Journal articles on the topic 'GH10 Xylanases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GH10 Xylanases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Herold, Silvia, Robert Bischof, Benjamin Metz, Bernhard Seiboth, and Christian P. Kubicek. "Xylanase Gene Transcription in Trichoderma reesei Is Triggered by Different Inducers Representing Different Hemicellulosic Pentose Polymers." Eukaryotic Cell 12, no. 3 (January 4, 2013): 390–98. http://dx.doi.org/10.1128/ec.00182-12.
Full textTrong Khoa, Dao, Do Thi Huyen, and Truong Nam Hai. "Probe-mining of endo-1,4-beta-xylanase from goats-rumen bacterial metagenomic DNA data." Vietnam Journal of Biotechnology 19, no. 3 (October 13, 2021): 519–28. http://dx.doi.org/10.15625/1811-4989/16632.
Full textMeng, Dong-Dong, Yu Ying, Xiao-Hua Chen, Ming Lu, Kang Ning, Lu-Shan Wang, and Fu-Li Li. "Distinct Roles for Carbohydrate-Binding Modules of Glycoside Hydrolase 10 (GH10) and GH11 Xylanases from Caldicellulosiruptor sp. Strain F32 in Thermostability and Catalytic Efficiency." Applied and Environmental Microbiology 81, no. 6 (January 9, 2015): 2006–14. http://dx.doi.org/10.1128/aem.03677-14.
Full textŠuchová, Katarína, Nikolaj Spodsberg, Kristian B. R. Mørkeberg Krogh, Peter Biely, and Vladimír Puchart. "Non-Specific GH30_7 Endo-β-1,4-xylanase from Talaromyces leycettanus." Molecules 26, no. 15 (July 30, 2021): 4614. http://dx.doi.org/10.3390/molecules26154614.
Full textNam, Gyeong-Hwa, Myoung-Uoon Jang, Min-Jeong Kim, Jung-Min Lee, Min-Jae Lee, and Tae-Jip Kim. "Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis." Korean Journal of Microbiology 52, no. 4 (December 31, 2016): 463–70. http://dx.doi.org/10.7845/kjm.2016.6068.
Full textEmami, Kaveh, Tibor Nagy, Carlos M. G. A. Fontes, Luis M. A. Ferreira, and Harry J. Gilbert. "Evidence for Temporal Regulation of the Two Pseudomonas cellulosa Xylanases Belonging to Glycoside Hydrolase Family 11." Journal of Bacteriology 184, no. 15 (August 1, 2002): 4124–33. http://dx.doi.org/10.1128/jb.184.15.4124-4133.2002.
Full textLiang, Fangfang, Yi Mo, Suleman Shah, Ying Xie, Arshad Mehmood, Hesheng Jiang, and Yafen Guo. "Characterization of Two Wheat-Derived Glycoside Hydrolase Family-10 Xylanases Resistant to Xylanase Inhibitors." Journal of Food Quality 2022 (April 5, 2022): 1–10. http://dx.doi.org/10.1155/2022/9590243.
Full textChow, V., D. Shantharaj, Y. Guo, G. Nong, G. V. Minsavage, J. B. Jones, and J. F. Preston. "Xylan Utilization Regulon in Xanthomonas citri pv. citri Strain 306: Gene Expression and Utilization of Oligoxylosides." Applied and Environmental Microbiology 81, no. 6 (January 16, 2015): 2163–72. http://dx.doi.org/10.1128/aem.03091-14.
Full textYang, Jiangke, and Zhenggang Han. "Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from Thermotoga maritima by Molecular Docking." Biomolecules 8, no. 3 (July 30, 2018): 64. http://dx.doi.org/10.3390/biom8030064.
Full textGhio, Silvina, Ornella Ontañon, Florencia E. Piccinni, Rubén Marrero Díaz de Villegas, Paola Talia, Daniel H. Grasso, and Eleonora Campos. "Paenibacillus sp. A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion." BioEnergy Research 11, no. 1 (December 6, 2017): 174–90. http://dx.doi.org/10.1007/s12155-017-9887-7.
