Journal articles on the topic 'Gigahertz repetition rate laser source'

To see the other types of publications on this topic, follow the link: Gigahertz repetition rate laser source.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gigahertz repetition rate laser source.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shang, Jingcheng, Shengzhi Zhao, Yizhou Liu, Kejian Yang, Chun Wang, Yuefeng Zhao, Yuzhi Song, et al. "Gigahertz-repetition rate, high power, ultrafast Tm-doped fiber laser source." Optics & Laser Technology 153 (September 2022): 108206. http://dx.doi.org/10.1016/j.optlastec.2022.108206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shang, Jingcheng, Shengzhi Zhao, Yizhou Liu, Kejian Yang, Chun Wang, Yuefeng Zhao, Yuzhi Song, et al. "Gigahertz-repetition rate, high power, ultrafast Tm-doped fiber laser source." Optics & Laser Technology 153 (September 2022): 108206. http://dx.doi.org/10.1016/j.optlastec.2022.108206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xiang, Chao, Junqiu Liu, Joel Guo, Lin Chang, Rui Ning Wang, Wenle Weng, Jonathan Peters, et al. "Laser soliton microcombs heterogeneously integrated on silicon." Science 373, no. 6550 (July 1, 2021): 99–103. http://dx.doi.org/10.1126/science.abh2076.

Full text
Abstract:
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
APA, Harvard, Vancouver, ISO, and other styles
4

Stormont, B., I. G. Cormack, M. Mazilu, C. T. A. Brown, D. Burns, and W. Sibbett. "Low-threshold, multi-gigahertz repetition-rate femtosecond Ti:sapphire laser." Electronics Letters 39, no. 25 (2003): 1820. http://dx.doi.org/10.1049/el:20031187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weingarten, K. J., U. Keller, D. C. Shannon, and R. W. Wallace. "Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser." Optics Letters 15, no. 17 (September 1, 1990): 962. http://dx.doi.org/10.1364/ol.15.000962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kemp, A. J., B. Stormont, B. Agate, C. T. A. Brown, U. Keller, and W. Sibbett. "Gigahertz repetition-rate from directly diode-pumped femtosecond Cr:LiSAF laser." Electronics Letters 37, no. 24 (2001): 1457. http://dx.doi.org/10.1049/el:20011008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, C. X., H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin. "Gigahertz-repetition-rate mode-locked fiber laser for continuum generation." Optics Letters 25, no. 19 (October 1, 2000): 1418. http://dx.doi.org/10.1364/ol.25.001418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Jiazheng, Yuanshan Liu, and Jianguo Zhang. "L-band mode-locked femtosecond fiber laser with gigahertz repetition rate." Applied Optics 58, no. 27 (September 18, 2019): 7577. http://dx.doi.org/10.1364/ao.58.007577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, Huihui, Wei Lin, Zhengqian Luo, and Zhongmin Yang. "Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 3 (May 2018): 1–6. http://dx.doi.org/10.1109/jstqe.2017.2657489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schellhorn, Martin, Marc Eichhorn, Christelle Kieleck, and Antoine Hirth. "High repetition rate mid-infrared laser source." Comptes Rendus Physique 8, no. 10 (December 2007): 1151–61. http://dx.doi.org/10.1016/j.crhy.2007.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lecaplain, Caroline, and Philippe Grelu. "Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser." Optics Express 21, no. 9 (April 26, 2013): 10897. http://dx.doi.org/10.1364/oe.21.010897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Yuxia, Haohai Yu, Huaijin Zhang, Alberto Di Lieto, Mauro Tonelli, and Jiyang Wang. "Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate." Optics Letters 41, no. 12 (June 2, 2016): 2692. http://dx.doi.org/10.1364/ol.41.002692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Marchetti, S., and R. Simili. "A gigahertz tunable, high power, high repetition rate rf CO2 laser operating without He." Optics & Laser Technology 23, no. 6 (December 1991): 335–37. http://dx.doi.org/10.1016/0030-3992(91)90069-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Meiser, Niels, Kai Seger, Valdas Pasiskevicius, Hoon Jang, Edik Rafailov, and Igor Krestnikov. "Gigahertz repetition rate mode-locked Yb:KYW laser using self-assembled quantum dot saturable absorber." Applied Physics B 110, no. 3 (March 2013): 327–33. http://dx.doi.org/10.1007/s00340-013-5375-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aubourg, Adrien, Jérôme Lhermite, Steve Hocquet, Eric Cormier, and Giorgio Santarelli. "Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate." Optics Letters 40, no. 23 (November 25, 2015): 5610. http://dx.doi.org/10.1364/ol.40.005610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ringling, J., U. Stamm, J. Kleinschmidt, O. Kittelmann, F. Noack, and F. Voss. "High-repetition-rate high-power femtosecond ArF laser source." Optics Letters 19, no. 20 (October 15, 1994): 1639. http://dx.doi.org/10.1364/ol.19.001639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kutzner, Jörg, Henrik Witte, Martin Silies, Thorben Haarlammert, Jana Hüve, Grigorios Tsilimis, Ingo Uschmann, Eckhart Förster, and Helmut Zacharias. "Laser-based, high repetition rate, ultrafast X-ray source." Surface and Interface Analysis 38, no. 6 (June 2006): 1083–89. http://dx.doi.org/10.1002/sia.2340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mortensen, Luke J., Clemens Alt, Raphaël Turcotte, Marissa Masek, Tzu-Ming Liu, Daniel C. Côté, Chris Xu, Giuseppe Intini, and Charles P. Lin. "Femtosecond laser bone ablation with a high repetition rate fiber laser source." Biomedical Optics Express 6, no. 1 (December 5, 2014): 32. http://dx.doi.org/10.1364/boe.6.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhao Ming, 赵明, 郝强 Hao Qiang, 郭政儒 Guo Zhengru, and 曾和平 Zeng Heping. "Compact Fiber-Solid Picosecond Laser Source with Kilohertz Repetition Rate." Chinese Journal of Lasers 45, no. 4 (2018): 0401010. http://dx.doi.org/10.3788/cjl201845.0401010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Egbert, A., B. Mader, B. Tkachenko, C. Fallnich, B. N. Chichkov, H. Stiel, and P. V. Nickles. "High-repetition rate femtosecond laser-driven hard-x-ray source." Applied Physics Letters 81, no. 13 (September 23, 2002): 2328–30. http://dx.doi.org/10.1063/1.1509858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kutzner, J., M. Silies, T. Witting, G. Tsilimis, and H. Zacharias. "Efficient high-repetition-rate fs-laser based X-ray source." Applied Physics B: Lasers and Optics 78, no. 7-8 (May 1, 2004): 949–55. http://dx.doi.org/10.1007/s00340-004-1435-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tang, Ding Kang, Jian Guo Zhang, and Yuan Shan Liu. "All-Fiber 40GHz Femtosecond Pulse Train Source." Advanced Materials Research 529 (June 2012): 169–72. http://dx.doi.org/10.4028/www.scientific.net/amr.529.169.

