Journal articles on the topic 'Giant Magnetoresistance and Hall effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Giant Magnetoresistance and Hall effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Hui, Juanjuan Gu, Ping Ji, Qinglong Wang, Xueyou Hu, Yongliang Qin, Jingrong Wang, and Changjin Zhang. "Giant anisotropic magnetoresistance and planar Hall effect in Sr0.06Bi2Se3." Applied Physics Letters 113, no. 22 (November 26, 2018): 222601. http://dx.doi.org/10.1063/1.5063689.
Full textBudantsev, M. V., A. G. Pogosov, A. E. Plotnikov, A. K. Bakarov, A. I. Toropov, and J. C. Portal. "Giant hysteresis of magnetoresistance in the quantum hall effect regime." JETP Letters 86, no. 4 (October 2007): 264–67. http://dx.doi.org/10.1134/s0021364007160102.
Full textNúñez-Regueiro, J. E., D. Gupta, and A. M. Kadin. "Hall effect and giant magnetoresistance in lanthanum manganite thin films." Journal of Applied Physics 79, no. 8 (1996): 5179. http://dx.doi.org/10.1063/1.361331.
Full textWang, Silin, and Junji Gao. "Overview of Magnetic Field Sensor." Journal of Physics: Conference Series 2613, no. 1 (October 1, 2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.
Full textBobin, S. B., and A. T. Lonchakov. "Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample." JETP Letters 118, no. 7 (October 2023): 495–501. http://dx.doi.org/10.1134/s0021364023602658.
Full textSamoilov, A. V., G. Beach, C. C. Fu, N. C. Yeh, and R. P. Vasquez. "Giant spontaneous Hall effect and magnetoresistance in La1−xCaxCoO3 (0.1⩽x⩽0.5)." Journal of Applied Physics 83, no. 11 (June 1998): 6998–7000. http://dx.doi.org/10.1063/1.367623.
Full textXiong, Peng, Gang Xiao, J. Q. Wang, John Q. Xiao, J. Samuel Jiang, and C. L. Chien. "Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system." Physical Review Letters 69, no. 22 (November 30, 1992): 3220–23. http://dx.doi.org/10.1103/physrevlett.69.3220.
Full textZhang, H., X. Y. Zhu, Y. Xu, D. J. Gawryluk, W. Xie, S. L. Ju, M. Shi, et al. "Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet." Journal of Physics: Condensed Matter 34, no. 3 (November 3, 2021): 034005. http://dx.doi.org/10.1088/1361-648x/ac3102.
Full textZhu, L., X. X. Qu, H. Y. Cheng, and K. L. Yao. "Spin-polarized transport properties of the FeCl2/WSe2/FeCl2 van der Waals heterostructure." Applied Physics Letters 120, no. 20 (May 16, 2022): 203505. http://dx.doi.org/10.1063/5.0091580.
Full textBlachowicz, Tomasz, Ilda Kola, Andrea Ehrmann, Karoline Guenther, and Guido Ehrmann. "Magnetic Micro and Nano Sensors for Continuous Health Monitoring." Micro 4, no. 2 (April 6, 2024): 206–28. http://dx.doi.org/10.3390/micro4020015.
Full textXu, Yong, Jun Wang, Jun-Feng Liu, and Hu Xu. "Giant magnetoresistance effect due to the tunneling between quantum anomalous Hall edge states." Applied Physics Letters 118, no. 22 (May 31, 2021): 222401. http://dx.doi.org/10.1063/5.0050224.
Full textMitani, S., Y. Shintani, S. Ohnuma, and H. Fujimori. "Giant Magnetoresistance and Hall Effect in Fe-Based Metal-Oxide Granular Thin Films." Journal of the Magnetics Society of Japan 21, no. 4_2 (1997): 465–68. http://dx.doi.org/10.3379/jmsjmag.21.465.
Full textVansweevelt, Rob, Vincent Mortet, Jan D'Haen, Bart Ruttens, Chris Van Haesendonck, Bart Partoens, François M. Peeters, and Patrick Wagner. "Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes." physica status solidi (a) 208, no. 6 (February 23, 2011): 1252–58. http://dx.doi.org/10.1002/pssa.201001206.