Full textMadan, Bharat, and Sun-Gu Lee. "Sequence and Structural Features of Subsite Residues in GH10 and GH11 Xylanases." Biotechnology and Bioprocess Engineering 23, no. 3 (June 2018): 311–18. http://dx.doi.org/10.1007/s12257-018-0105-z.
Full textXiao, Zhizhuang, Stephan Grosse, Hélène Bergeron, and Peter C. K. Lau. "Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae." Applied Microbiology and Biotechnology 98, no. 19 (April 24, 2014): 8211–22. http://dx.doi.org/10.1007/s00253-014-5741-4.
Full textMalgas, Samkelo, Mpho S. Mafa, Brian N. Mathibe, and Brett I. Pletschke. "Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation." Molecules 26, no. 22 (November 9, 2021): 6770. http://dx.doi.org/10.3390/molecules26226770.
Full textThirametoakkhara, Chanakan, Yi-Cheng Hong, Nuttapol Lerkkasemsan, Jian-Mao Shih, Chien-Yen Chen, and Wen-Chien Lee. "Application of Endoxylanases of Bacillus halodurans for Producing Xylooligosaccharides from Empty Fruit Bunch." Catalysts 13, no. 1 (December 25, 2022): 39. http://dx.doi.org/10.3390/catal13010039.
Full textLam, Ming Quan, Nicola C. Oates, Daniel R. Leadbeater, Kian Mau Goh, Adibah Yahya, Madihah Md Salleh, Zaharah Ibrahim, Neil C. Bruce, and Chun Shiong Chong. "Genomic Analysis to Elucidate the Lignocellulose Degrading Capability of a New Halophile Robertkochia solimangrovi." Genes 13, no. 11 (November 17, 2022): 2135. http://dx.doi.org/10.3390/genes13112135.
Full textLu, Lin, Yongwei Liu, and Zengyan Zhang. "Global Characterization of GH10 Family Xylanase Genes in Rhizoctonia cerealis and Functional Analysis of Xylanase RcXYN1 During Fungus Infection in Wheat." International Journal of Molecular Sciences 21, no. 5 (March 6, 2020): 1812. http://dx.doi.org/10.3390/ijms21051812.
Full textNaumoff, D. G., I. S. Kulichevskaya, and S. N. Dedysh. "Genetic Determinants of Xylan Utilization in Humisphaera borealis M1803T, a Planctomycete of the Class Phycisphaerae." Microbiology 91, no. 3 (June 2022): 249–58. http://dx.doi.org/10.1134/s002626172230004x.
Full textGlekas, Panayiotis D., Styliani Kalantzi, Anargiros Dalios, Dimitris G. Hatzinikolaou, and Diomi Mamma. "Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis." Biomolecules 12, no. 6 (June 6, 2022): 790. http://dx.doi.org/10.3390/biom12060790.
Full textTeo, Seng Chong, Kok Jun Liew, Mohd Shahir Shamsir, Chun Shiong Chong, Neil C. Bruce, Kok-Gan Chan, and Kian Mau Goh. "Characterizing a Halo-Tolerant GH10 Xylanase from Roseithermus sacchariphilus Strain RA and Its CBM-Truncated Variant." International Journal of Molecular Sciences 20, no. 9 (May 9, 2019): 2284. http://dx.doi.org/10.3390/ijms20092284.
Full textGrilli, Diego J., Jan Kopečný, Jakub Mrázek, Romana Marinšek-Logar, Sebastián Paez Lama, Miguel Sosa Escudero, and Graciela N. Arenas. "Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans." Folia Microbiologica 59, no. 6 (June 20, 2014): 507–14. http://dx.doi.org/10.1007/s12223-014-0329-z.
