To see the other types of publications on this topic, follow the link: Germanium poreux.

Journal articles on the topic 'Germanium poreux'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Germanium poreux.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova, and S. A. Gavrilov. "RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON." Journal of Applied Spectroscopy 89, no. 5 (September 21, 2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Full text
Abstract:
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the composition of thin silicon/germanium alloy films formed by changing the temperature and duration of RTA. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll, and Rolf Brendel. "Porous germanium multilayers." physica status solidi (c) 8, no. 6 (April 7, 2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov, and Sergey Gavrilov. "Germanium electrodeposition into porous silicon for silicon-germanium alloying." Materialia 26 (December 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amato, G., A. M. Rossi, L. Boarino, and N. Brunetto. "On the role of germanium in porous silicon-germanium luminescence." Philosophical Magazine B 76, no. 3 (September 1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xiu, Wei Guo, Qian Wan, and Jianmin Ma. "Porous amorphous Ge/C composites with excellent electrochemical properties." RSC Advances 5, no. 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad, and Mark J. MacLachlan. "Chiral nematic porous germania and germanium/carbon films." Nanoscale 7, no. 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Full text
Abstract:
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO2/CNC composites, which were converted to semiconducting, mesoporous GeO2/C and Ge/C replicas.
APA, Harvard, Vancouver, ISO, and other styles
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu, and Dihua Wang. "Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach." Journal of Materials Chemistry A 3, no. 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll, and R. Brendel. "Lift-off of Porous Germanium Layers." Journal of The Electrochemical Society 158, no. 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Isaiev, M., S. Tutashkonko, V. Jean, K. Termentzidis, T. Nychyporuk, D. Andrusenko, O. Marty, R. M. Burbelo, D. Lacroix, and V. Lysenko. "Thermal conductivity of meso-porous germanium." Applied Physics Letters 105, no. 3 (July 21, 2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Platonov, Nikolay, Nail Suleimanov, and Valery Bazarov. "Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors." E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Full text
Abstract:
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was the investigation of the electrophysical characteristics of samples of nanostructured porous germanium (Ge) depending on the implantation dose and surface morphology. The scientific novelty of this research lies in the search the structures with the highest effective surface area and electronic conductivity, capable of multiplying the energy capacity and specific power of ECC. Methods: The samples of amorphous Ge were grown on dielectric single-crystal substrates of Al2O3. The thickness of samples was 600 and 1000 nm. The magnetron sputtering and ion implantation methods were used to growth these structures. The irradiation with Ge+ ions produced with an energy of 40 keV and the range of implantation doses varied from 2·1016 to 12•1016 ion / cm2. The study of electrical properties was carried out on the Hall installation HL55PC at the NPP KVANT in Moscow. The following parameters were measured: the sheet concentration of carriers in the near-surface layer, electrical resistance, mobility of the charge carriers, Hall coefficient. As a result, the dependences of carriers concentration and their mobility as the function of the implantation dose and thickness of the samples of nanostructured porous germanium were determined, and the results were analyzed. Results: It was found that ion implantation of single-crystal germanium leads to an increase in the carrier concentration in the near-surface layer. To sum up, the most suitable material as an electrode for ECC is the porous germanium with the maximum dose of ion implantation and the largest thickness. The maximum sheet carrier concentration that was obtained in the study for Ge is 1017 cm-2.
APA, Harvard, Vancouver, ISO, and other styles
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, Wenzheng Zhou, Wei Bai, Tie Lin, and Junhao Chu. "Fabrication and characteristics of porous germanium films." Science and Technology of Advanced Materials 10, no. 6 (December 2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Steinbach, T., and W. Wesch. "Porous structure formation in ion irradiated germanium." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (January 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fässler, Thomas F. "Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure." Angewandte Chemie International Edition 46, no. 15 (April 2, 2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong, and Yan Yu. "Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries." Journal of Materials Chemistry A 4, no. 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park, and Chan-Jin Park. "Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries." Journal of Materials Chemistry A 3, no. 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Full text
Abstract:
Germanium oxide (GeO2), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
APA, Harvard, Vancouver, ISO, and other styles
16

Choi, Hee Cheul, and Jillian M. Buriak. "Preparation and functionalization of hydride terminated porous germanium." Chemical Communications, no. 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Akkari, Emna, Oualid Touayar, and Brahim Bessais. "Reflectivity, Absorption and Structural Studies of Porous Germanium." Sensor Letters 9, no. 6 (December 1, 2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Guzmán, David, Miguel Cruz, and Chumin Wang. "Electronic and optical properties of ordered porous germanium." Microelectronics Journal 39, no. 3-4 (March 2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Miyazaki, S., K. Sakamoto, K. Shiba, and M. Hirose. "Photoluminescence from anodized and thermally oxidized porous germanium." Thin Solid Films 255, no. 1-2 (January 1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng, and T. C. Chu. "Nanoparticle-Assisted Growth of Porous Germanium Thin Films." Advanced Materials 16, no. 13 (July 5, 2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya, and S. Bayliss. "Observation of nanocrystals in porous stain-etched germanium." physica status solidi (a) 197, no. 1 (May 2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev, and Yu N. Osin. "Formation of Porous Germanium Layers by Silver-Ion Implantation." Technical Physics Letters 44, no. 4 (April 2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, A. I. Gumarov, L. R. Tagirov, I. M. Klimovich, and A. L. Stepanov. "Porous germanium with copper nanoparticles formed by ion implantation." Vacuum 166 (August 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rogov, A. M., A. I. Gumarov, L. R. Tagirov, and A. L. Stepanov. "Swelling and sputtering of porous germanium by silver ions." Composites Communications 16 (December 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov. "Porous germanium with Ag nanoparticles formed by ion implantation." Journal of Physics: Conference Series 1092 (September 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais, and J. Benbrahim. "Study and characterization of porous germanium for radiometric measurements." physica status solidi (c) 6, no. 7 (July 2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin, and A. V. Latyshev. "New method of porous Ge layer fabrication: structure and optical properties." Физика и техника полупроводников 52, no. 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Full text
Abstract:
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2<Ge–NCs> heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2<Ge–NCs> heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, which was ~70 and ~80%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
28

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev, and V. V. Vorob’ev. "Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation." Nanotechnologies in Russia 12, no. 9-10 (September 2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo, and S. C. Wang. "Phase transformation and optical characteristics of porous germanium thin film." Thin Solid Films 516, no. 10 (March 2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Abdullahi, Yusuf Zuntu, and Fatih Ersan. "Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer." RSC Advances 13, no. 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, Yannick Dumeige, Loїc Bodiou, Mohammed Guendouz, Abdelouahab Zegadi, and Joël Charrier. "Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared." Sensors 22, no. 3 (January 22, 2022): 844. http://dx.doi.org/10.3390/s22030844.

Full text
Abstract:
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive layers and their respective porosity on the multilayer structures reflectance spectrum is investigated while favoring low layer thicknesses and thus the ease of multilayers manufacturing. The suitability of these microcavities for mid-infrared SF6 gas sensing is then numerically assessed. Using an asymmetrical microcavity porous structure, a sensitivity of 0.01%/ppm and a limit of detection (LOD) around 1 ppb for the SF6 gas detection are calculated. Thanks to both the porous nature allowing gases to easily infiltrate the overall structure and Ge mid-infrared optical properties, a theoretical detection limit nearly 1000 times lower than the current state of the art is simulated.
APA, Harvard, Vancouver, ISO, and other styles
32

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, Naser M. Ahmed, Abdulsalam Abuelsamen, Osama Abu Noqta, Ghaseb N. Makhadmeh, Amal Mohamed Ahmed Ali, and Almutery Aml. "Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection." WSEAS TRANSACTIONS ON ELECTRONICS 15 (December 10, 2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Full text
Abstract:
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal conditions for the porous silicon (PS) and Ge-doped porous silicon (Ge-PS) samples were (90V, 100mA, 1s) and (100V, 10mA, 0.5s), respectively.
APA, Harvard, Vancouver, ISO, and other styles
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu, and Xiangdong Meng. "Amorphous porous germanium anode with variable dimension for lithium ion batteries." Journal of Materials Science 56, no. 27 (June 28, 2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev, and Y. N. Osin. "Porous germanium formed by low energy high dose Ag + -ion implantation." Vacuum 152 (June 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, S. S., and R. E. Hummel. "Comparison of photoluminescence behavior of porous germanium and spark-processed Ge." Journal of Luminescence 86, no. 1 (February 2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M. Faustini, and D. Grosso. "Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates." ECS Transactions 33, no. 16 (December 17, 2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xiao, Ying, Minhua Cao, Ling Ren, and Changwen Hu. "Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance." Nanoscale 4, no. 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe, and Paul C. McIntyre. "Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon." Small 6, no. 9 (April 21, 2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke, and Xiao-Dong Zhou. "Porous germanium enabled high areal capacity anode for lithium-ion batteries." Composites Part B: Engineering 163 (April 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kartopu, G., and Y. Ekinci. "Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films." Thin Solid Films 473, no. 2 (February 2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao, and Deren Yang. "Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries." RSC Advances 5, no. 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Akkari, Emna, Oualid Touayar, F. Javier Del Campo, and Josep Montserrat. "Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation." International Journal of Nanotechnology 10, no. 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya, and S. Bayliss. "Raman and X-ray studies of nanocrystals in porous stain-etched germanium." Thin Solid Films 437, no. 1-2 (August 2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wolter, S. D., T. Tyler, and N. M. Jokerst. "Surface characterization of oxide growth on porous germanium films oxidized in air." Thin Solid Films 522 (November 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yuan, Ye, Jia Liu, Hao Ren, Xiaofei Jing, Wei Wang, Heping Ma, Fuxing Sun, and Huijun Zhao. "Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework." Journal of Materials Research 27, no. 10 (January 9, 2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova, and S. A. Gavrilov. "Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon." Journal of Applied Spectroscopy 89, no. 5 (November 2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, Tadeáš Hanuš, Ahmed Ayari, Gwenaëlle Hamon, Jinyoun Cho, Kristof Dessein, Maxime Darnon, and Abderraouf Boucherif. "Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse." Materials Science in Semiconductor Processing 168 (December 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, Dmitry Goroshko, Olga Goroshko, Ilia Tsiniaikin, Vitaly Bondarenko, Maksim Murtazin, Alexey Dronov, and Sergey Gavrilov. "Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing." Materials Science in Semiconductor Processing 187 (March 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО, and Л. С. ВОЛКОВА. "STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON." Автометрия 59, no. 6 (December 29, 2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Full text
Abstract:
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводности плёнок, которые составляют 7-9 и 3-6 Вт / (м ⋅ К) для сплошной и пористой плёнок соответственно. Низкая теплопроводность пористой плёнки объясняется дополнительнымфононным рассеянием на развитой поверхности пор. Перспективность применения таких плёнок в термоэлектрических преобразователях обеспечивается простотой и масштабируемостью способа изготовления сплава, а также его низкой теплопроводностью. Solid and porous films of the Si 1-xGex alloys with a germanium content of about 40% and a thickness of 3-4 μm, formed on single-crystal silicon by electrochemical deposition of germanium into a porous silicon matrix followed by rapid thermal annealing at a temperature of 950 °C, are studied by Raman spectroscopy, optical spectroscopy, and scanning electron microscopy. Based on the Raman spectra taken in the Stokes and anti-Stokes frequency regions, using Boltzmann statistics and the Fourier thermal conductivity law, the thermal conductivity of the films is determined, which is found to be 7-9 and 3-6 W/(m×K) for a continuous and porous film, respectively. The low thermal conductivity of the porous film is explained by additional phonon scattering from the developed pore surface. The prospect of using such films in thermoelectric converters is ensured by the simplicity and scalability of the method for manufacturing the alloy, as well as its low thermal conductivity.
APA, Harvard, Vancouver, ISO, and other styles
50

Zegadi, Rami, Nathalie Lorrain, Loїc Bodiou, Mohammed Guendouz, Lahcene Ziet, and Joël Charrier. "Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides." Journal of Optics 23, no. 3 (February 18, 2021): 035102. http://dx.doi.org/10.1088/2040-8986/abdf69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography