Academic literature on the topic 'Germanium diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Germanium diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Germanium diffusion"

1

Yang, Jun, Yunxia Ping, Wei Liu, Wenjie Yu, Zhongying Xue, Xing Wei, Aimin Wu, and Bo Zhang. "Ti Interlayer Mediated Uniform NiGe Formation under Low-Temperature Microwave Annealing." Metals 11, no. 3 (March 15, 2021): 488. http://dx.doi.org/10.3390/met11030488.

Full text
Abstract:
The reactions between nickel and germanium are investigated by the incorporation of a titanium interlayer on germanium (100) substrate. Under microwave annealing (MWA), the nickel germanide layers are formed from 150 °C to 350 °C for 360 s in ambient nitrogen atmosphere. It is found that the best quality nickel germanide is achieved by microwave annealing at 350 °C. The titanium interlayer becomes a titanium cap layer after annealing. Increasing the diffusion of Ni by MWA and decreasing the diffusion of Ni by Ti are ascribed to induce the uniform formation of nickel germanide layer at low MWA temperature.
APA, Harvard, Vancouver, ISO, and other styles
2

Chroneos, A., and R. V. Vovk. "Palladium diffusion in germanium." Journal of Materials Science: Materials in Electronics 26, no. 6 (March 7, 2015): 3787–89. http://dx.doi.org/10.1007/s10854-015-2903-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Iwasaki, T. "Molecular-dynamics study of interfacial diffusion between high-permittivity gate dielectrics and germanium substrates." Journal of Materials Research 20, no. 5 (May 2005): 1300–1307. http://dx.doi.org/10.1557/jmr.2005.0158.

Full text
Abstract:
The stability of interfaces with germanium, which has recently been discussed as a replacement for silicon in ultra-large-scale integrated circuits (ULSIs), was studied. Interfacial oxygen diffusion from high-permittivity gate dielectrics (ZrO2 and HfO2) into germanium substrates must be suppressed to prevent the formation of interfacial layers between the gate dielectrics and the germanium substrates. Oxygen diffusion was simulated through a molecular-dynamics technique that takes into account many-body interactions and charge transfer between different elements. The simulation results show that the addition of yttrium is effective in suppressing interfacial oxygen diffusion at the ZrO2/germanium interfaces. On the other hand, the addition of yttrium is not effective in suppressing interfacial oxygen diffusion at the HfO2/germanium interfaces. The results also show that the diffusion at the ZrO2/Ge(111) and HfO2/Ge(111) interfaces is much more suppressed than the diffusion at the ZrO2/Ge(001) and HfO2/Ge(001) interfaces.
APA, Harvard, Vancouver, ISO, and other styles
4

Strohm, A., S. Matics, and W. Frank. "Diffusion of Gold in Germanium." Defect and Diffusion Forum 194-199 (April 2001): 629–34. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Portavoce, A., O. Abbes, Y. Rudzevich, L. Chow, V. Le Thanh, and C. Girardeaux. "Manganese diffusion in monocrystalline germanium." Scripta Materialia 67, no. 3 (August 2012): 269–72. http://dx.doi.org/10.1016/j.scriptamat.2012.04.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doyle, J. P., A. Yu Kuznetsov, and B. G. Svensson. "Copper diffusion in amorphous germanium." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, no. 4 (July 1998): 2604–7. http://dx.doi.org/10.1116/1.581389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tahini, H. A., A. Chroneos, S. C. Middleburgh, U. Schwingenschlögl, and R. W. Grimes. "Ultrafast palladium diffusion in germanium." Journal of Materials Chemistry A 3, no. 7 (2015): 3832–38. http://dx.doi.org/10.1039/c4ta06210h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kobeleva, Svetlana P., Ilya M. Anfimov, Andrei V. Turutin, Sergey Yu Yurchuk, and Vladimir M. Fomin. "Coordinate dependent diffusion analysis of phosphorus diffusion profiles in gallium doped germanium." Modern Electronic Materials 4, no. 3 (September 1, 2018): 113–17. http://dx.doi.org/10.3897/j.moem.4.3.39536.