Full text
Abstract:
We experimentally demonstrate an all-fiber method to generate a high-quality femtosecond pulse train with a repetition rate of 40GHz. A continuous wavelength laser together with an intensity modulator is used to generate an initial pulse train with a repetition rate of 40GHz. Highly nonlinear fiber (HNLF) together with single mode fiber is utilized to compress the initial pulse from 7.8ps to 985fs. The autocorrelation trace has a good sech 2 profile with no pedestal. This pulse source has a potential to be multiplexed to a higher repetition rate for its narrow pulse width. This method is high-quality, cost-effective and can be easily integrated with the fiber system.
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Weiqiang, Wenfu Zhang, Sai T. Chu, Brent E. Little, Qinghua Yang, Leiran Wang, Xiaohong Hu, et al. "Repetition Rate Multiplication Pulsed Laser Source Based on a Microring Resonator." ACS Photonics 4, no. 7 (June 27, 2017): 1677–83. http://dx.doi.org/10.1021/acsphotonics.7b00129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bielesch, U., M. Budde, B. Freisinger, J. H. Schäfer, J. Uhlenbusch, and W. Viöl. "High repetition rate laser-induced plasma as a VUV radiation source." Journal of Physics D: Applied Physics 31, no. 18 (September 21, 1998): 2286–94. http://dx.doi.org/10.1088/0022-3727/31/18/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bijkerk, F., E. Louis, E. C. I. Turcu, and G. J. Tallents. "High repetition rate KrF laser plasma x-ray source for microlithography." Microelectronic Engineering 17, no. 1-4 (March 1992): 219–22. http://dx.doi.org/10.1016/0167-9317(92)90045-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pang, M., W. He, and P. St.J. Russell. "Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber." Optics Letters 41, no. 19 (September 29, 2016): 4601. http://dx.doi.org/10.1364/ol.41.004601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yang, Heewon, Hyoji Kim, Junho Shin, Chur Kim, Sun Young Choi, Guang-Hoon Kim, Fabian Rotermund, and Jungwon Kim. "Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser." Optics Letters 39, no. 1 (December 19, 2013): 56. http://dx.doi.org/10.1364/ol.39.000056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Renard, William, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli, and Romain Royon. "Agile femtosecond synchronizable laser source from a gated CW laser." Laser Physics Letters 19, no. 7 (May 31, 2022): 075105. http://dx.doi.org/10.1088/1612-202x/ac7133.

