Academic literature on the topic 'Germanium diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Germanium diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Germanium diffusion"
Yang, Jun, Yunxia Ping, Wei Liu, Wenjie Yu, Zhongying Xue, Xing Wei, Aimin Wu, and Bo Zhang. "Ti Interlayer Mediated Uniform NiGe Formation under Low-Temperature Microwave Annealing." Metals 11, no. 3 (March 15, 2021): 488. http://dx.doi.org/10.3390/met11030488.
Full textChroneos, A., and R. V. Vovk. "Palladium diffusion in germanium." Journal of Materials Science: Materials in Electronics 26, no. 6 (March 7, 2015): 3787–89. http://dx.doi.org/10.1007/s10854-015-2903-9.
Full textIwasaki, T. "Molecular-dynamics study of interfacial diffusion between high-permittivity gate dielectrics and germanium substrates." Journal of Materials Research 20, no. 5 (May 2005): 1300–1307. http://dx.doi.org/10.1557/jmr.2005.0158.
Full textStrohm, A., S. Matics, and W. Frank. "Diffusion of Gold in Germanium." Defect and Diffusion Forum 194-199 (April 2001): 629–34. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.629.
Full textPortavoce, A., O. Abbes, Y. Rudzevich, L. Chow, V. Le Thanh, and C. Girardeaux. "Manganese diffusion in monocrystalline germanium." Scripta Materialia 67, no. 3 (August 2012): 269–72. http://dx.doi.org/10.1016/j.scriptamat.2012.04.038.
Full textDoyle, J. P., A. Yu Kuznetsov, and B. G. Svensson. "Copper diffusion in amorphous germanium." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, no. 4 (July 1998): 2604–7. http://dx.doi.org/10.1116/1.581389.
Full textTahini, H. A., A. Chroneos, S. C. Middleburgh, U. Schwingenschlögl, and R. W. Grimes. "Ultrafast palladium diffusion in germanium." Journal of Materials Chemistry A 3, no. 7 (2015): 3832–38. http://dx.doi.org/10.1039/c4ta06210h.
Full textKobeleva, Svetlana P., Ilya M. Anfimov, Andrei V. Turutin, Sergey Yu Yurchuk, and Vladimir M. Fomin. "Coordinate dependent diffusion analysis of phosphorus diffusion profiles in gallium doped germanium." Modern Electronic Materials 4, no. 3 (September 1, 2018): 113–17. http://dx.doi.org/10.3897/j.moem.4.3.39536.
Full textEguchi, S., C. N. Chleirigh, O. O. Olubuyide, and J. L. Hoyt. "Germanium-concentration dependence of arsenic diffusion in silicon germanium alloys." Applied Physics Letters 84, no. 3 (January 19, 2004): 368–70. http://dx.doi.org/10.1063/1.1641169.
Full textKhadir, Abdelkader, Nouredine Sengouga, and Mohamed Kamel Abdelhafidi. "Germanium Gradient Optimization for High-Speed Silicon Germanium Hetero-Junction Bipolar Transistors." Annals of West University of Timisoara - Physics 61, no. 1 (December 1, 2019): 22–32. http://dx.doi.org/10.2478/awutp-2019-0002.
Full textDissertations / Theses on the topic "Germanium diffusion"
Strohm, Andreas. "Diffusion von Gold in Germanium." [S.l. : s.n.], 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8349338.
Full textPaine, Andrew David Nicholas. "Antimony diffusion in silicon-germanium alloys." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245004.
Full textRazali, M. A. "Phosphorus activation and diffusion in germanium." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807317/.
Full textUppal, Suresh. "Diffusion of boron and silicon in germanium." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417592.
Full textAlmazouzi, Abderrahim. "Diffusion volumique et intergranulaire de l'or, de l'étain et du germanium dans le germanium." Aix-Marseille 3, 1989. http://www.theses.fr/1989AIX30047.
Full textKoffel, Stéphane. "Implantation, diffusion et activation des dopants dans le germanium." Grenoble INPG, 2008. http://www.theses.fr/2008INPG0094.