Full text
Abstract:
We have analyzed phosphorus diffusion profiles in an In0.01Ga0.99As/In0.56Ga0.44P/Ge germanium structure during phosphorus co-diffusion with gallium for synthesis of the germanium subcell in multi-junction solar cells.. Phosphorus diffused from the In0.56Ga0.44P layer simultaneously with gallium diffusion into the heavily gallium doped germanium substrate thus determining the specific diffusion conditions. Most importantly, gallium and phosphorus co-diffusion produces two p–n junctions instead of one. The phosphorus diffusion profiles do not obey Fick’s laws. The phosphorus diffusion coefficient DP depth distribution in the specimen has been studied using two methods, i.e., the Sauer–Freise modification of the Boltzmann–Matano method and the coordinate dependent diffusion method. We show that allowance for the drift component in the coordinate dependent diffusion method provides a better DP agreement with literary data. Both methods suggest the DP tendency to grow at the heterostructure boundary and to decline closer to the main p–n junction. The DP growth near the surface p–n junction the field of which is directed toward the heterostructure boundary and its decline near the main p–n junction with an oppositely directed field, as well as the observed DP growth with the electron concentration, suggest that the negatively charged VGeP complexes diffuse in the heterostructure by analogy with one-component diffusion.
APA, Harvard, Vancouver, ISO, and other styles
9

Eguchi, S., C. N. Chleirigh, O. O. Olubuyide, and J. L. Hoyt. "Germanium-concentration dependence of arsenic diffusion in silicon germanium alloys." Applied Physics Letters 84, no. 3 (January 19, 2004): 368–70. http://dx.doi.org/10.1063/1.1641169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khadir, Abdelkader, Nouredine Sengouga, and Mohamed Kamel Abdelhafidi. "Germanium Gradient Optimization for High-Speed Silicon Germanium Hetero-Junction Bipolar Transistors." Annals of West University of Timisoara - Physics 61, no. 1 (December 1, 2019): 22–32. http://dx.doi.org/10.2478/awutp-2019-0002.

Full text
Abstract:
AbstractThe effect of germanium trapezoidal profile shape on the direct current (DC) current gain (βF), cut-off frequency (fT) and maximum oscillation frequency (fMAX) of silicon-germanium (SiGe) hetero-junction bipolar transistors (HBTs) has been investigated. The energy balance (EB), hydrodynamic (HD) and drift-diffusion (DD) physical transport models in SILVACO technology computer aided design (T-CAD) simulator were used. It was found that the current gain values using energy balance model are higher than hydrodynamic and much higher than those corresponding to drift-diffusion. Moreover, decreasing the germanium gradient slope towards the collector side of the base enhances the maximum oscillation frequencies using HD and EB models whilst, they remain stable for DD model.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Germanium diffusion"

1

Strohm, Andreas. "Diffusion von Gold in Germanium." [S.l. : s.n.], 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8349338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paine, Andrew David Nicholas. "Antimony diffusion in silicon-germanium alloys." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Razali, M. A. "Phosphorus activation and diffusion in germanium." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807317/.

Full text
Abstract:
Currently, the International Technology Roadmap for Semiconductors (ITRS) is targeting the 22nm technology node in accordance with Moore’s Law. The low mobility of silicon makes it inherently unsuitable as a channel material for devices at this scale, and therefore a significant amount of research is being focused at re-evaluating germanium as an alternative substrate. Germanium offers a higher mobility than that of silicon and is compatible with existing silicon device manufacturing techniques. P-type ultra shallow junction (USJ) implemented in germanium exhibit low leakage currents and low sheet resistivity, satisfying the ITRS demands. However, N-type USJ formed using phosphorus as the dopant species do not yet satisfy these requirements due to a high diffusivity and low levels of electrical activation. This is due to the fact that at high phosphorus concentrations, the difference between the equilibrium solid solubility limit and the effective solid solubility is related to the formation of phosphorus-vacancy complexes. These evolve into electrically inactive clusters, by capturing the additional phosphorus resulting in an overall reduction of the electrical activity of the phosphorus population. Another problem is phosphorus out-diffusion during annealing process. In order to overcome these problems, novel techniques are currently being research. This thesis investigates the phosphorus activation and diffusion characteristics as a function of implant temperature and co-implantation of low dose germanium. The samples were subsequently subjected to an isochronal annealing before Hall Effect and SIMS analyses were performed to characterize the electrical activation and diffusion respectively. The results from the studies indicate that it is a non trivial process for germanium to replace silicon in order to become the next dominant substrate.
APA, Harvard, Vancouver, ISO, and other styles
4

Uppal, Suresh. "Diffusion of boron and silicon in germanium." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Almazouzi, Abderrahim. "Diffusion volumique et intergranulaire de l'or, de l'étain et du germanium dans le germanium." Aix-Marseille 3, 1989. http://www.theses.fr/1989AIX30047.

Full text
Abstract:
On propose un mecanisme lacunaire pour la diffusion du germanium et de l'etain. La diffusion tres rapide de l'or est expliquee au moyen d'un mecanisme dissociatif faisant intervenir des paires (au#i-l). Dans les joints de grains, les parametres d'autodiffusion peuvent etre expliques par un mecanisme lacunaire a condition d'envisager une tres forte diminution de l'enthalpie de formation de ce defaut. Pour l'etain, les resultats impliquent un mecanisme de diffusion lacunaire. Pour l'or, on doit envisager un mecanisme dissociatif
APA, Harvard, Vancouver, ISO, and other styles
6

Koffel, Stéphane. "Implantation, diffusion et activation des dopants dans le germanium." Grenoble INPG, 2008. http://www.theses.fr/2008INPG0094.

Full text
Abstract:
Le germanium est un candidat pour la réalisation des futurs transistors MOS, du fait de la plus grande mobilité des porteurs par rapport au silicium. Il a été abandonné il y a une quarantaine d'années au profit du silicium et doit donc être redécouvert. Le but de ce travail est de comprendre les mécanismes mis en jeu au cours du dopage du germanium. Nous déterminons d'abord que le modèle de la densité d'énergie critique permet de prédire la formation et l'extension des couches amorphes dans le germanium. La vitesse d'épitaxie en phase solide est ensuite mesurée et pour la première fois dans le germanium, nous observons des défauts end-of-range. Ceux-ci sont de nature interstitielle. Le phosphore enfin permet d'obtenir des jonctions plus fines et de meilleurs niveaux d'activation que l'arsenic. Sa diffusion est simulée, avec un modèle prenant en compte l'excès d'interstitiels généré par implantation. Un phénomène de diffusion accélérée est ainsi mis en évidence
Germanium is a candidate for the realization of MOS transistors, because of its higher carrier mobility compared to silicon. As it was replaced by silicon fourty years ago it must be rediscovered. The aim of this work is to understand the mecanisms of germanium doping. We show that the critical da mage energy density model allows to predict the formation and thickness of amorphous layers in germanium, Then the solid phase epitaxy velocity is mesured and end-of-range defects are observed in germanium for the first time. They are made 01 interstitials. Eventually we determine that phosphorus allows to achive shallower junctions and better activation levels than arsenic Phosphorus diffusion is simulated with a model taking into account the excess of interstitials generated during implantation. This allows to describe an enhanced diffusion phenomenon
APA, Harvard, Vancouver, ISO, and other styles
7

Minke, Mary Ann. "The diffusion and segregation coefficient of germanium in silica." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280235.

Full text
Abstract:
This research was instigated to study non-equilibrium segregation effects during the crystallization of a glass. The non-equilibrium segregation coefficient has been experimentally measured in a variety of alloys including silicon and it has been observed to increase by orders of magnitude as a function of growth rate. Monte Carlo modeling has successfully simulated this effect and has led to the analytical Jackson equation which describes it. Glass crystallization usually takes place far from equilibrium and glasses have the advantage that the glass-crystal interface does not move during quenching, and so the segregation effects can be evaluated at room temperature. The germanium in silica system was chosen for this study because germanium should substitute for the silicon and the glass matrix, and diffuse slowly enough in silica to permit evaluation of the non-equilibrium segregation. Samples were prepared by implanting silica glass with germanium, and then annealing to permit diffusion and to promote crystallization. The samples were analyzed with RBS before and after annealing to determine the distribution of germanium. Initially, the implanted germanium peak was observed to shift towards the surface which is attributed to ion drift in an electric field. This effect was eliminated with a pre-anneal which incorporated the germanium ions into the glass matrix. Since the non-equilibrium segregation depends on the dopant diffusion rate, the diffusion coefficient of germanium in amorphous and crystalline silica was measured. The diffusion coefficient in the silica glass was found to be DG=47exp(-5.8x 10⁴/T) cm²/s and the diffusion coefficient in the silica crystal was found to be DC=360exp(-(6.9x 10⁴/T)) cm²/s . The non-equilibrium segregation coefficient was evaluated based on the distribution of the dopant after crystallization, including the build-up of dopant at the crystal/glass interface. When fitted to the Jackson equation the equilibrium distribution coefficient was found to be k(eq) = 0.01. The non-equilibrium segregation coefficient increased with crystallization rate.
APA, Harvard, Vancouver, ISO, and other styles
8

Strohm, Andreas. "Selbstdiffusion in Silizium-Germanium-Legierungen." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10316328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janke, Colin. "Density functional theory modelling of intrinsic and dopant-related defects in Ge and Si." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/46913.