Full textYagi, Haruka, Ryo Takehara, Aika Tamaki, Koji Teramoto, Sosyu Tsutsui, and Satoshi Kaneko. "Functional Characterization of the GH10 and GH11 Xylanases from Streptomyces olivaceoviridis E-86 Provide Insights into the Advantage of GH11 Xylanase in Catalyzing Biomass Degradation." Journal of Applied Glycoscience 66, no. 1 (February 20, 2019): 29–35. http://dx.doi.org/10.5458/jag.jag.jag-2018_0008.
Full textSalas-Veizaga, Daniel Martin, Rodrigo Villagomez, Javier A. Linares-Pastén, Cristhian Carrasco, María Teresa Álvarez, Patrick Adlercreutz, and Eva Nordberg Karlsson. "Extraction of Glucuronoarabinoxylan from Quinoa Stalks (Chenopodium quinoa Willd.) and Evaluation of Xylooligosaccharides Produced by GH10 and GH11 Xylanases." Journal of Agricultural and Food Chemistry 65, no. 39 (September 20, 2017): 8663–73. http://dx.doi.org/10.1021/acs.jafc.7b01737.
Full textBalazs, Yael S., Elina Lisitsin, Oshrat Carmiel, Gil Shoham, Yuval Shoham, and Asher Schmidt. "Identifying critical unrecognized sugar-protein interactions in GH10 xylanases fromGeobacillus stearothermophilususing STD NMR." FEBS Journal 280, no. 18 (August 5, 2013): 4652–65. http://dx.doi.org/10.1111/febs.12437.
Full textHuyen, Do Thi, Nguyen Minh Giang, Nguyen Thu Nguyet, and Truong Nam Hai. "Probe design for mining and selection of genes coding endo 1- 4 xylanase from dna metagenome data." TAP CHI SINH HOC 40, no. 1 (January 25, 2018): 39–50. http://dx.doi.org/10.15625/0866-7160/v40n1.9200.
Full textDenisenko, Yury A., Alexander V. Gusakov, Aleksandra M. Rozhkova, Ivan N. Zorov, Anna V. Bashirova, Veronika Yu Matys, Vitaly A. Nemashkalov, and Arkady P. Sinitsyn. "Protein engineering of GH10 family xylanases for gaining a resistance to cereal proteinaceous inhibitors." Biocatalysis and Agricultural Biotechnology 17 (January 2019): 690–95. http://dx.doi.org/10.1016/j.bcab.2019.01.042.
Full textMiao, Youzhi, Pan Li, Guangqi Li, Dongyang Liu, Irina S. Druzhinina, Christian P. Kubicek, Qirong Shen, and Ruifu Zhang. "Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi." Environmental Microbiology 19, no. 3 (February 6, 2017): 1054–64. http://dx.doi.org/10.1111/1462-2920.13614.
Full textTirion, Monique M. "On the sensitivity of protein data bank normal mode analysis: an application to GH10 xylanases." Physical Biology 12, no. 6 (November 24, 2015): 066013. http://dx.doi.org/10.1088/1478-3975/12/6/066013.
Full textLi, Zhongyuan, Xianli Xue, Heng Zhao, Peilong Yang, Huiying Luo, Junqi Zhao, Huoqing Huang, and Bin Yao. "A C-Terminal Proline-Rich Sequence Simultaneously Broadens the Optimal Temperature and pH Ranges and Improves the Catalytic Efficiency of Glycosyl Hydrolase Family 10 Ruminal Xylanases." Applied and Environmental Microbiology 80, no. 11 (March 21, 2014): 3426–32. http://dx.doi.org/10.1128/aem.00016-14.
Full textGusakov, Alexander V., and Boris B. Ustinov. "ORIGINAL RESEARCH: Assaying sensitivity of fungal xylanases to proteinaceous inhibitors from a rye extract: Two GH10 family xylanases resistant to XIP-like inhibitors." Industrial Biotechnology 5, no. 2 (June 2009): 104–9. http://dx.doi.org/10.1089/ind.2009.5.104.
