Academic literature on the topic 'Ginzburg-Landau equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ginzburg-Landau equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ginzburg-Landau equation"
CHIRON, DAVID. "BOUNDARY PROBLEMS FOR THE GINZBURG–LANDAU EQUATION." Communications in Contemporary Mathematics 07, no. 05 (October 2005): 597–648. http://dx.doi.org/10.1142/s0219199705001908.
Full textAdomian, G., and R. E. Meyers. "The Ginzburg-Landau equation." Computers & Mathematics with Applications 29, no. 3 (February 1995): 3–4. http://dx.doi.org/10.1016/0898-1221(94)00222-7.
Full textGao, Hongjun, and Keng-Huat Kwek. "Global existence for the generalised 2D Ginzburg-Landau equation." ANZIAM Journal 44, no. 3 (January 2003): 381–92. http://dx.doi.org/10.1017/s1446181100008099.
Full textLi, Xiao-Yu, Yu-Lan Wang, and Zhi-Yuan Li. "Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method." AIMS Mathematics 8, no. 1 (2022): 2407–18. http://dx.doi.org/10.3934/math.2023124.
Full textIpsen, M., F. Hynne, and P. G. Sørensen. "Amplitude Equations and Chemical Reaction–Diffusion Systems." International Journal of Bifurcation and Chaos 07, no. 07 (July 1997): 1539–54. http://dx.doi.org/10.1142/s0218127497001217.
Full textBarybin, Anatoly A. "Nonstationary Superconductivity: Quantum Dissipation and Time-Dependent Ginzburg-Landau Equation." Advances in Condensed Matter Physics 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/425328.
Full textHuang, Chunyan. "On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation." Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/607028.
Full textSecer, Aydin, and Yasemin Bakir. "Chebyshev wavelet collocation method for Ginzburg-Landau equation." Thermal Science 23, Suppl. 1 (2019): 57–65. http://dx.doi.org/10.2298/tsci180920330s.
Full textBeaulieu, Anne. "Bounded solutions for an ordinary differential system from the Ginzburg–Landau theory." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 6 (August 14, 2020): 3378–408. http://dx.doi.org/10.1017/prm.2019.68.
Full textPascucci, Filippo, Andrea Perali, and Luca Salasnich. "Reliability of the Ginzburg–Landau Theory in the BCS-BEC Crossover by Including Gaussian Fluctuations for 3D Attractive Fermions." Condensed Matter 6, no. 4 (December 1, 2021): 49. http://dx.doi.org/10.3390/condmat6040049.
Full textDissertations / Theses on the topic "Ginzburg-Landau equation"
Liu, Weigang. "A General Study of the Complex Ginzburg-Landau Equation." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90886.
Full textDoctor of Philosophy
The complex Ginzburg-Landau equation is one of the most studied nonlinear partial differential equation in the physics community. I study this equation using both analytical and numerical methods. First, I employed the field theory approach to extract the critical initial-slip exponent, which emerges due to the breaking of time translation symmetry and describes the intermediate temporal window between microscopic time scales and the asymptotic long-time regime. I also numerically solved this equation on a two-dimensional square lattice. I studied the scaling behavior in non-equilibrium relaxation processes in situations where defects are interactive but not subject to strong fluctuations. I observed nucleation processes when the system under goes a transition from a strongly fluctuating disordered state to the relatively stable “frozen” state where its dynamics cease. I extracted a finite dimensionless barrier for systems that are quenched deep into the frozen state regime. An exponentially decaying long tail in the nucleation time distribution is found, which suggests a discontinuous transition. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-SC0002308.
Braun, Robert, and Fred Feudel. "Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation." Universität Potsdam, 1996. http://opus.kobv.de/ubp/volltexte/2007/1409/.
Full textCruz-Pacheco, Gustavo. "The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187238.
Full textHorsch, Karla 1968. "Attractors for Lyapunov cases of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282419.
Full textAguareles, Carrero Maria. "Interaction of spiral waves in the general complex Ginzburg-Landau equation." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5854.