Full text
Abstract:
This thesis covers the application of the local density approximation of density functional theory to a variety of related processes in germanium and silicon. Effort has been made to use calculated results to explain experimentally observed phenomena. The behaviour of vacancies and vacancy clusters in germanium has been studied as these are the dominant intrinsic defects in the material. Particular attention was paid to the annealing mechanisms for the divacancy as a precursor to the growth of the larger clusters, for which the electrical properties and formation energies have been studied. Some preliminary work is also presented on the germanium self-interstitial structure and migration paths. Attention was then turned to a selection of dopant-vacancy defects in both silicon and germanium. An effort was made to explain recent experimental observations in silicon through investigating a number of defects related to the arsenic E-centre. Following this, the properties of donor-vacancy clusters in germanium were studied, and comparison with the results calculated for silicon suggest a significant parallel between the behaviour of the defects and dopants in the two materials. Finally, extensive work was performed on the diffusion of phosphorus and boron in germanium. Diffusion of both dopants was studied via interstitial and vacancy mediated paths as well as by a correlated exchange path not involving any intrinsic defects. The results obtained confirmed current theories of the mechanisms involved in the diffusion of the two defects, while also expanding the knowledge of other paths and giving Fermi level dependences for the energy and mechanism for diffusion of the two defects. Boron diffusion was found to exhibit strong Meyer-Neldel rule effects, which are used to explain the unusually high diffusivity prefactors and energy barriers calculated from experimental measurements for this dopant.
APA, Harvard, Vancouver, ISO, and other styles
10

Canneaux, Thomas. "Étude de la diffusion des dopants usuels dans le germanium." Strasbourg, 2009. http://www.theses.fr/2009STRA6191.

Full text
Abstract:
La technologie planar silicium doit aujourd’hui faire face à des limites physiques. Pour contourner celles-ci, un des moyens consiste à remplacer le silicium par un autre semi-conducteur dont la mobilité des porteurs est plus élevée. Le germanium est alors un bon candidat. Pour la fabrication de circuits performants, connaître les vitesses de diffusion des dopants dans le matériau est primordial. Dans ce but, ce travail a été consacré à l’étude de la diffusion du gallium, de l’indium, du phosphore, de l’arsenic et de l’antimoine dans le germanium. Nous avons déterminé les coefficients de diffusion de ces dopants à l’aide d’un nouveau modèle permettant de décrire correctement leur déplacement en faisant intervenir la lacune triplement chargée négativement. Les techniques de dopage du germanium différant sensiblement de celles du silicium, nous avons dû adapter les méthodes couramment mises en œuvre au laboratoire. La diffusion dans le germanium s’effectue via les lacunes neutres, doublement et triplement négativement chargées (les deux premières dans un matériau de type P, les deux dernières dans du type N). Ces mécanismes sont assez différents de ceux établis pour le silicium. Nous avons également étudié l’influence des recuits rapides, d’une encapsulation par du SiO2 ou du Si3N4 ainsi que celle des défauts d’implantation. L’encapsulation et les différents types de recuits n’influencent pas la diffusion mais la première permet de limiter la perte de dose durant les traitements thermiques
Presently, silicon planar technology is facing physical limits. To overcome these limits, we can replace silicon by another semiconductor material with higher carriers’ mobility, in this case germanium is a good candidate. To perform efficient electronic devices, knowledge about diffusion coefficient of dopants in the semiconductor material is needed. In this work, we studied diffusion of gallium, indium, phosphorus, arsenic and antimony in germanium and worked out a new model using the triply negatively charged vacancy to describe their diffusion in germanium and their diffusion coefficients. We also investigated influence of rapid anneals, ion-implantation defects and SiO2 or Si3N4 capped layer. Techniques used to introduce dopants in germanium are quite different than for silicon and diffusion mechanisms differ too. In germanium, diffusion of dopants occurs via neutral, doubly and triply negatively charged vacancies. Capped layers and rapid anneals do not influence diffusion but a capped layer allows to protect the sample and partially avoid out diffusion
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Germanium diffusion"

1

Dolfi, Anna, ed. Giuseppe Dessì tra traduzioni e edizioni. Florence: Firenze University Press, 2013. http://dx.doi.org/10.36253/978-88-6655-364-9.