Full text
Abstract:
Abstract In this letter we demonstrate agile femtosecond pulse generation with a widely tunable repetition rate (10–100 MHz) from a continuous wave laser diode optically gated by a Mach–Zehnder electro-optic intensity modulator. Initial sub-50 ps pulses are strongly spectral broadened (>5 nm) by self-phase modulation in a polarization maintaining single-mode fiber. A tunable optical pulse train with pulse durations of a few hundred femtoseconds is obtained using a simple fixed grating compressor, thanks to spectral broadening saturation phenomena. The source is easily synchronized with low timing jitter using an external clock signal.
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Dong Juan, Guang Hua Cheng, Zhi Yang, and Yi Shan Wang. "Ultrafast Laser Machine Based on All-Fiber Femtosecond Laser System." Advanced Materials Research 652-654 (January 2013): 2374–77. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.2374.

Full text
Abstract:
A femtosecond laser machine consisting of femtosecond fiber laser, trepanning head, linear motor stages system and Siemens 840D system has been integrated for industry application. The femtosecond laser source is all fiber system which contains a fiber mode-lock laser at 1053 nm with a repetition rate of 3.9 MHz, a double-cladding gain fiber amplifiers and a PCF amplifier. An acoustical modulator has employed to tune repetition rate from 3.9 MHz to 100 KHz. An in-line fiber chirped grating is used to stretch the pulse duration to 700 ps. After the PCF amplifier pulse is compressed to sub-ps with 50% efficiency based two grating compressor. The system outputs an average power of 15 W at 100 KHz and 800 fs. Using four wedges trepanning head, cylinder hole is drilled in 1mm thickness SiC ceramics in 30 s.
APA, Harvard, Vancouver, ISO, and other styles
30

Hah, J., J. A. Nees, M. D. Hammig, K. Krushelnick, and A. G. R. Thomas. "Characterization of a high repetition-rate laser-driven short-pulsed neutron source." Plasma Physics and Controlled Fusion 60, no. 5 (March 22, 2018): 054011. http://dx.doi.org/10.1088/1361-6587/aab327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Niu, L. Q., C. X. Gao, H. D. He, L. Feng, Z. Y. Cao, C. D. Sun, and S. L. Zhu. "A sub-nanosecond narrow-linewidth pulsed laser source with controllable repetition rate." Laser Physics 23, no. 7 (May 16, 2013): 075101. http://dx.doi.org/10.1088/1054-660x/23/7/075101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Agate, Ben, A. Kemp, C. Brown, and W. Sibbett. "Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser." Optics Express 10, no. 16 (August 12, 2002): 824. http://dx.doi.org/10.1364/oe.10.000824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mishchik, Konstantin, Guillaume Bonamis, Jie Qiao, John Lopez, Eric Audouard, Eric Mottay, Clemens Hönninger, and Inka Manek-Hönninger. "High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source." Optics Letters 44, no. 9 (April 19, 2019): 2193. http://dx.doi.org/10.1364/ol.44.002193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tatum, J. A., J. W. Jennings, and D. L. MacFarlane. "Compact, inexpensive, visible diode laser source of high repetition rate picosecond pulses." Review of Scientific Instruments 63, no. 5 (May 1992): 2950–53. http://dx.doi.org/10.1063/1.1142592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Guo, Xuhan, Vojtech Olle, Adrian Quarterman, Adrian Wonfor, Richard Penty, and Ian White. "Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses." Optics Letters 39, no. 14 (July 9, 2014): 4144. http://dx.doi.org/10.1364/ol.39.004144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Turcu, ICE, CM Reeves, JTM Stevenson, AWS Ross, AM Gundlach, P. Prewett, P. Anastasi, B. Koek, P. Mitchell, and P. Lake. "180nm X-ray lithography with a high repetition rate laser-plasma source." Microelectronic Engineering 27, no. 1-4 (February 1995): 295–98. http://dx.doi.org/10.1016/0167-9317(94)00110-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fu, Xuewen, Erdong Wang, Yubin Zhao, Ao Liu, Eric Montgomery, Vikrant J. Gokhale, Jason J. Gorman, Chunguang Jing, June W. Lau, and Yimei Zhu. "Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy." Science Advances 6, no. 40 (October 2020): eabc3456. http://dx.doi.org/10.1126/sciadv.abc3456.

Full text
Abstract:
Integrating femtosecond lasers with electron microscopies has enabled direct imaging of transient structures and morphologies of materials in real time and space. Here, we report the development of a laser-free ultrafast electron microscopy (UEM) offering the same capability but without requiring femtosecond lasers and intricate instrumental modifications. We create picosecond electron pulses for probing dynamic events by chopping a continuous beam with a radio frequency (RF)–driven pulser with the pulse repetition rate tunable from 100 MHz to 12 GHz. As a first application, we studied gigahertz electromagnetic wave propagation dynamics in an interdigitated comb structure. We reveal, on nanometer space and picosecond time scales, the transient oscillating electromagnetic field around the tines of the combs with time-resolved polarization, amplitude, and local field enhancement. This study demonstrates the feasibility of laser-free UEM in real-space visualization of dynamics for many research fields, especially the electrodynamics in devices associated with information processing technology.
APA, Harvard, Vancouver, ISO, and other styles
38

Yoshioka, K., J. Omachi, M. Sakano, T. Shimojima, K. Ishizaka, and M. Kuwata-Gonokami. "Gigahertz-repetition-rate, narrowband-deep-ultraviolet light source for minimization of acquisition time in high-resolution angle-resolved photoemission spectroscopy." Review of Scientific Instruments 90, no. 12 (December 1, 2019): 123109. http://dx.doi.org/10.1063/1.5124342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Song, Jiazheng, Xiaohong Hu, Hushan Wang, Ting Zhang, Yishan Wang, Yuanshan Liu, and Jianguo Zhang. "All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate." Laser Physics Letters 16, no. 9 (August 7, 2019): 095102. http://dx.doi.org/10.1088/1612-202x/ab3421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Huang Kai, Yan Wen-Chao, Li Ming-Hua, Tao Meng-Ze, Chen Yan-Ping, Chen Jie, Yuan Xiao-Hui, et al. "X-ray source produced by laser solid target interaction at kHz repetition rate." Acta Physica Sinica 62, no. 20 (2013): 205204. http://dx.doi.org/10.7498/aps.62.205204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen Minghui, 陈明惠, 李昊 Li Hao, and 范云平 Fan Yunping. "Development of 30 kHz Repetition Rate Swept Laser Source with Narrow Instantaneous Linewidth." Chinese Journal of Lasers 43, no. 4 (2016): 0416001. http://dx.doi.org/10.3788/cjl201643.0416001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Uchimura, T., N. Nakamura, and T. Imasaka. "An ultrashort-duration, high-repetition-rate pulse source for laser ionization/mass spectrometry." Review of Scientific Instruments 83, no. 1 (January 2012): 014101. http://dx.doi.org/10.1063/1.3675890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ivanov, K. A., D. S. Uryupina, R. V. Volkov, A. P. Shkurinov, I. A. Ozheredov, A. A. Paskhalov, N. V. Eremin, and A. B. Savel'ev. "High repetition rate laser-driven Kα X-ray source utilizing melted metal target." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 653, no. 1 (October 2011): 58–61. http://dx.doi.org/10.1016/j.nima.2011.01.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nickel, D., A. Liem, J. Limpert, H. Zellmer, U. Griebner, S. Unger, G. Korn, and A. Tünnermann. "Fiber based high repetition rate, high energy laser source applying chirped pulse amplification." Optics Communications 190, no. 1-6 (April 2001): 309–15. http://dx.doi.org/10.1016/s0030-4018(01)01086-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Srinivas, H., F. Shobeiryt, D. Bharti, A. Harth, T. Pfeifer, and R. Moshammer. "Angle-resolved time delays in photoionization with a high repetition rate laser source." Journal of Physics: Conference Series 1412 (January 2020): 072033. http://dx.doi.org/10.1088/1742-6596/1412/7/072033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhavoronkov, N., K. von Korff Schmising, M. Bargheer, M. Woerner, T. Elsaesser, O. Klimo, and J. Limpouch. "High repetition rate ultrafast X-ray source from the fs-laser-produced-plasma." Journal de Physique IV (Proceedings) 133 (June 2006): 1201–3. http://dx.doi.org/10.1051/jp4:2006133246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hu, G. Q., L. Q. Zhu, G. K. Sun, L. L. Lu, R. You, Y. Liu, W. He, and M. L. Dong. "Spectral overlapping single-cavity dual-comb fiber laser with well-controlled repetition rate difference." Applied Physics Letters 121, no. 9 (August 29, 2022): 091101. http://dx.doi.org/10.1063/5.0099097.

Full text
Abstract:
We investigate free-running dual-comb pulses with overlapping spectra and well-controlled repetition rate difference in a single birefringent fiber cavity. Multiple linear and nonlinear soliton formation mechanisms in an all-fiber laser with partial polarization maintaining fiber are experimentally observed and validated for switchable and tunable dual-comb pulse emissions. Linear polarization mode dispersion is first exploited to emit polarization-multiplexed pulses with the upper limit of repetition rate difference at kHz level. By further tailoring linear birefringence, birefringence filter effect and nonlinear polarization evolution are well leveraged to emit hybrid mode-locked pulses with the lower limit at 10-Hz level. The lower limit of ∼12 Hz and nearly two order-of-magnitude tunable range of repetition rate difference are highlighted. Moreover, overlapping spectra and the passive mutual coherence between pulses in the free-running state are clarified, indicating the potential of the simplification of amplification system and single-cavity dual-comb source.
APA, Harvard, Vancouver, ISO, and other styles
48

Rehwald, M., S. Assenbaum, C. Bernert, C. B. Curry, M. Gauthier, S. H. Glenzer, S. Göde, et al. "Towards high-repetition rate petawatt laser experiments with cryogenic jets using a mechanical chopper system." Journal of Physics: Conference Series 2420, no. 1 (January 1, 2023): 012034. http://dx.doi.org/10.1088/1742-6596/2420/1/012034.

Full text
Abstract:
Abstract Laser-plasma based ion accelerators require suitable high-repetition rate target systems that enable systematic studies at controlled plasma conditions and application-relevant particle flux. Self-refreshing, micrometer-sized cryogenic jets have proven to be an ideal target platform. Yet, operation of such systems in the harsh environmental conditions of high power laser induced plasma experiments have turned out to be challenging. Here we report on recent experiments deploying a cryogenic hydrogen jet as a source of pure proton beams generated with the PW-class ultrashort pulse laser DRACO. Damage to the jet target system during application of full energy laser shots was prevented by implementation of a mechanical chopper system interrupting the direct line of sight between the laser plasma interaction zone and the jet source.
APA, Harvard, Vancouver, ISO, and other styles
49

Ye, Peng, Lénárd Gulyás Oldal, Tamás Csizmadia, Zoltán Filus, Tímea Grósz, Péter Jójárt, Imre Seres, et al. "High-Flux 100 kHz Attosecond Pulse Source Driven by a High-Average Power Annular Laser Beam." Ultrafast Science 2022 (March 1, 2022): 1–10. http://dx.doi.org/10.34133/2022/9823783.

Full text
Abstract:
High-repetition rate attosecond pulse sources are indispensable tools for time-resolved studies of electron dynamics, such as coincidence spectroscopy and experiments with high demands on statistics or signal-to-noise ratio, especially in the case of solid and big molecule samples in chemistry and biology. Although with the high-repetition rate lasers, such attosecond pulses in a pump-probe configuration are possible to achieve, until now, only a few such light sources have been demonstrated. Here, by shaping the driving laser to an annular beam, a 100 kHz attosecond pulse train (APT) is reported with the highest energy so far (51 pJ/shot) on target (269 pJ at generation) among the high-repetition rate systems (>10 kHz) in which the attosecond pulses were temporally characterized. The on-target pulse energy is maximized by reducing the losses from the reflections and filtering of the high harmonics, and an unprecedented 19% transmission rate from the generation point to the target position is achieved. At the same time, the probe beam is also annular and low loss of this beam is reached by using another holey mirror to combine with the APT. The advantages of using an annular beam to generate attosecond pulses with a high-average power laser are demonstrated experimentally and theoretically. The effect of nonlinear propagation in the generation medium on the annular-beam generation concept is also analyzed in detail.
APA, Harvard, Vancouver, ISO, and other styles
50

Devi, Kavita, S. Chaitanya Kumar, and M. Ebrahim-Zadeh. "Fiber-laser-based, high-repetition-rate, picosecond ultraviolet source tunable across 329–348 nm." Optics Letters 41, no. 20 (October 12, 2016): 4799. http://dx.doi.org/10.1364/ol.41.004799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography