Academic literature on the topic 'Geometry, Projective'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry, Projective.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry, Projective"

1

Machale, Des, and H. S. M. Coxeter. "Projective Geometry." Mathematical Gazette 74, no. 467 (March 1990): 82. http://dx.doi.org/10.2307/3618883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rota, Gian-Carlo. "Projective geometry." Advances in Mathematics 77, no. 2 (October 1989): 263. http://dx.doi.org/10.1016/0001-8708(89)90023-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tabatabaeifar, Tayebeh, Behzad Najafi, and Akbar Tayebi. "Weighted projective Ricci curvature in Finsler geometry." Mathematica Slovaca 71, no. 1 (January 29, 2021): 183–98. http://dx.doi.org/10.1515/ms-2017-0446.

Full text
Abstract:
Abstract In this paper, we introduce the weighted projective Ricci curvature as an extension of projective Ricci curvature introduced by Z. Shen. We characterize the class of Randers metrics of weighted projective Ricci flat curvature. We find the necessary and sufficient condition under which a Kropina metric has weighted projective Ricci flat curvature. Finally, we show that every projectively flat metric with isotropic weighted projective Ricci and isotropic S-curvature is a Kropina metric or Randers metric.
APA, Harvard, Vancouver, ISO, and other styles
4

Ubaidillah, Muhammad Izzat. "Proyeksi Geometri Fuzzy pada Ruang." CAUCHY 2, no. 3 (November 15, 2012): 139. http://dx.doi.org/10.18860/ca.v2i3.3123.

Full text
Abstract:
<div class="standard"><a id="magicparlabel-481">Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer dis
APA, Harvard, Vancouver, ISO, and other styles
5

Calderbank, David, Michael Eastwood, Vladimir Matveev, and Katharina Neusser. "C-projective geometry." Memoirs of the American Mathematical Society 267, no. 1299 (September 2020): 0. http://dx.doi.org/10.1090/memo/1299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kanatani, Kenichi. "Computational projective geometry." CVGIP: Image Understanding 54, no. 3 (November 1991): 333–48. http://dx.doi.org/10.1016/1049-9660(91)90034-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erdnüß, B. "MEASURING IN IMAGES WITH PROJECTIVE GEOMETRY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1 (September 26, 2018): 141–48. http://dx.doi.org/10.5194/isprs-archives-xlii-1-141-2018.

Full text
Abstract:
<p><strong>Abstract.</strong> There is a fundamental relationship between projective geometry and the perspective imaging geometry of a pinhole camera. Projective scales have been used to measure within images from the beginnings of photogrammetry, mostly the cross-ratio on a straight line. However, there are also projective frames in the plane with interesting connections to affine and projective geometry in three dimensional space that can be utilized for photogrammetry. This article introduces an invariant on the projective plane, describes its relation to affine geometry,
APA, Harvard, Vancouver, ISO, and other styles
8

Chaput, Pierre-Emmanuel. "Geometry over composition algebras: Projective geometry." Journal of Algebra 298, no. 2 (April 2006): 340–62. http://dx.doi.org/10.1016/j.jalgebra.2006.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Xiao Zhuang, Ming Liang Lu, and Tao Qin. "Projective Geometry on the Structure of Geometric Composition Analysis Application." Applied Mechanics and Materials 166-169 (May 2012): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.127.

Full text
Abstract:
The analysis rule of geometry composition analysis in building structure must rely on geometry theory, while the traditional Euclidean geometry theory can not solve some building structures problems of the geometry components. This problem can be solved in the use of projective geometry theory. In this paper we introduce the proof of projective geometry in the geometry composition analysis and we discuss the application of this theory.
APA, Harvard, Vancouver, ISO, and other styles
10

Gupta, K. C., and Suryansu Ray. "Fuzzy plane projective geometry." Fuzzy Sets and Systems 54, no. 2 (March 1993): 191–206. http://dx.doi.org/10.1016/0165-0114(93)90276-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geometry, Projective"

1

Winroth, Harald. "Dynamic projective geometry." Doctoral thesis, Stockholm : Tekniska högsk, 1999. http://www.lib.kth.se/abs99/winr0324.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Tzu Yen. "Image transition techniques using projective geometry." University of Western Australia. School of Computer Science and Software Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0149.

Full text
Abstract:
[Truncated abstract] Image transition effects are commonly used on television and human computer interfaces. The transition between images creates a perception of continuity which has aesthetic value in special effects and practical value in visualisation. The work in this thesis demonstrates that better image transition effects are obtained by incorporating properties of projective geometry into image transition algorithms. Current state-of-the-art techniques can be classified into two main categories namely shape interpolation and warp generation. Many shape interpolation algorithms aim to p
APA, Harvard, Vancouver, ISO, and other styles
3

Romano, Raquel Andrea. "Projective minimal analysis of camera geometry." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29231.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.<br>Includes bibliographical references (p. 115-120).<br>This thesis addresses the general problem of how to find globally consistent and accurate estimates of multiple-view camera geometry from uncalibrated imagery of an extended scene. After decades of study, the classic problem of recovering camera motion from image correspondences remains an active area of research. This is due to the practical difficulties of estimating many interacting camera parameters under a variety of un
APA, Harvard, Vancouver, ISO, and other styles
4

Contatto, Felipe. "Vortices, Painlevé integrability and projective geometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.