Full textGermanium is a candidate for the realization of MOS transistors, because of its higher carrier mobility compared to silicon. As it was replaced by silicon fourty years ago it must be rediscovered. The aim of this work is to understand the mecanisms of germanium doping. We show that the critical da mage energy density model allows to predict the formation and thickness of amorphous layers in germanium, Then the solid phase epitaxy velocity is mesured and end-of-range defects are observed in germanium for the first time. They are made 01 interstitials. Eventually we determine that phosphorus allows to achive shallower junctions and better activation levels than arsenic Phosphorus diffusion is simulated with a model taking into account the excess of interstitials generated during implantation. This allows to describe an enhanced diffusion phenomenon
Minke, Mary Ann. "The diffusion and segregation coefficient of germanium in silica." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280235.
Full textStrohm, Andreas. "Selbstdiffusion in Silizium-Germanium-Legierungen." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10316328.
Full textJanke, Colin. "Density functional theory modelling of intrinsic and dopant-related defects in Ge and Si." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/46913.
Full textCanneaux, Thomas. "Étude de la diffusion des dopants usuels dans le germanium." Strasbourg, 2009. http://www.theses.fr/2009STRA6191.
Full textPresently, silicon planar technology is facing physical limits. To overcome these limits, we can replace silicon by another semiconductor material with higher carriers’ mobility, in this case germanium is a good candidate. To perform efficient electronic devices, knowledge about diffusion coefficient of dopants in the semiconductor material is needed. In this work, we studied diffusion of gallium, indium, phosphorus, arsenic and antimony in germanium and worked out a new model using the triply negatively charged vacancy to describe their diffusion in germanium and their diffusion coefficients. We also investigated influence of rapid anneals, ion-implantation defects and SiO2 or Si3N4 capped layer. Techniques used to introduce dopants in germanium are quite different than for silicon and diffusion mechanisms differ too. In germanium, diffusion of dopants occurs via neutral, doubly and triply negatively charged vacancies. Capped layers and rapid anneals do not influence diffusion but a capped layer allows to protect the sample and partially avoid out diffusion
Books on the topic "Germanium diffusion"
Dolfi, Anna, ed. Giuseppe Dessì tra traduzioni e edizioni. Florence: Firenze University Press, 2013. http://dx.doi.org/10.36253/978-88-6655-364-9.
Full textUnited States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textUnited States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textUnited States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textUnited States. National Aeronautics and Space Administration., ed. NASA grant NAG3-1437: Final report, ["Modeling of diffusion in liquid Ge and its alloys"]. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textBook chapters on the topic "Germanium diffusion"
Winkelmann, Jochen. "Self-diffusion coefficient of germanium." In Diffusion in Gases, Liquids and Electrolytes, 495. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_308.
Full textWinkelmann, Jochen. "Diffusion coefficient of gallium in germanium." In Diffusion in Gases, Liquids and Electrolytes, 1298. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_1074.
Full textWinkelmann, Jochen. "Diffusion coefficient of germanium in mercury." In Diffusion in Gases, Liquids and Electrolytes, 1300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_1076.
Full textShinar, J., S. Mitra, X. L. Wu, and R. Shinar. "Experimental Studies of Hydrogen Notion in Hydrogenated Amorphous Silicon and Germanium." In Diffusion in Materials, 573–81. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1976-1_29.
Full textGusakov, Vasilii E. "General Model of Diffusion of Interstitial Oxygen in Silicon, Germanium and Silicon - Germanium Crystals." In Solid State Phenomena, 413–18. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.413.
Full textZandvliet, H. J. W., E. Zoethout, and B. Poelsema. "Diffusion of Dimers on Silicon and Germanium (001) Surfaces." In Atomistic Aspects of Epitaxial Growth, 75–85. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0391-9_7.
Full textSimoen, Eddy, K. Opsomer, C. Claeys, Karen Maex, C. Detavernier, R. L. Van Meirhaeghe, and Paul Clauws. "Metal In-Diffusion during Fe and Co-Germanidation of Germanium." In Solid State Phenomena, 47–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-43-4.47.
