Academic literature on the topic 'Giant Magnetoresistance and Hall effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Giant Magnetoresistance and Hall effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Giant Magnetoresistance and Hall effect"
Huang, Hui, Juanjuan Gu, Ping Ji, Qinglong Wang, Xueyou Hu, Yongliang Qin, Jingrong Wang, and Changjin Zhang. "Giant anisotropic magnetoresistance and planar Hall effect in Sr0.06Bi2Se3." Applied Physics Letters 113, no. 22 (November 26, 2018): 222601. http://dx.doi.org/10.1063/1.5063689.
Full textBudantsev, M. V., A. G. Pogosov, A. E. Plotnikov, A. K. Bakarov, A. I. Toropov, and J. C. Portal. "Giant hysteresis of magnetoresistance in the quantum hall effect regime." JETP Letters 86, no. 4 (October 2007): 264–67. http://dx.doi.org/10.1134/s0021364007160102.
Full textNúñez-Regueiro, J. E., D. Gupta, and A. M. Kadin. "Hall effect and giant magnetoresistance in lanthanum manganite thin films." Journal of Applied Physics 79, no. 8 (1996): 5179. http://dx.doi.org/10.1063/1.361331.
Full textWang, Silin, and Junji Gao. "Overview of Magnetic Field Sensor." Journal of Physics: Conference Series 2613, no. 1 (October 1, 2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.
Full textBobin, S. B., and A. T. Lonchakov. "Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample." JETP Letters 118, no. 7 (October 2023): 495–501. http://dx.doi.org/10.1134/s0021364023602658.
Full textSamoilov, A. V., G. Beach, C. C. Fu, N. C. Yeh, and R. P. Vasquez. "Giant spontaneous Hall effect and magnetoresistance in La1−xCaxCoO3 (0.1⩽x⩽0.5)." Journal of Applied Physics 83, no. 11 (June 1998): 6998–7000. http://dx.doi.org/10.1063/1.367623.
Full textXiong, Peng, Gang Xiao, J. Q. Wang, John Q. Xiao, J. Samuel Jiang, and C. L. Chien. "Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system." Physical Review Letters 69, no. 22 (November 30, 1992): 3220–23. http://dx.doi.org/10.1103/physrevlett.69.3220.
Full textZhang, H., X. Y. Zhu, Y. Xu, D. J. Gawryluk, W. Xie, S. L. Ju, M. Shi, et al. "Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet." Journal of Physics: Condensed Matter 34, no. 3 (November 3, 2021): 034005. http://dx.doi.org/10.1088/1361-648x/ac3102.
Full textZhu, L., X. X. Qu, H. Y. Cheng, and K. L. Yao. "Spin-polarized transport properties of the FeCl2/WSe2/FeCl2 van der Waals heterostructure." Applied Physics Letters 120, no. 20 (May 16, 2022): 203505. http://dx.doi.org/10.1063/5.0091580.
Full textBlachowicz, Tomasz, Ilda Kola, Andrea Ehrmann, Karoline Guenther, and Guido Ehrmann. "Magnetic Micro and Nano Sensors for Continuous Health Monitoring." Micro 4, no. 2 (April 6, 2024): 206–28. http://dx.doi.org/10.3390/micro4020015.
Full textDissertations / Theses on the topic "Giant Magnetoresistance and Hall effect"
Östling, Johan. "High Accuracy Speed and Angular Position Detection by Dual Sensor." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-365726.
Full textKowalczyk, Hugo. "Transitions de phases et propriétés électroniques de couches 2D de WTe2 et MoTe2." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS571.
Full textThis work presents the study of phase transitions and electronic properties of two transition metal dichalcogenides: WTe2 and MoTe2. The relevance of those materials lies in its two metastable phases at ambient pressure and temperature, 1T’ and Td, classifying them as Weyl semi-metals. We had the chance to synthesize 2H-MoTe2, 1T’-MoTe2 and Td-WTe2 monocrystals by chemical vapour transport during an exchange at IISER Pune in India. High quality resulting crystals were characterized by XRD, SEM-EDX and Raman spectroscopy. Then we could exfoliate it by the anodic bonding method proper to our laboratory, characterize their 2D form and build electronic measurement devices by gold contact deposition. In the context of multiple transition metal dichalcogenides stable and metastable phases, the study of the transitions between those phases is very interesting. We first present 1T’ to Td temperature induced phase transition in MoTe2 and observe the impact of layer thickness on transition temperature and establish a phase diagram. Then, we prove the absence of 2H to 1T’ transition and its reversibility in a MoTe2 monolayer purely induced by electrostatic doping, claimed by recent works. This transition, from semi-conductive to semi-metallic phase is likely predicted for applications in nanotechnologies as an electronic switch. Through space charge doping and Raman spectroscopy experiment, we highlight the role of Tellurium migration and the creation of vacancies in this transition. We also measured Td-WTe2 transport properties (magnetoresistance and Hall effect) of various layer thicknesses. Through a two band model parameters adjustment, we could determine carriers densities and mobilities and relate them to compensated semi-metal theory responsible of Giant Magnetoresistance response of this material. Those experiments could highlight the more insulating behaviour of thinner layers and the presence of weak anti-localization at low temperature, whereas the thinner layers are more conductive and exhibits Shubnikov-de Haas quantum oscillations at high magnetic field
Wipatawit, Praphaphan. "Studies of magnetoresistance and Hall sensors in semiconductors." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:58faf6f4-debb-4695-8909-fca7cbf310a2.
Full textFujimoto, Tatsuo. "Magnetic and magnetoresistive properties of anisotropy-controlled spin-valve structures." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387613.
Full textShang, T., H. L. Yang, Q. F. Zhan, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang, et al. "Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures." AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/622466.
Full textShang, T., Q. F. Zhan, H. L. Yang, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang, et al. "Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures." AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/621346.
Full textPathak, Arjun Kumar. "EXPLORATION OF NEW MULTIFUNCTIONAL MAGNETIC MATERIALS BASED ON A VARIETY OF HEUSLER ALLOYS AND RARE-EARTH COMPOUNDS." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/353.
Full textKalappattil, Vijaysankar. "Spin Seebeck effect and related phenomena in functional magnetic oxides." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7632.
Full textKato, Takashi, Yasuhito Ishikawa, Hiroyoshi Itoh, and Jun-ichiro Inoue. "Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction." American Physical Society, 2008. http://hdl.handle.net/2237/11252.
Full textPersson, Anders. "Magnetoresistance and Space : Micro- and Nanofeature Sensors Designed, Manufactured and Evaluated for Space Magnetic Field Investigations." Doctoral thesis, Uppsala universitet, Ångström Space Technology Centre (ÅSTC), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151832.
Full textBooks on the topic "Giant Magnetoresistance and Hall effect"
Kübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2nd ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Full textValenzuela, S. O., and T. Kimura. Experimental observation of the spin Hall effect using electronic nonlocal detection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0014.
Full textMaekawa, Sadamichi, Sergio O. Valenzuela, Eiji Saitoh, and Takashi Kimura, eds. Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.001.0001.
Full textKimura, T. Introduction of spin torques. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0019.
Full textCao, Gang, and Lance DeLong. Physics of Spin-Orbit-Coupled Oxides. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.001.0001.
Full textBook chapters on the topic "Giant Magnetoresistance and Hall effect"
Chambers, R. G. "Magnetoresistance." In Quantum Hall Effect: A Perspective, 89–113. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_7.
Full textSwagten, H. J. M., M. M. H. Willekens, and W. J. M. Jonge. "The Giant Magnetoresistance Effect." In Frontiers in Magnetism of Reduced Dimension Systems, 471–99. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5004-0_25.
Full textChambers, R. G. "Magnetoresistance and Hall Effect." In Electronics in Metals and Semiconductors, 146–60. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0423-1_11.
Full textBalogh, J., A. Gábor, D. Kaptás, L. F. Kiss, M. Csontos, A. Halbritter, I. Kézsmárki, and G. Mihály. "Giant Magnetoresistance of a Single Interface." In Kondo Effect and Dephasing in Low-Dimensional Metallic Systems, 181–84. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0427-5_19.
Full textMatsukura, F. "Ga1–xMnxAs: conductivity, resistivity, magnetoresistance, Hall effect." In New Data and Updates for III-V, II-VI and I-VII Compounds, 189–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_142.
Full textDietl, Tomasz, Fumihiro Matsukura, Hideo Ohno, Joël Cibert, and David Ferrand. "Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors." In Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 197–210. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_16.
Full textMurata, K., M. Ishibashi, Y. Honda, T. Komazaki, M. Tokumoto, N. Kinoshita, and H. Anzai. "Electronic Properties in (BEDT-TTF)2X: Magnetoresistance and Hall Effect." In Springer Proceedings in Physics, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75424-1_49.
Full textOng, N. P., T. W. Jing, T. R. Chien, D. A. Brawner, Z. Z. Wang, and J. M. Tarascon. "The Hall Effect and Magnetoresistance of the High-Temperature Cuprate Superconductors." In Springer Proceedings in Physics, 247–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77154-5_49.
Full textBratkovsky, A. M. "Giant Negative Magnetoresistance and Strong Electron-Lattice Coupling in Amorphous Semiconductors with Magnetic Impurities." In Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules, 133–40. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0985-0_14.
Full textLoboda, V. B., M. Ya Dovzhyk, V. O. Kravchenko, S. M. Khursenko, and Yu O. Shkurdoda. "On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School." In Lecture Notes in Mechanical Engineering, 81–88. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6133-3_8.
Full textConference papers on the topic "Giant Magnetoresistance and Hall effect"
Yoo, JinHyeong, James B. Restorff, and Marilyn Wun-Fogle. "Non-Contact Tension Sensing Using Fe-Ga Alloy Strip." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8909.
Full textWen, Zhenchao, Takahide Kubota, Tatsuya Y. Arnamoto, and Koki Takanashi. "Enhanced Current-Perpendicular-to-Plane Giant Magnetoresistance Effect in Half-Metallic NiMnSb Heusler Alloy Based Nano-Junctions with Multiple Ag Spacers." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479999.
Full textRuotolo, A., and D. Li. "Giant Photo-Hall Effect in Metals." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508574.
Full textShkurdoda, Yu O., A. M. Chornous, A. P. Kharchenko, A. G. Basov, and L. V. Dekhtyaruk. "Effect of giant magnetoresistance in a symmetric magnetically sandwich." In 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757282.
Full textThiyagarajah, N., Y. Lau, D. Betto, K. Borisov, J. Coey, P. S. Stamenov, and K. Rode. "Giant spontaneous hall effect in zero-moment Mn2RuxGa." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157431.
Full textMerzlikin, A. M., A. P. Vinogradov, M. Inoue, and A. B. Granovsky. "Giant photonic Hall effect in magneto-photonic crystals." In Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0017.
Full textZhang, Rong Jun, Liang-Yao Chen, Shi-Ming Zhou, Yu Wang, Bo Xu, Dong-Liang Qian, Wei-Ming Zheng, and Yu-Xiang Zheng. "Giant magnetoresistance effect in granular-type Co-Ag/Ag multilayers." In Third International Conference on Thin Film Physics and Applications, edited by Shixun Zhou, Yongling Wang, Yi-Xin Chen, and Shuzheng Mao. SPIE, 1998. http://dx.doi.org/10.1117/12.300729.
Full textMurzina, T. V., T. V. Misuryaev, A. E. Kravets, A. A. Nikulin, and O. A. Aktsipetrov. "Magnetic dots: giant magnetoresistance and nonlinear magneto-optical Kerr effect." In CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest. IEEE, 2001. http://dx.doi.org/10.1109/cleo.2001.947573.
Full textPhetchakul, T., P. Taisettavatkul, W. Pengchan, W. Yamwong, and A. Poyai. "The new design for magnetoresistance effect on Hall plate structure." In 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2012). IEEE, 2012. http://dx.doi.org/10.1109/ecticon.2012.6254189.
Full textSakuraba, Takahito, Masamichi Sakai, Tastuya Arai, Yusuke Tanaka, Hiroaki Hirama, Zentaro Honda, Akira Kitajima, Koji Higuchi, Akihiro Oshima, and Shigehiko Hasegawa. "Hall Effect and Magnetoresistance in GdxY1−xH2(x\( \fallingdotseq \) 0.4)." In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012009.
Full textReports on the topic "Giant Magnetoresistance and Hall effect"
Gonis, Antonios, and Bruce Guerney. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431005.
Full textGonis, A. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/756989.
Full textButler, W. H., and B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. CRADA final report for CRADA number Y-1293-0175. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/461241.
Full textButler, W. H., and B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. Project accomplishment summary report for 93-MULT-116-D1-04. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/446402.
Full text