Full textLai, Ming-Wei, and Ruey-Fen Liou. "Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica." Current Genetics 64, no. 4 (February 22, 2018): 931–43. http://dx.doi.org/10.1007/s00294-018-0814-z.
Full textLiu, Fuchuan, Yong Xue, Jian Liu, Lihui Gan, and Minnan Long. "ACE3 as a master transcriptional factor regulates cellulase and xylanase production in Trichoderma orientalis EU7-22." BioResources 13, no. 3 (July 23, 2018): 6790–801. http://dx.doi.org/10.15376/biores.13.3.6790-6801.
Full textvan Gool, M. P., G. C. J. van Muiswinkel, S. W. A. Hinz, H. A. Schols, A. P. Sinitsyn, and H. Gruppen. "Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans." Bioresource Technology 119 (September 2012): 123–32. http://dx.doi.org/10.1016/j.biortech.2012.05.117.
Full textŠuchová, Katarína, Andrej Chyba, Zuzana Hegyi, Martin Rebroš, and Vladimír Puchart. "Yeast GH30 Xylanase from Sugiyamaella lignohabitans Is a Glucuronoxylanase with Auxiliary Xylobiohydrolase Activity." Molecules 27, no. 3 (January 25, 2022): 751. http://dx.doi.org/10.3390/molecules27030751.
Full textRangel Pedersen, Ninfa, Morten Tovborg, Abdoreza Soleimani Farjam, and Eduardo Antonio Della Pia. "Multicomponent carbohydrase system from Trichoderma reesei: A toolbox to address complexity of cell walls of plant substrates in animal feed." PLOS ONE 16, no. 6 (June 4, 2021): e0251556. http://dx.doi.org/10.1371/journal.pone.0251556.
Full textSainz-Polo, María Ángela, Susana Valeria Valenzuela, F. Javier Pastor, and Julia Sanz-Aparicio. "Crystallization and preliminary X-ray diffraction analysis of Xyn30D fromPaenibacillus barcinonensis." Acta Crystallographica Section F Structural Biology Communications 70, no. 7 (June 19, 2014): 963–66. http://dx.doi.org/10.1107/s2053230x14012035.
Full textWang, Ruijun, Zhengchu Liu, Lifeng Cheng, Shengwen Duan, Xiangyuan Feng, Ke Zheng, Yi Cheng, and Jie Zeng. "A novel endo-β-1,4-xylanase GH30 from Dickeya dadantii DCE-01: Clone, expression, characterization, and ramie biological degumming function." Textile Research Journal 89, no. 4 (December 26, 2017): 463–72. http://dx.doi.org/10.1177/0040517517748511.
Full textLiu, Liangwei, Xiaofeng Sun, Pengfei Yan, Linmin Wang, and Hongge Chen. "Non-Structured Amino-Acid Impact on GH11 Differs from GH10 Xylanase." PLoS ONE 7, no. 9 (September 21, 2012): e45762. http://dx.doi.org/10.1371/journal.pone.0045762.
Full textAnye, Valentine, Robert F. Kruger, and Wolf-Dieter Schubert. "Structural and biophysical characterization of the multidomain xylanase Xyl." PLOS ONE 17, no. 6 (June 3, 2022): e0269188. http://dx.doi.org/10.1371/journal.pone.0269188.
Full textMoreno-Sánchez, Ismael, María Dolores Pejenaute-Ochoa, Blanca Navarrete, Ramón R. Barrales, and José I. Ibeas. "Ustilago maydis Secreted Endo-Xylanases Are Involved in Fungal Filamentation and Proliferation on and Inside Plants." Journal of Fungi 7, no. 12 (December 15, 2021): 1081. http://dx.doi.org/10.3390/jof7121081.