Full text
Abstract:
GaugThe first half of the thesis concerns Abelian vortices and Yang-Mills theory. It is proved that the 5 types of vortices recently proposed by Manton are actually symmetry reductions of (anti-)self-dual Yang-Mills equations with suitable gauge groups and symmetry groups acting as isometries in a 4-manifold. As a consequence, the twistor integrability results of such vortices can be derived. It is presented a natural definition of their kinetic energy and thus the metric of the moduli space was calculated by the Samols' localisation method. Then, a modified version of the Abelian–Higgs model
APA, Harvard, Vancouver, ISO, and other styles
5

Marino, Nicholas John. "Vector Bundles and Projective Varieties." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1544457943307018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beardsley, Paul Anthony. "Applications of projective geometry to robot vision." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O'Keefe, Christine M. "Concerning t-spreads of PG ((s + 1) (t + 1)- 1, q)." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09pho41.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niall, Keith. "Projective invariance and visual perception." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75782.

Full text
Abstract:
Six experiments tested the assumption that, in visual perception, observers have reliable and direct access to the equivalence of shapes in projective geometry (I call this "the invariance hypothesis in the theory of shape constancy"). This assumption has been made in the study of vision since Helmholtz's time. Two experiments tested recognition of the projective equivalence of planar shapes. In another four experiments, subjects estimated the apparent shape of a solid object from different perspectives. Departure from projective equivalence was assessed in each study by measuring the cross ra
APA, Harvard, Vancouver, ISO, and other styles
9

Hønsen, Morten. "Compactifying locally Cohen-Macaulay projective curves." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ellis, Amanda. "Classification of conics in the tropical projective plane /." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geometry, Projective"

1

Coxeter, H. S. M. Projective geometry. 2nd ed. New York: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Samuel, Pierre. Projective Geometry. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3896-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fortuna, Elisabetta, Roberto Frigerio, and Rita Pardini. Projective Geometry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42824-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joseph, Kelly Paul, ed. Projective geometry and projective metrics. Mineola, N.Y: Dover Publications, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Faure, Claude-Alain, and Alfred Frölicher. Modern Projective Geometry. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heuel, Stephan. Uncertain Projective Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b97201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Geir, Ellingsrud, ed. Complex projective geometry. Cambridge: Cambridge University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

T, Kneebone G., ed. Algebraic projective geometry. Oxford: Clarendon Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alfred, Frölicher, ed. Modern projective geometry. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bădescu, Lucian. Projective Geometry and Formal Geometry. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7936-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geometry, Projective"

1

Audin, Michèle. "Projective Geometry." In Geometry, 143–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56127-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holme, Audun. "Projective Space." In Geometry, 221–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04720-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holme, Audun. "Projective Space." In Geometry, 313–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14441-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heuel, Stephan. "3 Geometric Reasoning Using Projective Geometry." In Uncertain Projective Geometry, 47–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24656-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ostermann, Alexander, and Gerhard Wanner. "Projective Geometry." In Geometry by Its History, 319–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29163-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fenn, Roger. "Projective Geometry." In Springer Undergraduate Mathematics Series, 183–210. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0325-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arnold, Vladimir I. "Projective Geometry." In UNITEXT, 33–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36243-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stillwell, John. "Projective Geometry." In Undergraduate Texts in Mathematics, 99–121. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cederberg, Judith N. "Projective Geometry." In A Course in Modern Geometries, 213–313. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3490-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumaresan, S., and G. Santhanam. "Projective Geometry." In Texts and Readings in Mathematics, 53–98. Gurgaon: Hindustan Book Agency, 2005. http://dx.doi.org/10.1007/978-93-86279-24-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry, Projective"

1

Stolfi, J. "Oriented projective geometry." In the third annual symposium. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/41958.41966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bokor, J., and Z. Szabo. "Projective geometry and feedback stabilization." In 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES). IEEE, 2017. http://dx.doi.org/10.1109/ines.2017.8118537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

D'Andrea, Francesco, and Giovanni Landi. "Geometry of Quantum Projective Spaces." In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiaolu, Tao He, Lijun Xu, Lulu Chen, and Zhanshe Guo. "Projective rectification of infrared image based on projective geometry." In 2012 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2012. http://dx.doi.org/10.1109/ist.2012.6295549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ge, Q. J. "Projective Convexity in Computational Kinematic Geometry." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME, 2002. http://dx.doi.org/10.1115/detc2002/mech-34281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buchanan, Thomas. "Photogrammetry and projective geometry: an historical survey." In Optical Engineering and Photonics in Aerospace Sensing, edited by Eamon B. Barrett and David M. McKeown, Jr. SPIE, 1993. http://dx.doi.org/10.1117/12.155817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carli, Francesca Paola, and Rodolphe Sepulchre. "On the projective geometry of kalman filter." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gubitosi, Giulia, Angel Ballesteros, and Francisco J. Herranz. "Generalized noncommutative Snyder spaces and projective geometry." In Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.376.0190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stepanov, Sergey, and Josef Mikeš. "Seven invariant classes of the Einstein equations and projective mappings." In XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2012. http://dx.doi.org/10.1063/1.4733385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ozuag, Ersin, and Sarp Erturk. "Image sequences synchronization by using projective geometry properties." In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130348.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometry, Projective"

1

Bolbat, O. B., and T. V. Andryushina. Lectures on descriptive geometry. Part 1. Methods of projection. Point. Straight. Plane: Multimedia Tutorial. OFERNIO, May 2021. http://dx.doi.org/10.12731/ofernio.2021.24809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rao, C. R. Linear Transformations, Projection Operators and Generalized Inverses; A Geometric Approach. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada197608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shashua, Amnon. On Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views. Fort Belvoir, VA: Defense Technical Information Center, July 1993. http://dx.doi.org/10.21236/ada270520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!