Full textHuang, Dan, Hang Li, Bei Ding, Xuekui Xi, Jianrong Gao, Yong-Chang Lau, and Wenhong Wang. "Plateau-like magnetoresistance and topological Hall effect in Kagome magnets TbCo2 and DyCo2." Applied Physics Letters 121, no. 23 (December 5, 2022): 232404. http://dx.doi.org/10.1063/5.0111086.
Full textYan, J., X. Luo, J. J. Gao, H. Y. Lv, C. Y. Xi, Y. Sun, W. J. Lu, et al. "The giant planar Hall effect and anisotropic magnetoresistance in Dirac node arcs semimetal PtSn4." Journal of Physics: Condensed Matter 32, no. 31 (May 12, 2020): 315702. http://dx.doi.org/10.1088/1361-648x/ab851f.
Full textGranovskii, A. B., A. V. Kalitsov, and F. Brouers. "Field dependence of the anomalous Hall effect coefficient of granular alloys with giant Magnetoresistance." Journal of Experimental and Theoretical Physics Letters 65, no. 6 (March 1997): 509–13. http://dx.doi.org/10.1134/1.567384.
Full textKobayashi, Y., K. Muta, and K. Asai. "The Hall effect and thermoelectric power correlated with the giant magnetoresistance in modified FeRh compounds." Journal of Physics: Condensed Matter 13, no. 14 (March 22, 2001): 3335–46. http://dx.doi.org/10.1088/0953-8984/13/14/308.
Full textZikrillaev, N. F., Kh M. Iliev, G. Kh Mavlonov, S. B. Isamov, and M. Kh Madjitov. "Negative magnetoresistance in silicon doped with manganese." E3S Web of Conferences 401 (2023): 05094. http://dx.doi.org/10.1051/e3sconf/202340105094.
Full textPal, Ojasvi, Bashab Dey, and Tarun Kanti Ghosh. "Berry curvature induced magnetotransport in 3D noncentrosymmetric metals." Journal of Physics: Condensed Matter 34, no. 2 (October 29, 2021): 025702. http://dx.doi.org/10.1088/1361-648x/ac2fd4.
Full textYe, Rongli, Tian Gao, Haoyu Li, Xiao Liang, and Guixin Cao. "Anisotropic giant magnetoresistanceand de Hass–van Alphen oscillations in layered topological semimetal crystals." AIP Advances 12, no. 4 (April 1, 2022): 045104. http://dx.doi.org/10.1063/5.0086414.
Full textKobayashi, Y., H. Sato, Y. Aoki, and A. Kamijo. "The giant magnetoresistance and the anomalous Hall effect in molecular-beam-epitaxy grown Co/Cu superlattices." Journal of Physics: Condensed Matter 6, no. 36 (September 5, 1994): 7255–67. http://dx.doi.org/10.1088/0953-8984/6/36/010.
Full textXiao, G., J. Q. Wang, and P. Xiong. "Giant magnetoresistance and anomalous Hall effect in Co-Ag and Fe-Cu, Ag, Au, Pt granular alloys." IEEE Transactions on Magnetics 29, no. 6 (November 1993): 2694–99. http://dx.doi.org/10.1109/20.280938.
Full textMurzin, Dmitry, Desmond J. Mapps, Kateryna Levada, Victor Belyaev, Alexander Omelyanchik, Larissa Panina, and Valeria Rodionova. "Ultrasensitive Magnetic Field Sensors for Biomedical Applications." Sensors 20, no. 6 (March 11, 2020): 1569. http://dx.doi.org/10.3390/s20061569.
Full textDjamal, Mitra, and Ramli. "Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method." Advanced Materials Research 770 (September 2013): 1–9. http://dx.doi.org/10.4028/www.scientific.net/amr.770.1.
Full textHuy, Ho Hoang, Julian Sasaki, Nguyen Huynh Duy Khang, Shota Namba, Pham Nam Hai, Quang Le, Brian York, et al. "Large inverse spin Hall effect in BiSb topological insulator for 4 Tb/in2 magnetic recording technology." Applied Physics Letters 122, no. 5 (January 30, 2023): 052401. http://dx.doi.org/10.1063/5.0135831.
Full textPanda, S. N., S. Mondal, J. Sinha, S. Choudhury, and A. Barman. "All-optical detection of interfacial spin transparency from spin pumping in β-Ta/CoFeB thin films." Science Advances 5, no. 4 (April 2019): eaav7200. http://dx.doi.org/10.1126/sciadv.aav7200.
Full textShu, Yu, Dongli Yu, Wentao Hu, Yanbin Wang, Guoyin Shen, Yoshio Kono, Bo Xu, Julong He, Zhongyuan Liu, and Yongjun Tian. "Deep melting reveals liquid structural memory and anomalous ferromagnetism in bismuth." Proceedings of the National Academy of Sciences 114, no. 13 (March 13, 2017): 3375–80. http://dx.doi.org/10.1073/pnas.1615874114.
Full textBarla, Prashanth, Vinod Kumar Joshi, and Somashekara Bhat. "Spintronic devices: a promising alternative to CMOS devices." Journal of Computational Electronics 20, no. 2 (January 19, 2021): 805–37. http://dx.doi.org/10.1007/s10825-020-01648-6.
Full textMonteblanco, Elmer, Christian Ortiz Pauyac, Williams Savero, J. Carlos RojasSanchez, and A. Schuhl. "ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS." Revista Cientifica TECNIA 23, no. 1 (March 10, 2017): 5. http://dx.doi.org/10.21754/tecnia.v23i1.62.
Full textWen, Zhenchao, Takahide Kubota, Tatsuya Yamamoto, and Koki Takanashi. "Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers." Applied Physics Letters 108, no. 23 (June 6, 2016): 232406. http://dx.doi.org/10.1063/1.4953403.
Full textYurasov, A. N., and M. M. Yashin. "Accounting for the influence of granule size distribution in nanocomposites." Russian Technological Journal 8, no. 2 (April 14, 2020): 59–66. http://dx.doi.org/10.32362/2500-316x-2020-8-2-59-66.
Full textHuang, Hai, Anmin Zheng, Guoying Gao, and Kailun Yao. "Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron." Journal of Magnetism and Magnetic Materials 449 (March 2018): 522–29. http://dx.doi.org/10.1016/j.jmmm.2017.10.087.
Full textRitter, Clemens. "Neutrons Not Entitled to Retire at the Age of 60: More than Ever Needed to Reveal Magnetic Structures." Solid State Phenomena 170 (April 2011): 263–69. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.263.
Full textMAJUMDAR, SAYANI, SUKUMAR DEY, HANNU HUHTINEN, JOHNNY DAHL, MARJUKKA TUOMINEN, PEKKA LAUKKANEN, SEBASTIAAN VAN DIJKEN, and HIMADRI S. MAJUMDAR. "COMPARATIVE STUDY OF SPIN INJECTION AND TRANSPORT IN Alq3 AND Co–PHTHALOCYANINE-BASED ORGANIC SPIN VALVES." SPIN 04, no. 02 (June 2014): 1440009. http://dx.doi.org/10.1142/s2010324714400098.
Full textJung, Myung-Hwa, Jon M. Lawrence, Takao Ebihara, Michael F. Hundley, and Alex H. Lacerda. "Hall effect and magnetoresistance of YbAl3." Physica B: Condensed Matter 312-313 (March 2002): 354–55. http://dx.doi.org/10.1016/s0921-4526(01)01120-6.
Full textVanacken, J., E. Haanappel, S. Stroobants, T. Wambecq, V. Mashkautsan, C. Proust, L. Rigal, and V. V. Moshchalkov. "Hall effect and magnetoresistance of La1.875Sr0.125CuO4." Physica B: Condensed Matter 346-347 (April 2004): 334–38. http://dx.doi.org/10.1016/j.physb.2004.01.101.
Full textNeubauer, A., C. Pfleiderer, R. Ritz, P. G. Niklowitz, and P. Böni. "Hall effect and magnetoresistance in MnSi." Physica B: Condensed Matter 404, no. 19 (October 2009): 3163–66. http://dx.doi.org/10.1016/j.physb.2009.07.055.
Full textDiehl, J., H. Fischer, R. Köhler, C. Geibel, F. Steglich, Y. Maeda, T. Takabatake, and H. Fujii. "Hall effect and magnetoresistance in UNiSn." Physica B: Condensed Matter 186-188 (May 1993): 708–10. http://dx.doi.org/10.1016/0921-4526(93)90680-5.
Full textKar’kin, A. E., D. A. Shulyatev, A. A. Arsenov, V. A. Cherepanov, and E. A. Filonova. "Magnetoresistance and Hall effect in La0.8Sr0.2MnO3." Journal of Experimental and Theoretical Physics 89, no. 2 (August 1999): 358–65. http://dx.doi.org/10.1134/1.558992.
Full textSeng, P., J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross. "Hall effect and magnetoresistance inNd1.85Ce0.15CuO4−δfilms." Physical Review B 52, no. 5 (August 1, 1995): 3071–74. http://dx.doi.org/10.1103/physrevb.52.3071.
Full textFlouda, E., and C. Papastaikoudis. "Hall Effect and Magnetoresistance in PdHxFilms*." Zeitschrift für Physikalische Chemie 181, Part_1_2 (January 1993): 359–66. http://dx.doi.org/10.1524/zpch.1993.181.part_1_2.359.
Full textKakihana, Masashi, Dai Aoki, Ai Nakamura, Fuminori Honda, Miho Nakashima, Yasushi Amako, Shota Nakamura, et al. "Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi." Journal of the Physical Society of Japan 87, no. 2 (February 15, 2018): 023701. http://dx.doi.org/10.7566/jpsj.87.023701.
Full textJimbo, M., T. Kariya, R. Imada, Y. Fujiwara, and S. Tsunashima. "Giant magnetoresistance effect in Fe56Co30Ni14/Cu." Journal of Magnetism and Magnetic Materials 165, no. 1-3 (January 1997): 304–7. http://dx.doi.org/10.1016/s0304-8853(96)00536-7.
Full textDuy Khang, Nguyen Huynh, and Pham Nam Hai. "Giant unidirectional spin Hall magnetoresistance in topological insulator – ferromagnetic semiconductor heterostructures." Journal of Applied Physics 126, no. 23 (December 21, 2019): 233903. http://dx.doi.org/10.1063/1.5134728.
Full textSchewe, Phil F. "The giant planar Hall effect." Physics Today 56, no. 5 (May 2003): 9. http://dx.doi.org/10.1063/1.2409967.
Full textBriane, Marc, and Graeme W. Milton. "Giant Hall Effect in Composites." Multiscale Modeling & Simulation 7, no. 3 (January 2009): 1405–27. http://dx.doi.org/10.1137/08073189x.
Full textConstantinian K. Y., Ovsyannikov G. A., Shadrin A. V., Shmakov V. A., Petrzhik A. M., Kislinskii Yu. V., and Klimov A. A. "Spin magnetoresistance of a strontium iridate/manganite heterostructure." Physics of the Solid State 64, no. 10 (2022): 1410. http://dx.doi.org/10.21883/pss.2022.10.54227.46hh.
Full textSekiguchi, K., M. Shimizu, E. Saitoh, and H. Miyajima. "Giant Magnetoresistance Effect in Ferromagnetic Ni Nanowires." Journal of the Magnetics Society of Japan 29, no. 3 (2005): 261–64. http://dx.doi.org/10.3379/jmsjmag.29.261.
Full textRinkevich, A. B., M. A. Milyaev, L. N. Romashev, and D. V. Perov. "Microwave Giant Magnetoresistance Effect in Metallic Nanostructures." Physics of Metals and Metallography 119, no. 13 (December 2018): 1297–300. http://dx.doi.org/10.1134/s0031918x18130100.
Full textBurkett, S. L. "Effect of silicon processing on giant magnetoresistance." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 4 (July 1996): 3131. http://dx.doi.org/10.1116/1.589075.
Full text