Full text
Abstract:
Con l’avvicinarsi del centenario della nascita di Giuseppe Dessí, nel 2009, il Comitato delle Celebrazioni ha avviato una capillare attività di diffusione dell’opera dello scrittore in molti paesi europei. E visto che le traduzioni (obiettivo principe del progetto) prevedono una complessa conoscenza dell’autore, del suo stile, del dialogo e dello scarto con la cultura di riferimento, ci si è proposti di studiarle e favorirle ricostruendo non solo la storia e tipicità di un percorso narrativo, ma quella di una difficile ricezione all’estero nel quadro, sub specie Dessí, della presenza, fuori dei confini nazionali, della nostra letteratura del secondo Novecento. Tramite lo spoglio di libri, cataloghi editoriali, riviste, antologie, grazie all’impegno di studiosi e giovani collaboratori di università italiane e straniere, sono adesso la Francia, l’Inghilterra, la Spagna, la Germania, i Paesi Bassi, la Polonia, l’Ungheria, l’Ucraina, la Finlandia, la Svezia… a venire alla ribalta, con le loro predilezioni e preclusioni di lettura, insieme all’Italia, e ai temi, alle storie, ai personaggi dello scrittore a cui questo libro è dedicato.
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Germanium diffusion"

1

Winkelmann, Jochen. "Self-diffusion coefficient of germanium." In Diffusion in Gases, Liquids and Electrolytes, 495. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winkelmann, Jochen. "Diffusion coefficient of gallium in germanium." In Diffusion in Gases, Liquids and Electrolytes, 1298. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_1074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winkelmann, Jochen. "Diffusion coefficient of germanium in mercury." In Diffusion in Gases, Liquids and Electrolytes, 1300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_1076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shinar, J., S. Mitra, X. L. Wu, and R. Shinar. "Experimental Studies of Hydrogen Notion in Hydrogenated Amorphous Silicon and Germanium." In Diffusion in Materials, 573–81. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1976-1_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gusakov, Vasilii E. "General Model of Diffusion of Interstitial Oxygen in Silicon, Germanium and Silicon - Germanium Crystals." In Solid State Phenomena, 413–18. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zandvliet, H. J. W., E. Zoethout, and B. Poelsema. "Diffusion of Dimers on Silicon and Germanium (001) Surfaces." In Atomistic Aspects of Epitaxial Growth, 75–85. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0391-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simoen, Eddy, K. Opsomer, C. Claeys, Karen Maex, C. Detavernier, R. L. Van Meirhaeghe, and Paul Clauws. "Metal In-Diffusion during Fe and Co-Germanidation of Germanium." In Solid State Phenomena, 47–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-43-4.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frank, W. "Diffusion in Crystalline Silicon and Germanium — the State-of-the-Art in Brief." In Crucial Issues in Semiconductor Materials and Processing Technologies, 383–402. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simoen, Eddy, A. Satta, Marc Meuris, Tom Janssens, T. Clarysse, A. Benedetti, C. Demeurisse, et al. "Defect Removal, Dopant Diffusion and Activation Issues in Ion-Implanted Shallow Junctions Fabricated in Crystalline Germanium Substrates." In Solid State Phenomena, 691–96. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simoen, Eddy, and Cor Claeys. "Diffusion and Solubility of Dopants in Germanium." In Germanium-Based Technologies, 67–96. Elsevier, 2007. http://dx.doi.org/10.1016/b978-008044953-1/50007-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Germanium diffusion"

1

Jang, Joo-Nyung, Kyung-Ho Kwack, Sang-Bae Lee, and Sang-Sam Choi. "Dynamics of Coupling Peaks by H2 Diffusion in Long-Period Grating Filters." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.10.

Full text
Abstract:
It is now well known that germanium-doped silica fibers excellent photosensitivity. A UV source changes the refractive index of the core that contains germanium. A common type of defect formed in germanium-doped silica is GeO or oxygen deficient germania related defect [1], which is bonded to three oxygen atoms, and one bond is made to a silicon/germanium atom. This has been identified as giving rise to absorption centered around 240 nm. But, typically UV induced index changes have been limited to 3×10−5 for standard single mode fibers doped with 3% germania [2]. Increasing GeO2 doping concentration and reducing the amount of oxygen used in the fabrication of the preform also enhance the fiber photosensitivity [2]. In this case, the peak index changes are usually about 5×10−4 or less. More recently, two techniques have been proposed to enhance the photosensitivity of germanium-doped silica fibers : exposure of the material to the flame of an oxygen-hydrogen burner(flame brushing method) [3], and hydrogen loading at low temperature and high pressures [4]. Lemaire [4] showed 5.9×10−3 peak-to-peak index change in the case of 3% GeO2 loaded with 3.3% H2. In long-period grating filter fabrication, hydrogen treatment is needed to get high Δn for coupling a fundamental guided mode to the cladding leaky modes efficiently. Hydrogen treated germano-silicate fiber is unstable because of H2 diffusion process. We present the growth and decay behavior of the coupling peaks induced by H2 diffusion and annealing process for stabilization.
APA, Harvard, Vancouver, ISO, and other styles
2

Edelman, L. A., K. S. Jones, R. G. Elliman, L. M. Rubin, Edmund G. Seebauer, Susan B. Felch, Amitabh Jain, and Yevgeniy V. Kondratenko. "Boron Diffusion in Amorphous Germanium." In ION IMPLANTATION TECHNOLOGY: 17th International Conference on Ion Implantation Technology. AIP, 2008. http://dx.doi.org/10.1063/1.3033598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silvestri, H. H. "Diffusion of Silicon in Germanium." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Kezheng, Kok Hoe Kong, Harold Gamble, and Mervyn Armstrong. "Ultra-shallow emitter formation for germanium bipolar transistor by diffusion from polycrystalline germanium." In 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Yiheng, Hiroshi Yasuda, Howard Ho, Manfred Schiekofer, Bernhard Benna, Rick Wise, and Guangrui Xia. "Effect of thermal nitridation on phosphorus diffusion in SiGe and SiGe:C and its implication on diffusion mechanisms." In 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM). IEEE, 2014. http://dx.doi.org/10.1109/istdm.2014.6874641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shayesteh, M., V. Djara, M. Schmidt, M. White, A. M. Kelleher, and Ray Duffy. "Fluorine implantation in germanium for dopant diffusion control." In ION IMPLANTATION TECHNOLOGY 2012: Proceedings of the 19th International Conference on Ion Implantation Technology. AIP, 2012. http://dx.doi.org/10.1063/1.4766503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

RUZIN, ARIE, NIKOLAI ABROSIMOV, and PIOTR LITOVCHENKO. "STUDY OF LITHIUM DIFFUSION INTO SILICON-GERMANIUM CRYSTALS." In Proceedings of the 10th Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812819093_0102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cai, Yan, Rodolfo Camacho-Aguilera, Jonathan T. Bessette, Lionel C. Kimerling, and Jurgen Michel. "High n++ doped germanium: Dopant in-diffusion and modeling." In 2011 IEEE 8th International Conference on Group IV Photonics (GFP). IEEE, 2011. http://dx.doi.org/10.1109/group4.2011.6053772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahlgren, T. "Fermi-level dependent diffusion of ion-implanted arsenic in germanium." In The CAARI 2000: Sixteenth international conference on the application of accelerators in research and industry. AIP, 2001. http://dx.doi.org/10.1063/1.1395445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hong-Jyh Li, Hong-Jyh Li, T. A. Kirichenko, P. Kohli, S. K. Banerjee, E. Graetz, R. Tichy, and P. Zeitzoff. "Boron retarded diffusion in the presence of indium or germanium." In Proceedings of the 2002 14th International Conference on Ion Implantation Technology. IEEE, 2002. http://dx.doi.org/10.1109/iit.2002.1257929.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Germanium diffusion"

1

Wang, George, Ping Lu, Keshab Sapkota, Andrew Baczewski, Quinn Campbell, Peter Schultz, Kevin Jones, et al. A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1854722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography