obtain optimal results of existence, uniqueness and maximum regularity of the classical solution if and only if the data are in some interpolation spaces
Salhi, Mohamed. "Etude des lasers à fibre en régime verrouillé en phase par rotation non-linéaire de la polarisation." Angers, 2004. http://www.theses.fr/2004ANGE0018.
Full textRare-earth doped fibers are very good candidates to develop short-pulses lasers. Indeed, they exhibit very large optical spectra and, in addition, various methods to achieve passively mode-locking can be used. In this work, we have theoretically investigated a fiber laser passively mode-locked through nonlinear polarization rotation. The laser contains a polarizer placed between two polarization controllers in a unidirectional ring cavity. The model reduces to a complex Ginzburg-Landau equation and allows obtaining analytic solutions in the continuous or mode-lock regimes. Unstable regime is also obtained. The orientation of the polarization controllers allows switching from one regime to the other. The model is in very good agreement with the experimental results obtained in the case of the ytterbium-doped double-clad fiber laser. Both the cases of the erbium-doped and the stretched-pulse lasers have been investigated
Yu, Haofeng. "A Numerical Investigation Of The Canonical Duality Method For Non-Convex Variational Problems." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29095.
Full textPh. D.
Odasso, Cyril. "Méthodes de couplage pour des équations stochastiques de type Navier-Stokes et Schrödinger." Phd thesis, Université Rennes 1, 2005. http://tel.archives-ouvertes.fr/tel-00011214.
Full textDans un deuxième temps, nous considérerons les équations de Navier-Stokes stochastiques tridimensionnelles (NS3D). Nous établirons la régularité Hp et Gevrey des solutions stationnaires de NS3D et nous en déduirons des informations sur l'échelle de dissipation de Kolmogorov (K41). Puis, nous établirons le caractère exponentiellement mélangeant des solutions de NS3D lorsque le bruit est à la fois suffisament régulier et non-dégénéré.