Academic literature on the topic 'Gibberellins Metabolism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gibberellins Metabolism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gibberellins Metabolism"
Hedden, Peter. "The Current Status of Research on Gibberellin Biosynthesis." Plant and Cell Physiology 61, no. 11 (July 11, 2020): 1832–49. http://dx.doi.org/10.1093/pcp/pcaa092.
Full textZhang, L., S. Rajapakse, R. E. Ballard, and N. C. Rajapakse. "Light Quality Regulation of Gene Expression in Chrysanthemum." HortScience 33, no. 3 (June 1998): 446c—446. http://dx.doi.org/10.21273/hortsci.33.3.446c.
Full textHan, Jennifer, Jan E. Murray, Qingyi Yu, Paul H. Moore, and Ray Ming. "The Effects of Gibberellic Acid on Sex Expression and Secondary Sexual Characteristics in Papaya." HortScience 49, no. 3 (March 2014): 378–83. http://dx.doi.org/10.21273/hortsci.49.3.378.
Full textValkai, Ildikó, Erzsébet Kénesi, Ildikó Domonkos, Ferhan Ayaydin, Danuše Tarkowská, Miroslav Strnad, Anikó Faragó, László Bodai, and Attila Fehér. "The Arabidopsis RLCK VI_A2 Kinase Controls Seedling and Plant Growth in Parallel with Gibberellin." International Journal of Molecular Sciences 21, no. 19 (October 1, 2020): 7266. http://dx.doi.org/10.3390/ijms21197266.
Full textZhao, Xiao-Ying, Xu-Hong Yu, Xuan-Ming Liu, and Chen-Tao Lin. "Light Regulation of Gibberellins Metabolism in Seedling Development." Journal of Integrative Plant Biology 49, no. 1 (January 2007): 21–27. http://dx.doi.org/10.1111/j.1744-7909.2006.00407.x.
Full textRodríguez-Ortiz, Roberto, M. Carmen Limón, and Javier Avalos. "Regulation of Carotenogenesis and Secondary Metabolism by Nitrogen in Wild-Type Fusarium fujikuroi and Carotenoid-Overproducing Mutants." Applied and Environmental Microbiology 75, no. 2 (December 1, 2008): 405–13. http://dx.doi.org/10.1128/aem.01089-08.
Full textYang, Y. Y., I. Yamaguchi, and N. Murofushi. "Metabolism and Translocation of Gibberellins in the Seedlings of Pharbitis nil (II). Photoperiodic Effects on Metabolism and Translocation of Gibberellins Applied to Cotyledons." Plant and Cell Physiology 37, no. 1 (January 1, 1996): 69–75. http://dx.doi.org/10.1093/oxfordjournals.pcp.a028915.
Full textSun, Hao, Huiting Cui, Jiaju Zhang, Junmei Kang, Zhen Wang, Mingna Li, Fengyan Yi, Qingchuan Yang, and Ruicai Long. "Gibberellins Inhibit Flavonoid Biosynthesis and Promote Nitrogen Metabolism in Medicago truncatula." International Journal of Molecular Sciences 22, no. 17 (August 27, 2021): 9291. http://dx.doi.org/10.3390/ijms22179291.
Full textMaki, Sonja L., Mark L. Brenner, Paul R. Birnberg, Peter J. Davies, and Thomas P. Krick. "Identification of Pea Gibberellins by Studying [14C]GA12-Aldehyde Metabolism." Plant Physiology 81, no. 4 (August 1, 1986): 984–90. http://dx.doi.org/10.1104/pp.81.4.984.
Full textHeupel, Rick C., Bernard O. Phinney, Clive R. Spray, Paul Gaskin, Jake MacMillan, Peter Hedden, and Jan E. Graebe. "Native gibberellins and the metabolism of [14C]gibberellin A53 and of [17-13C, 17-3H2]gibberellin A20 in tassels of Zea mays." Phytochemistry 24, no. 1 (January 1985): 47–53. http://dx.doi.org/10.1016/s0031-9422(00)80805-5.
Full textDissertations / Theses on the topic "Gibberellins Metabolism"
Doong, Tzyy-Jye. "Regulation of Gibberellin Metabolism by Environmental Factors in Arabidopsis Thaliana." Columbus, Ohio : Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1034085989.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 148 p.; also contains graphics (some col.). Includes abstract and vita. Advisor: James Metzger, Dept. of Horticulture and Crop Science. Includes bibliographical references (p. 132-148).