Full textFrank, W. "Diffusion in Crystalline Silicon and Germanium — the State-of-the-Art in Brief." In Crucial Issues in Semiconductor Materials and Processing Technologies, 383–402. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_38.
Full textSimoen, Eddy, A. Satta, Marc Meuris, Tom Janssens, T. Clarysse, A. Benedetti, C. Demeurisse, et al. "Defect Removal, Dopant Diffusion and Activation Issues in Ion-Implanted Shallow Junctions Fabricated in Crystalline Germanium Substrates." In Solid State Phenomena, 691–96. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.691.
Full textSimoen, Eddy, and Cor Claeys. "Diffusion and Solubility of Dopants in Germanium." In Germanium-Based Technologies, 67–96. Elsevier, 2007. http://dx.doi.org/10.1016/b978-008044953-1/50007-7.
Full textConference papers on the topic "Germanium diffusion"
Jang, Joo-Nyung, Kyung-Ho Kwack, Sang-Bae Lee, and Sang-Sam Choi. "Dynamics of Coupling Peaks by H2 Diffusion in Long-Period Grating Filters." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.10.
Full textEdelman, L. A., K. S. Jones, R. G. Elliman, L. M. Rubin, Edmund G. Seebauer, Susan B. Felch, Amitabh Jain, and Yevgeniy V. Kondratenko. "Boron Diffusion in Amorphous Germanium." In ION IMPLANTATION TECHNOLOGY: 17th International Conference on Ion Implantation Technology. AIP, 2008. http://dx.doi.org/10.1063/1.3033598.
Full textSilvestri, H. H. "Diffusion of Silicon in Germanium." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994011.
Full textLi, Kezheng, Kok Hoe Kong, Harold Gamble, and Mervyn Armstrong. "Ultra-shallow emitter formation for germanium bipolar transistor by diffusion from polycrystalline germanium." In 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135275.
Full textLin, Yiheng, Hiroshi Yasuda, Howard Ho, Manfred Schiekofer, Bernhard Benna, Rick Wise, and Guangrui Xia. "Effect of thermal nitridation on phosphorus diffusion in SiGe and SiGe:C and its implication on diffusion mechanisms." In 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM). IEEE, 2014. http://dx.doi.org/10.1109/istdm.2014.6874641.
Full textShayesteh, M., V. Djara, M. Schmidt, M. White, A. M. Kelleher, and Ray Duffy. "Fluorine implantation in germanium for dopant diffusion control." In ION IMPLANTATION TECHNOLOGY 2012: Proceedings of the 19th International Conference on Ion Implantation Technology. AIP, 2012. http://dx.doi.org/10.1063/1.4766503.
Full textRUZIN, ARIE, NIKOLAI ABROSIMOV, and PIOTR LITOVCHENKO. "STUDY OF LITHIUM DIFFUSION INTO SILICON-GERMANIUM CRYSTALS." In Proceedings of the 10th Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812819093_0102.
Full textCai, Yan, Rodolfo Camacho-Aguilera, Jonathan T. Bessette, Lionel C. Kimerling, and Jurgen Michel. "High n++ doped germanium: Dopant in-diffusion and modeling." In 2011 IEEE 8th International Conference on Group IV Photonics (GFP). IEEE, 2011. http://dx.doi.org/10.1109/group4.2011.6053772.
Full textAhlgren, T. "Fermi-level dependent diffusion of ion-implanted arsenic in germanium." In The CAARI 2000: Sixteenth international conference on the application of accelerators in research and industry. AIP, 2001. http://dx.doi.org/10.1063/1.1395445.
Full textHong-Jyh Li, Hong-Jyh Li, T. A. Kirichenko, P. Kohli, S. K. Banerjee, E. Graetz, R. Tichy, and P. Zeitzoff. "Boron retarded diffusion in the presence of indium or germanium." In Proceedings of the 2002 14th International Conference on Ion Implantation Technology. IEEE, 2002. http://dx.doi.org/10.1109/iit.2002.1257929.
Full textReports on the topic "Germanium diffusion"
Wang, George, Ping Lu, Keshab Sapkota, Andrew Baczewski, Quinn Campbell, Peter Schultz, Kevin Jones, et al. A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1854722.
Full text