Full textHu, Jinguang, and Jack N. Saddler. "Why does GH10 xylanase have better performance than GH11 xylanase for the deconstruction of pretreated biomass?" Biomass and Bioenergy 110 (March 2018): 13–16. http://dx.doi.org/10.1016/j.biombioe.2018.01.007.
Full textZhu, Weijia, Liqin Qin, Youqiang Xu, Hongyun Lu, Qiuhua Wu, Weiwei Li, Chengnan Zhang, and Xiuting Li. "Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001." Foods 12, no. 4 (February 18, 2023): 879. http://dx.doi.org/10.3390/foods12040879.
Full textValenzuela, Susana Valeria, Pilar Diaz, and F. I. Javier Pastor. "Modular Glucuronoxylan-Specific Xylanase with a Family CBM35 Carbohydrate-Binding Module." Applied and Environmental Microbiology 78, no. 11 (March 23, 2012): 3923–31. http://dx.doi.org/10.1128/aem.07932-11.
Full textDang, Yahui, Mingqi Liu, and Xiaoqian Wu. "Recombinant rice xylanase-inhibiting protein inhibits GH11 endo-xylanases through competitive inhibition." Protein Expression and Purification 156 (April 2019): 17–24. http://dx.doi.org/10.1016/j.pep.2018.12.008.
Full textIvaldi, Corinne, Mariane Daou, Laurent Vallon, Alexandra Bisotto, Mireille Haon, Sona Garajova, Emmanuel Bertrand, et al. "Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity." Microorganisms 9, no. 7 (July 12, 2021): 1484. http://dx.doi.org/10.3390/microorganisms9071484.
Full textŠuchová, Katarína, Vladimír Puchart, Nikolaj Spodsberg, Kristian B. R. Mørkeberg Krogh, and Peter Biely. "Catalytic Diversity of GH30 Xylanases." Molecules 26, no. 15 (July 27, 2021): 4528. http://dx.doi.org/10.3390/molecules26154528.
Full textAnand, Deepsikha, Jeya Nasim, Sangeeta Yadav, and Dinesh Yadav. "Bioinformatics Insights Into Microbial Xylanase Protein Sequences." Biosciences, Biotechnology Research Asia 15, no. 2 (June 27, 2018): 275–94. http://dx.doi.org/10.13005/bbra/2631.
Full textDang, Ya-hui, Ming-qi Liu, and Qian Wang. "Inhibiting the Catalytic Activity of Family GH11 Xylanases by Recombinant Rice Xylanase-Inhibiting Protein." Catalysis Letters 148, no. 7 (May 26, 2018): 2139–48. http://dx.doi.org/10.1007/s10562-018-2431-3.
Full textKim, Do Young, Jonghoon Kim, Yung Mi Lee, Jong Suk Lee, Dong-Ha Shin, Bon-Hwan Ku, Kwang-Hee Son, and Ho-Yong Park. "Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-Xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433." Biomolecules 11, no. 5 (April 30, 2021): 680. http://dx.doi.org/10.3390/biom11050680.
Full textSt John, Franz J., Diane Dietrich, Casey Crooks, Edwin Pozharski, Javier M. González, Elizabeth Bales, Kennon Smith, and Jason C. Hurlbert. "A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity." Acta Crystallographica Section D Biological Crystallography 70, no. 11 (October 23, 2014): 2950–58. http://dx.doi.org/10.1107/s1399004714019531.
Full textKim, Do Young, Mi Kyoung Han, Doo-Sang Park, Jong Suk Lee, Hyun-Woo Oh, Dong-Ha Shin, Tae-Sook Jeong, et al. "Novel GH10 Xylanase, with a Fibronectin Type 3 Domain, from Cellulosimicrobium sp. Strain HY-13, a Bacterium in the Gut of Eisenia fetida." Applied and Environmental Microbiology 75, no. 22 (September 18, 2009): 7275–79. http://dx.doi.org/10.1128/aem.01075-09.
Full text