Schauvinhold, Ines. "Influence of gibberellins on trichome initiation and secondary metabolism in tomato." Thesis, University of York, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479511.
Full textDolan, S. C. "The synthesis, characterisation and metabolism of some selected gibberellins and kaurenoids." Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370825.
Full textMakinson, Ian Kenneth. "The synthesis and metabolism of some novel gibberellins and related compounds." Thesis, University of Bristol, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328232.
Full textLecat, Sophie. "Quelques aspects metaboliques de la dormance des semences d'avoine (avena sativa l. ) : etude plus particuliere de l'action des glumelles." Paris 6, 1987. http://www.theses.fr/1987PA066472.
Full textGallova, Barbora. "The roles of nitrogen and gibberellin metabolism in the control of stature in wheat." Thesis, University of Reading, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632864.
Full textMartins, Auxiliadora Oliveira. "Impactos ecofisiológicos e metabólicos da alteração nos níveis de giberelina em tomate." Universidade Federal de Viçosa, 2013. http://locus.ufv.br/handle/123456789/4347.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
This study was carried out to analyze the physiological, metabolic and anatomic impacts promoted by both the endogenous and/or artificial variation of gibberellins (GAs) on tomato plants (Solanum lycopersicum L.). To this end, different experiments were performed using wild-type (WT) and mutant plants in the biosynthesis of gibberellins (gib3, moderately deficient; gib2, mildly deficient and gib1, extremely deficient). In the first experiment I used WT and the mutant plants gib3, gib2 and gib1 and evaluated the effects of endogenous reduction of GA levels. It was observed that the reduced levels of GAs negatively affected the growth and that this slower growth is not associated with lower photosynthetic rates. The higher net photosynthesis (A N ) found in the mutants were associated with both increased stomatal density and higher stomatal (g s ) and mesophyll (g m ) conductances. One clear imbalance between carbon metabolism and growth seems to occur in plants with reduced GAs levels, given that reductions in the levels of the majority of the metabolites occurred concomitantly to higher A N . Moreover, higher A N was accompanied by elevated respiratory rate and increments in protein concentration, suggesting a shift of energy in the form of ATPs to other routes, since more energy production was not associated with higher biomass accumulation. In the second experiment I used plants WT and gib3, the genotype most similar to WT in the first experiment, and subjected those plants to artificial variations in the content of GAs by applying GAs and/or paclobutrazol (PBZ), a GA biosynthesis inhibitor. The results obtained allowed the identification of both metabolic and physiological changes associated with both endogenous GAs variation, as well as the artificial variation caused by varying the GAs regime. In both genotypes growth was strongly reduced in presence of PBZ whereas it was incremented when applying GAs. Lower growth rates were accompanied by higher dark respiration (R d ) and higher A N , the former being influenced by larger stomatal density and stomatal opening, leaf thickness, as well as g s and absorptance. The levels of the majority of metabolites evaluated were positively associated with GAs content. Little or no variation in chlorophyll fluorescence a and antioxidative system parameters indicated no apparent stress. Taken as a whole, the information obtained within this study provide a better understanding of the physiological, molecular and metabolic disorders associated with GA deficiency in plants; however, future metabolic and molecular studies are still required to allow us a better understanding of the effects of reduced GA levels on the metabolism of these plants.
O presente trabalho foi conduzido com intuito de analisar os impactos causados pela variação endógena e/ou artificial (aplicação de GAs e paclobutrazol-PBZ) dos níveis de giberelinas sobre a fisiologia, metabolismo e anatomia de plantas de tomate (Solanum lycopersicum L.). Para tal, diferentes experimentos foram realizados utilizando-se plantas tipo selvagem (WT) e mutantes na biossíntese de giberelinas (gib3: moderadamente deficiente, gib2: medianamente deficiente e gib1: extremamente deficiente). No primeiro experimento foram utilizadas plantas WT e os mutantes gib3, gib2 e gib1 avaliando-se os efeitos da redução endógena dos níveis de GAs. Os resultados mostraram que a redução dos níveis de GAs afetou negativamente o crescimento dessas plantas e que este menor crescimento não estaria associado a menores taxas fotossintéticas. A elevada fotossíntese (A N ) nos mutantes apresentou-se associada com uma maior densidade e abertura estomática, assim como maiores condutâncias estomática (g s ) e mesofílica (g m ). Um desbalanço entre o metabolismo do carbono e crescimento parece ocorrer plantas com redução na concentração de GAs, visto que reduções nos teores da maioria dos metabólitos ocorreram concomitantemente com elevada A N . Ademais, maior A N foi acompanhada de uma elevada taxa respiratória e incrementos na concentração de proteínas, sugerindo um desvio de energia em forma de ATPs para outras rotas, já que uma maior produção de energia não se traduziu em acúmulo de biomassa. No segundo experimento foram utilizadas plantas WT e gib3, genótipo mais semelhante ao WT no primeiro experimento, submetidas à variações artificiais no conteúdo de GAs mediante a aplicação de GAs e/ou PBZ. Os resultados obtidos permitiram a identificação de mudanças metabólicas e fisiológicas associadas tanto à variação endógena de GAs, assim como as ocasionadas pela variação artificial de GAs. Para ambos os genótipos, o crescimento foi bastante reduzido em presença de PBZ e apresentou incrementos quando da aplicação de GAs. Menores taxas de crescimento foram acompanhadas de maiores respiração no escuro (R d ) e A N , a última influenciada por maiores densidade e abertura estomática, espessura foliar, assim como g s e absortância. A maioria dos metabólitos foi positivamente correlacionada com o conteúdo de GAs. Pouca ou nenhuma variação em parâmetros da fluorescência da clorofila a e sistema antioxidativo indicam ausência de estresses aparentes. Consideradas em conjunto, as informações obtidas com o presente estudo oferecem uma melhor compreensão dos mecanismos fisiológicos, moleculares e metabólicos associados à deficiência de GAs em plantas; contudo, estudos metabólicos e moleculares mais detalhados ainda serão necessários para uma melhor compreensão dos efeitos da redução dos níveis de GAs sobre o metabolismo dessas plantas.
Rossetto, Maria Rosecler Miranda. "Efeito do ácido giberélico no metabolismo amido-sacarose durante o amadurecimento da banana (Musa acuminata var. Nanicão)." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-02102008-092955/.
Full textThe ripening is an exclusive stage of fruit development, that involves a serie of metabolic transformation from different energy source. It is mediated by a dynamic enzymatic complex, resulting in formation/degradation of different coumpouds that will render fruit acceptable for the consumption. Depending on the type of fruit, this energy source can be in the form of organic acid, sucrose of the plant or starch. Banana (Musa acuminata) is a climateric fruit that uses starch as main carbon source, which is reduced during banana ripening of levels that vary from 12 to 20% to less than 1 %. Concomitant to the this degradation, the levels of sucrose can reach up to 15%, depending of the cultivar. The gibberellic acid, GA3-mediated is a plant growth regulation of the giberellins family, that has been studied in cereals because of their enhancing effect of gene expression of αamylase. In fruits, it is responsible for keeping the texture firm and the soluble solid levels, and delaying the ripening. The influence of the GA3 in the starch-sucrose metabolism in banana slices, were observed. That the phytohormone did not modify the respiratory peak nor the synthesis of ethylene. However, it delayed the starch degradation and the soluble sugars accumulation for about three days. This delay was followed by decrease and/or delay in the activity of the enzymes related to starch degradation: the α and β-amylases; and sucrose synthesis the sucrose phosphate synthase (SPS). However, was not observed a difference in the increase of gene expression of SPS and phosphorilase
Zhang, Shugai. "Investigations into senescence and oxidative metabolism in gentian and petunia flowers." Thesis, University of Canterbury. Biological Sciences, 2008. http://hdl.handle.net/10092/4082.
Full textBrandão, Andrea Dias. "Efeito da Giberelina 'A IND. 3' e do paclobutrazol no metabolismo de carboidratos e expressão genica da cana-de-acuçar (Saccharum sp.)." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/315318.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-15T21:23:11Z (GMT). No. of bitstreams: 1 Brandao_AndreaDias_D.pdf: 9019715 bytes, checksum: 89d92b9413ee5bda07f54d0245d9d040 (MD5) Previous issue date: 2010
Resumo: A cana-de-açúcar pertence a família Poaceae e ao gênero Saccharum. Espécies pertencentes a essa família apresentam a via de fotossíntese C4, mais eficiente para a produção de biomassa quando comparadas com as plantas com metabolismo fotossintético C3 em condições de temperaturas elevadas. A cana-de-açúcar transformou-se em um importante potencial econômico e fonte de energia no mundo, devido a sua capacidade de estocar sacarose (cerca de 50% de seu peso seco) e produzir bioetanol. Nos últimos anos tornou-se alvo prioritário para diversos estudos através do melhoramento genético, biologia molecular, bioquímica e estudos fisiológicos. Os produtos provenientes da cana são amplamente utilizados pela população mundial e representam uma fonte alternativa para a geração de energia. O Brasil ocupa uma posição de destaque entre os países produtores de cana-de-açúcar (34% da produção mundial). Devido a sua origem interespecífica a cana possui um dos genomas mais complexos entre as espécies vegetais tornando-se um importante objeto de estudo para a obtenção de variedades produtivas e ou eficientes, melhor adaptadas às condições climáticas. A propagação clonal através do cultivo in vitro possibilita a obtenção mais rápida de indivíduos da espécie. A utilização de métodos de assepsia para a desinfestação e desinfecção sem causar danos aos tecidos que levam a morte da planta tornou-se um grande desafio para a obtenção de novas plântulas que permitam os estudos de biotecnologia. E o grande interesse em se estudar plantas de cana-de-açúcar se dá pelo acúmulo da sacarose, que ocorre na região do entrenó durante o desenvolvimento da planta. A genética clássica busca a melhora dessa característica, principalmente através do aumento da biomassa realizada pela fixação de carbono, no entanto, há um limitado aumento do conteúdo de sacarose. A giberelina é um fitormônio vegetal, largamente utilizada na agricultura e desempenha uma variedade de funções fisiológicas em plantas. O GA3 produzido industrialmente tem sido aplicado para estimular o crescimento da cana-de-açúcar, para auxiliar a germinação de cevada, na produção de frutas e verduras, entre outras. As giberelinas são extremamente ativas na indução do alongamento do caule. Estudos mostram que a aplicação de GAs provoca aumento no tamanho da célula e no número de células, indicando que as GAs atuam tanto no alongamento da célula como na divisão celular, o que potencializa um aumento na produtividade de sacarose. Já o paclobutrazol (PBZ) atua inibindo a biossíntese de giberelinas. Ele bloqueia a biossíntese de GA, pois interfere nos primeiros passos da rota de oxidação do caureno, impedindo a formação das GAs, e por isso funciona como um controle negativo dos mecanismos de ação das giberelinas. Tanto a presença do paclobutrazol quanto da GA3 induzem alterações da expressão de genes específicos e a ativação de vias de sinalização que agem cooperativamente na tentativa de aliviar o efeito do estresse na tentativa de estabelecer o retorno à homeostasia celular. Nosso maior objetivo nesse estudo é tentar identificar o mecanismo de ação das GAs, para permitir uma melhor compreensão das alterações tanto morfológicas e fisiológicas sofrida pelas plântulas. Para isso em nossos estudos foram selecionados genes que pudessem apresentar relação com metabolismo de carboidratos, com respostas hormonais, com metabolismo de ácidos nucleícos, com a fotossíntese, com o desenvolvimento, com divisão celular, com metabolismo de proteínas, além de diversos fatores de transcrição que possam estar envolvidos nesses processos, baseados em resultados do metabolismo de carboidratos encontrados nas analises bioquímicas das plântulas, assim como nos cortes anatômicos. O resultados mostraram interferência do GA3 no acúmulo de carboidratos, no alongamento celular, em genes relacionados com a via de transdução de sinal das AUX, biossíntese de AUX, GA, além de genes e fatores de transcrição relacionados com o ciclo celular, fotossíntese, fixação de carbono e diversos estresses, entre eles o osmótico.
Abstract: The sugarcane belongs to the grasses's family and the Saccharum genus. Species belonging to this family have the C4 photosynthesis patway, more efficient for biomass production when compared the C3 photosynthetic metabolism plants, in high temperature condicions. The sugarcane became an important economic potential and energy in the world due to its ability to store sucrose (about 50% of its dry weight) and production of bioethanol. In recent years it has become priority for several studies through breeding, molecular biology, biochemistry and physiological studies. Products from sugarcane is widely used by the world's population and represent an alternative source for energy generation. Brazil occupies an outstanding position among the countries producing sugarcane (34% of world production). Because of its interspecific origin, the sugarcane has one of the more complex genomes of plant species became an important object of study for plant breeding and productive or efficient, better adapted to climatic conditions. The clonal propagation through in vitro possible to obtain faster plants copies. The use of aseptic methods for disinfestation and disinfection without causing tissue damage leading to death of the plant has become a major challenge for the procurement of new seedlings to allow the biotechnology study. And the great interest in studying sugarcane plant is caused by the accumulation of sucrose, which occurs in the internode region during the plant development. Classical genetics search to improve this feature, mainly by increasing the biomass held by sequestration, however, there is a limited increase in sucrose content. The gibberellin is a plant phytohormone widely used in the agriculture and plays a variety of physiological functions in the plants. The sintetic GA3 has been applied to stimulate the sugarcane growth, to assist the germination of barley, the production of fruits and vegetables, among others. The gibberellins are extremely active in inducing the elongation of the stem. Studies show that the application of GAs causes an increase in cell size and cell number, indicating that GAs act both in cell elongation and cell division, which leverage an increase in sucrose yield. Since the PBZ acts by inhibiting the biosynthesis of gibberellins. It blocks the biosynthesis of GA, because it interferes in the first steps of the kaurene oxidation patway, preventing the GAs formation, and therefore acts as a negative control mechanisms of action of gibberellins. Both the presence of paclobutrazol and the GA3 induced changes in gene expression and activation of specific signaling pathways that act cooperatively in trying to alleviate the effect of stress in trying to establish a return to cellular homeostasis. Our objectivity in this study is to try to identify the mechanism of action of GAs to allow a understanding of both morphological and physiological changes experienced by seedlings. To do this in our studies we selected genes that could present relationship with carbohydrate metabolism, hormonal responses, with the metabolism of nucleic acids, through photosynthesis, with the development, with cell division, with protein metabolism, and several transcription factors that may be involved in these processes, based on results of the metabolism of carbohydrates found in the biochemical analysis of the seedlings, as well as in anatomical cuts. The results showed interference of GA3 in the accumulation of carbohydrates in cell elongation in genes related to the route of signal transduction of AUX, AUX biosynthesis, GA, in addition to genes and transcription factors related to cell cycle, photosynthesis, fixing carbon and many stresses, including the osmotic.
Doutorado
Biologia Vegetal
Doutor em Biologia Vegetal
Book chapters on the topic "Gibberellins Metabolism"
Phinney, B. O., C. R. Spray, Y. Suzuki, and P. Gaskin. "Gibberellin Metabolism in Maize: Tissue Specificity." In Gibberellins, 22–31. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_3.
Full textKalra, Geetika, and Satish C. Bhatla. "Gibberellins." In Plant Physiology, Development and Metabolism, 617–28. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2023-1_17.
Full textCrozier, A., C. G. N. Turnbull, J. M. Malcolm, and J. E. Graebe. "Gibberellin Metabolism in Cell-Free Preparations from Phaseolus coccineus." In Gibberellins, 83–93. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_9.
Full textZeevaart, J. A. D., M. Talon, and T. M. Wilson. "Stem Growth and Gibberellin Metabolism in Spinach in Relation to Photoperiod." In Gibberellins, 273–79. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_26.
Full textFang, N., B. A. Bonner, and L. Rappaport. "Phytochrome Mediation of Gibberellin Metabolism and Epicotyl Elongation in Cowpea, Vigna sinensis L." In Gibberellins, 280–88. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_27.
Full textKoshioka, M., E. Minami, H. Saka, R. P. Pharis, and L. N. Mander. "Metabolism of [3H]Gibberellin A4 and [2H]Gibberellin A4 in Cell Suspension Cultures of Rice, Oryza sativa cv. Nihonbare." In Gibberellins, 264–72. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3002-1_25.
Full textLin, Jiann-Tsyh, and Allan E. Stafford. "Endogenous Gibberellins in Wheat Shoots." In The Metabolism, Structure, and Function of Plant Lipids, 127–29. Boston, MA: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-5263-1_21.
Full textSponsel, Valerie M. "The Biosynthesis and Metabolism of Gibberellins in Higher Plants." In Plant Hormones, 66–97. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0473-9_4.
Full textMacMillan, J. "Metabolism of Gibberellins A20 and A9 in Plants: Pathways and Enzymology." In Plant Growth Substances 1988, 307–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74545-4_36.
Full textBrenner, M. L., S. K. Stombaugh, and P. R. Birnberg. "Tissue-Specific Metabolism of both Abscisic Acid and Gibberellins in Legume Seeds." In Plant Growth Substances 1988, 254–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74545-4_29.
Full text