Full textEn aquesta tesi s'analitza l'equació de Ginzburg-Landau complexa general, que és una equació en derivades parcials de reacció-difusió que s'utilitza sovint com a model matemàtic per a descriure sistemes oscil·latoris en dominis extensos. En particular estudiem els patrons que sorgeixen en el pla quan s'imposa que el grau de Brouwer de la solució no sigui nul. Aquests patrons estan formats per ones de rotació en forma d'espirals, és a dir, les corbes de nivell de la solució formen espirals que emanen dels punts on la funció s'anul·la. Quan la solució s'anul·la només en un punt i per tant només hi ha una espiral, tota la dependència temporal apareix en el terme de freqüència. Així doncs, la funció solució es pot expressar com a funció del radi polar i en termes del seu grau topològic i la freqüència de l'ona. Per tant, aquestes solucions es poden expressar en termes d'un sistema d'equacions diferencials ordinàries. Aquestes solucions només existeixen per una certa freqüència que depèn unívocament dels paràmetres de l'equació i, com a conseqüència i degut a la relació de dispersió entre el nombre d'ones i la freqüència, el nombre d'ones a l'infinit, l'anomenat nombre d'ones asimptòtic, ve també determinat unívocament pels paràmetres. Quan les solucions tenen més d'un zero aïllat la condició sobre el grau de la funció fa que de cada zero sorgeixi una espiral diferent i aquestes es mouen en el pla mantenint la seva estructura local. En aquest treball s'usen tècniques d'anàlisi asimptòtica per trobar equacions del moviment per als centres de les espirals i es troba que aquesta evolució temporal és lenta. En concret, per la distàncies relatives grans entre els centres de les espirals, l'escala de temps per a la seva dinàmica ve donada pel logaritme de l'invers d'aquesta distància. Es demostra que aquestes equacions del moviment són diferents en funció de la relació entre els paràmetres de l'equació de Ginzburg-Landau complexa i la separació entre els centres de les espirals, i que la forma com es passa d'unes equacions a les altres és molt singular. També es demostra que el nombre d'ones asimptòtic per al cas de sistemes amb diverses espirals també està unívocament determinat pels paràmetres però no obstant, el cas de sistemes amb diverses espirals es diferencia del cas d'una única ona en què deixa de ser constant i evoluciona al mateix ritme que la velocitat dels centres de les espirals.
Many physical systems have the property that its dynamics is driven by some kind of spatical diffusion that is in competition with a reaction, like for instance two chemical species that react at the same time that there is a diffusion of each of them into the other. This interplay between reaction and diffusion produce non-homogeneous patterns that can sometimes be very rich. The mathematical models that describe this kind of behaviours are usually nonlinear partial differential equations whose solutions represent these patterns.
In this thesis we focus on an especific reaction-diffusion equation that is the so-called general complex Ginzburg-Landau equation that is used as a model for oscillatory systems in extended domains. In particular we are interested in the type of patterns in the plane that arise when the solutions have a non-vanishing Brouwer degree. These patterns have the property that they exhibit rotating waves in the shape of spirals, which means that the contour lines arrange in the shape of spirals that emerge from the points where the solution vanishes. When the solution vanishes only at one point all the time dependence appears as a frequency term so the solutions can be expressed as a function of the polar radius and in terms of the topological degree of the solution and the frequency of the wave. Therefore, these solutions can be expressed in terms of a system of ordinary differential equations. These solutions do only exist with a given frequency, and as a consequence and due to the existence of a dispresion relation, the wavenumber far from the origin, the so-called asymptotic wavenumber, is also unique. When the solutions have more than one isolated zero, the condition on the degree of the function has the effect of producing several spirals that emerge from the different zeros of the solution. These spirals evolve in time keeping their structure but moving around on the plane. In this work we use asymptotic analysis techniques to derive laws of motion for the centres of the spirals and we show that the time evolution of these patterns is slow and, for large relative separations of the centres of the spirals, the time scale for the their dynamics is logarithmic in the inverse of this distance. These laws of motion are different depending on the relation between the parameters of the complex Ginzburg-Landau equation and the relative separation of the spirals. We show that the way these laws change as the spirals separate or approach is highly singular. We also show that the asymptotic wavenumber in the case of multiple spirals is as well unique and that it evolves in time at the same rate as the velocity of the centres.
Banaji, Murad. "Clustering and chaos in globally coupled oscillators." Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249289.
Full textSNOUSSI, SEIFEDDINE. "Etude du comportement asymptotique des solutions d'une equation de ginzburg-landau generalisee." Paris 11, 1996. http://www.theses.fr/1996PA112060.
Full textSauvageot, Myrto. "Modèle de Ginzburg-Landau : solutions radiales et branches de bifurcation." Paris 6, 2002. http://www.theses.fr/2002PA066548.
Full textAttanasio, Felipe [UNESP]. "Numerical study of the Ginzburg-Landau-Langevin equation: coherent structures and noise perturbation theory." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92029.
Full textNesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo kink - onde apresentamos novos resultados sobre defeitos de dois kinks
In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological kink solution - where we present new results on two-kink defects
Attanasio, Felipe. "Numerical study of the Ginzburg-Landau-Langevin equation : coherent structures and noise perturbation theory /." São Paulo, 2013. http://hdl.handle.net/11449/92029.
Full textBanca: Raquel Santos Marques de Carvalho
Banca: Ricardo D'Elia Matheus
Resumo: Nesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo "kink" - onde apresentamos novos resultados sobre defeitos de dois kinks
Abstract: In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological "kink" solution - where we present new results on two-kink defects
Mestre
Books on the topic "Ginzburg-Landau equation"
Bethuel, Fabrice. Ginzburg-Landau vortices. Boston: Birkhäuser, 1994.
Find full textHerbert, Geoffrey M. Stability analysis of the Fisher and Landau-Ginzburg equations. [s.l.]: typescript, 1995.
Find full textHélein, Frédéric, Fabrice Bethuel, and Haïm Brezis. Ginzburg-Landau Vortices. Birkhäuser, 2017.
Find full textHelein, Frederic, Haim Brezis, and Fabrice Bethuel. Ginzburg-Landau Vortices. Birkhauser Verlag, 2012.
Find full textHoring, Norman J. Morgenstern. Superfluidity and Superconductivity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0013.
Full textTang, Q., and K. H. Hoffmann. Ginzburg-Landau Phase Transition Theory and Superconductivity. Birkhäuser Boston, 2012.
Find full text(Editor), Haim Brezis, and Daqian Li (Editor), eds. Ginzburg-landau Vortices (Series in Contemporary Applied Mathematics). World Scientific Publishing Company, 2005.
Find full textAnalysis of Ginzburg-Landau Vortices (Progress in Nonlinear Differential Equations & Their Applications). Birkhauser Verlag AG, 2000.
Find full textGinzburg-Landau Phase Transition Theory and Superconductivity (International Series of Numerical Mathematics). Birkhauser, 2001.
Find full textZeitlin, Vladimir. Resonant Wave Interactions and Resonant Excitation of Wave-guide Modes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0012.
Full textBook chapters on the topic "Ginzburg-Landau equation"
Bethuel, Fabrice, Haïm Brezis, and Frédéric Hélein. "Non-minimizing solutions of the Ginzburg-Landau equation." In Ginzburg-Landau Vortices, 107–36. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0287-5_10.
Full textTarasov, Vasily E. "Fractional Ginzburg-Landau Equation." In Nonlinear Physical Science, 215–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14003-7_9.
Full textSirovich, L., and P. K. Newton. "Ginzburg-Landau Equation: Stability and Bifurcations." In Stability of Time Dependent and Spatially Varying Flows, 276–93. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4724-1_15.
Full textTarasov, Vasily E. "Ginzburg-Landau Equation for Fractal Media." In Nonlinear Physical Science, 115–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14003-7_5.
Full textOvchinnikov, Yuri, and Israel Sigal. "Ginzburg-Landau equation I. Static vortices." In CRM Proceedings and Lecture Notes, 199–220. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/crmp/012/16.
Full textPacard, Frank, and Tristan Rivière. "The Ginzburg-Landau Equation in ℂ." In Linear and Nonlinear Aspects of Vortices, 51–71. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1386-4_3.
Full textGrundland, A. M., J. A. Tuszyński, and P. Winternitz. "Elliptic Function Solutions for Landau-Ginzburg Equation." In Partially Intergrable Evolution Equations in Physics, 583–84. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0591-7_28.
Full textAkhmediev, Nail, and Adrian Ankiewicz. "Solitons of the Complex Ginzburg—Landau Equation." In Springer Series in Optical Sciences, 311–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44582-1_12.
Full textIzadi, Mojtaba, Charles R. Koch, and Stevan S. Dubljevic. "Model Predictive Control of Ginzburg-Landau Equation." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 75–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98177-2_5.
Full textSalerno, Mario, and Fatkhulla Kh Abdullaev. "Discrete Solitons of the Ginzburg-Landau Equation." In Dissipative Optical Solitons, 303–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97493-0_14.
Full textConference papers on the topic "Ginzburg-Landau equation"
Zaslavsky, George M., and Vasily E. Tarasov. "Fractional Generalization of Ginzburg-Landau and Nonlinear Schroedinger Equations." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84266.
Full textBrand, Helmut R., Orazio Descalzi, and Jaime Cisternas. "Hole Solutions in the Cubic Complex Ginzburg-Landau Equation versus Holes in the Cubic-Quintic Complex Ginzburg-Landau Equation." In NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS: XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics. AIP, 2007. http://dx.doi.org/10.1063/1.2746737.
Full textFURSIKOV, A. V. "ANALYTICITY OF STABLE INVARIANT MANIFOLDS FOR GINZBURG-LANDAU EQUATION." In Applied Analysis and Differential Equations - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708229_0009.
Full textSaitoh, Kuniyasu, and Hisao Hayakawa. "Time dependent Ginzburg-Landau equation for sheared granular flow." In 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769651.
Full textGuo, Shan, Chao Xu, and Xuemin Tu. "Parameter estimation for Ginzburg-Landau equation via implicit sampling." In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7526490.
Full textLi, Jing, and Zhixiong Zhang. "Complex Ginzburg-Landau equation with boundary control and observation." In 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2016. http://dx.doi.org/10.1109/ccsse.2016.7784365.
Full textXiang, Chunhuan, and Honglei Wang. "An approximate method for solving complex Ginzburg-Landau equation." In 2018 8th International Conference on Manufacturing Science and Engineering (ICMSE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmse-18.2018.111.
Full textBazhenov, M., M. Rabinovich, and L. Rubchinsky. "Time periodic spatial disorder in a complex Ginzburg–Landau equation." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51051.
Full textBARASHENKOV, I. V., and S. D. CROSS. "LOCALISED SOLUTIONS OF THE PARAMETRICALLY DRIVEN COMPLEX GINZBURG-LANDAU EQUATION." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810175_0043.
Full textGARZÓN, R., and V. VALENTE. "NUMERICAL EXPERIMENTS ON THE CONTROLLABILITY OF THE GINZBURG-LANDAU EQUATION." In Proceedings of the European Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706874_0009.
Full textReports on the topic "Ginzburg-Landau equation"
Takac, P. Dynamics on the attractor for the complex Ginzburg-Landau equation. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10174640.
Full textVernov, Sergey Yu. Construction of Elliptic Solutions to the Quintic Complex One-dimensional Ginzburg–Landau Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-322-333.
Full textFleckinger-Pelle, J., H. G. Kaper, and P. Takac. Dynamics of the Ginzburg-Landau equations of superconductivity. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/516027.
Full textCoskun, E., and M. K. Kwong. Parallel solution of the time-dependent Ginzburg-Landau equations and other experiences using BlockComm-Chameleon and PCN on the IBM SP, Intel iPSC/860, and clusters of workstations. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/266722.
Full text