Academic literature on the topic 'Geometry priors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry priors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometry priors"
Guo, Xiaomeng, Li Yi, Hang Zou, and Yining Gao. "Generative Facial Prior for Large-Factor Blind Face Super-Resolution." Journal of Physics: Conference Series 2078, no. 1 (November 1, 2021): 012045. http://dx.doi.org/10.1088/1742-6596/2078/1/012045.
Full textGoldman, Yehonatan, Ehud Rivlin, and Ilan Shimshoni. "Robust epipolar geometry estimation using noisy pose priors." Image and Vision Computing 67 (November 2017): 16–28. http://dx.doi.org/10.1016/j.imavis.2017.09.006.
Full textHuang, Han, Yulun Wu, Junsheng Zhou, Ge Gao, Ming Gu, and Yu-Shen Liu. "NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse Input Views." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 3 (March 24, 2024): 2312–20. http://dx.doi.org/10.1609/aaai.v38i3.28005.
Full textPRANEETH RACHARLA, SHARATH CHANDRA YERVA, SANJAY RAVULA, and DR.P.ILA CHANDANA KUMARI. "IMAGE RECONSTRUCTION OF OLD DAMAGED PHOTOS." international journal of engineering technology and management sciences 8, no. 3 (2024): 70–74. http://dx.doi.org/10.46647/ijetms.2024.v08i03.009.
Full textNguyen, Ngoc Hung. "Optimal Geometry Analysis for Target Localization With Bayesian Priors." IEEE Access 9 (2021): 33419–37. http://dx.doi.org/10.1109/access.2021.3056440.
Full textLanglois, Thomas A., Nori Jacoby, Jordan W. Suchow, and Thomas L. Griffiths. "Serial reproduction reveals the geometry of visuospatial representations." Proceedings of the National Academy of Sciences 118, no. 13 (March 26, 2021): e2012938118. http://dx.doi.org/10.1073/pnas.2012938118.
Full textBernardo, Jose M. "[The Geometry of Asymptotic Inference]: Comment: On Multivariate Jeffreys' Priors." Statistical Science 4, no. 3 (August 1989): 227–29. http://dx.doi.org/10.1214/ss/1177012483.
Full textZhang, Xin, and Andrew Curtis. "Bayesian full-waveform inversion with realistic priors." GEOPHYSICS 86, no. 5 (August 30, 2021): A45—A49. http://dx.doi.org/10.1190/geo2021-0118.1.
Full textZhou, Zhongxian, Jianchen Liu, Miaomiao Feng, and Yuwei Cong. "Surveillance Video Georeference Method Based on Real Scene Model with Geometry Priors." Remote Sensing 15, no. 17 (August 28, 2023): 4217. http://dx.doi.org/10.3390/rs15174217.
Full textLee, Se Yoon. "The Use of a Log-Normal Prior for the Student t-Distribution." Axioms 11, no. 9 (September 8, 2022): 462. http://dx.doi.org/10.3390/axioms11090462.
Full textDissertations / Theses on the topic "Geometry priors"
Osorio, José Manuel. "Kant and the Problem of Geometry." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/119539.
Full textPara Kant la geometría es una disciplina matemática que contiene proposiciones y juicios sintéticos a priori. Sin embargo, esta afirmación no se encuentra libre de problemas. La intención del artículo será mostrar 1) cómo entiende Kant la apodicticidad, universalidad y sinteticidad de la geometría en la Crítica de la razón pura; y 2) qué relevancia tiene hoy en día estudiar la teoría kantiana de la geometría luego de la superación de la teoría euclidiana del espacio. Con respecto a (1): Kant entiende a la geometría como la ciencia que objetiva la intuición pura del espacio. Todo concepto geométrico se construye en la intuición del espacio mediante un proceso sintético que exhibe la figura geométrica. Además, la intuición pura del espacio es la forma del sentido externo. Por tanto, los objetos geométricos y los fenómenos externos comparten un territorio común: el espacio como intuición pura. Este aspecto común garantiza la universidad de la geometría. Con respecto a (2): la importancia de estudiar la teoría kantiana de la geometría no solo radica en que esta disciplina determina a priori su objeto y por tanto sirve de ejemplo a la filosofía, sino que la comprensión del objeto de la geometría, el espacio como intuición pura, nos obliga a pasar revista a lo qué entiende Kant por sensibilidad y su relación con el espacio. El estudio de la sensibilidad obliga a Kant a repensar qué se entiende por espacio y, con ello, qué se entiende por geometría. El análisis de la teoría kantiana de la geometría, entonces, equivale al estudio de la teoría kantiana de la sensibilidad.
Hold-Geoffroy, Yannick. "Learning geometric and lighting priors from natural images." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31264.
Full textUnderstanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods.
Polthier, Konrad. "Geometric a priori estimates for hyperbolic minimal surfaces." Bonn : [s.n.], 1994. http://catalog.hathitrust.org/api/volumes/oclc/31760536.html.
Full textChebbi, Mohamed Ali. "Similarity learning for large scale dense image matching." Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2030.
Full textDense image matching is a long standing ill-posed problem. Despite the extensive research efforts undertaken in the last twenty years, the state-of-the-art handcrafted algorithms perform poorly on featureless areas, in presence of occlusions, shadows and on non-lambertian surfaces. This is due to lack of distinctiveness of the handcrafted similarity metrics in such challenging scenarios. On the other hand, deep learning based approaches to image matching are able to learn highly non-linear similarity functions thus provide an interesting path to addressing such complex matching scenarios.In this research, we present deep learning based architectures and methods for stereo and multi-view dense image matching tailored to aerial and satellite photogrammetry. The proposed approach is driven by two key ideas. First, our goal is to develop a matching network that is as generic as possible to different sensors and acquisition scenarios. Secondly, we argue that known geometrical relationships between images can alleviate the learning phase and should be leveraged in the process. As a result, our matching pipeline follows the known two step pipeline where we first compute deep similarities between pixel correspondences, followed by depth regularization. This separation ensures “generality” or “transferability” to different scenes and acquisitions. Furthermore, our similarity functions are learnt on epipolar rectified image pairs, and to exploit the learnt embeddings in a general n-view matching problem, geometry priors are mobilized. In other words, we transform embeddings learnt on pairs of images to multi-view embeddings through a priori knowledge about the relative camera poses. This allows us to capitalize on the vast stereo matching benchmarks existing in the literature while extending the approach to multi-view scenarios. Finally, we tackle the insufficient distinctiveness of the state-of-the-art patch-based features/similarities by feeding the network with large images thus adding more context, and by proposing an adapted sample mining scheme. We establish a middle-ground between state-of-the-art similarity learning and end-to-end regression models for stereo matching and demonstrate that our models yield generalizable representations in multiple view 3D surface reconstruction from aerial and satellite acquisitions. The proposed pipelines are implemented in MicMac, a free, open-source photogrammetric software
Teixeira, Daniel Nascimento. "Uma técnica de decomposição a priori para geração paralela de malhas bidimensionais." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/13352.
Full textSubmitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2015-01-23T18:25:13Z No. of bitstreams: 1 2014_dis_dnteixeira.pdf: 17919971 bytes, checksum: 092ad12b33cf64a31552e6a839a5a5bc (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-09-23T16:26:52Z (GMT) No. of bitstreams: 1 2014_dis_dnteixeira.pdf: 17919971 bytes, checksum: 092ad12b33cf64a31552e6a839a5a5bc (MD5)
Made available in DSpace on 2015-09-23T16:26:52Z (GMT). No. of bitstreams: 1 2014_dis_dnteixeira.pdf: 17919971 bytes, checksum: 092ad12b33cf64a31552e6a839a5a5bc (MD5) Previous issue date: 2014
This work describes a technique of two-dimensional domain decomposition for parallel mesh generation. This technique works for both distributed and shared memory and has the freedom to use any data structure that manages rectangular regions parallel to the axes to decompose the domain given as input, such as a quaternary tree (quadtree) or a binary space decomposition (bsp), for example. Any process of mesh generation that respects the prerequisites established can be used in the subdomains created, for instance, Delaunay or Advancing Front, among others. This technique is called a priori because the mesh on the interface of the subdomains is generated prior to the their internal meshes. The load estimation for each sub-domain in this work is performed with the aid of a refined quadtree, whose level of refinement guides the creation of edges that are defined from the bounderies of only inner cells. This way of estimate load produces results that accurately represent the number of elements to be generated in each subdomain. That contributes to a good partitioning of the domain, making the mesh generation in parallel be significantly faster than the serial generation. Furthermore, the quality of the generated mesh in parallel is qualitatively equivalent to that generated serially within acceptable limits.
Este trabalho descreve uma técnica de decomposição de domínios bidimensionais para geração em paralelo de malhas. Esta técnica funciona tanto para memória distribuída quanto compartilhada, além de permitir que se utilize qualquer estrutura de dados que gere regiões quadrangulares paralelas aos eixos para decompor o domínio dado como entrada. Pode se utilizar por exemplo, uma árvore quaternária (quadtree) ou uma partição binária do espaço (bsp). Além disso, qualquer processo de geração de malha que respeite os pré-requisitos estabelecidos pode ser empregado nos subdomínios criados, como as técnicas de Delaunay ou Avanço de Fronteira, dentre outras. A técnica proposta é dita a priori porque a malha de interface entre os subdomínios é gerada antes das suas malhas internas. A estimativa de carga de processamento associada a cada subdomínio é feita nesse trabalho com a ajuda de uma quadtree refinada, cujo nível de refinamento orienta a criação das arestas que são definidas a partir da discretização das fronteiras das células internas. Essa maneira de estimar carga produz resultados que representam, com boa precisão, o número de elementos a serem gerados em cada subdomínio. Isso contribui para um bom particionamento do domínio, fazendo com que a geração de malha em paralelo seja significativamente mais rápida do que a geração serial. Além disso, a qualidade da malha gerada em paralelo é qualitativamente equivalente àquela gerada serialmente, dentro de limites aceitáveis.
Teixeira, Daniel Nascimento. "Uma tÃcnica de decomposiÃÃo a priori para geraÃÃo paralela de malhas bidimensionais." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12186.
Full textEste trabalho descreve uma tÃcnica de decomposiÃÃo de domÃnios bidimensionais para geraÃÃo em paralelo de malhas. Esta tÃcnica funciona tanto para memÃria distribuÃda quanto compartilhada, alÃm de permitir que se utilize qualquer estrutura de dados que gere regiÃes quadrangulares paralelas aos eixos para decompor o domÃnio dado como entrada. Pode se utilizar por exemplo, uma Ãrvore quaternÃria (quadtree) ou uma partiÃÃo binÃria do espaÃo (bsp). AlÃm disso, qualquer processo de geraÃÃo de malha que respeite os prÃ-requisitos estabelecidos pode ser empregado nos subdomÃnios criados, como as tÃcnicas de Delaunay ou AvanÃo de Fronteira, dentre outras. A tÃcnica proposta à dita a priori porque a malha de interface entre os subdomÃnios à gerada antes das suas malhas internas. A estimativa de carga de processamento associada a cada subdomÃnio à feita nesse trabalho com a ajuda de uma quadtree refinada, cujo nÃvel de refinamento orienta a criaÃÃo das arestas que sÃo definidas a partir da discretizaÃÃo das fronteiras das cÃlulas internas. Essa maneira de estimar carga produz resultados que representam, com boa precisÃo, o nÃmero de elementos a serem gerados em cada subdomÃnio. Isso contribui para um bom particionamento do domÃnio, fazendo com que a geraÃÃo de malha em paralelo seja significativamente mais rÃpida do que a geraÃÃo serial. AlÃm disso, a qualidade da malha gerada em paralelo à qualitativamente equivalente Ãquela gerada serialmente, dentro de limites aceitÃveis.
This work describes a technique of two-dimensional domain decomposition for parallel mesh generation. This technique works for both distributed and shared memory and has the freedom to use any data structure that manages rectangular regions parallel to the axes to decompose the domain given as input, such as a quaternary tree (quadtree) or a binary space decomposition (bsp), for example. Any process of mesh generation that respects the prerequisites established can be used in the subdomains created, for instance, Delaunay or Advancing Front, among others. This technique is called a priori because the mesh on the interface of the subdomains is generated prior to the their internal meshes. The load estimation for each sub-domain in this work is performed with the aid of a refined quadtree, whose level of refinement guides the creation of edges that are defined from the bounderies of only inner cells. This way of estimate load produces results that accurately represent the number of elements to be generated in each subdomain. That contributes to a good partitioning of the domain, making the mesh generation in parallel be significantly faster than the serial generation. Furthermore, the quality of the generated mesh in parallel is qualitatively equivalent to that generated serially within acceptable limits.
Hassan, Sahar. "Intégration de connaissances anatomiques a priori dans des modèles géométriques." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00607260.
Full textMiller-Cotto, Dana. "The role of prior knowledge, executive function, and perceived cognitive load on the effectiveness of faded worked examples in geometry." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/439545.
Full textPh.D.
Mathematics remains a subject many students fail to become competent in by the time they graduate from high school. Most students often require one on one, individualized tutoring to help them reach competence. That remains a challenge since most classrooms are understaffed and underfunded, frequently having only one teacher in a overpopulated classroom. One strategy that has been used to alleviate some of this over reliance on the teacher has been faded worked examples, or fading. Fading is the successive removal of the last steps in a series of problems until the student is solving problems completely on their own. The current study aimed to determine whether fading improves learning, and for whom. The goal was to compare fading with business as usual (control), worked examples with self-explanations, and fading with self-explanations. Specifically, I was interested in the following research questions: (1) Do the three experimental conditions differ in promoting posttest scores on surface area and volume? (2) Do the three experimental conditions differ in promoting conceptual knowledge and procedural knowledge of surface area and volume at posttest? and (3) When interaction terms are created between student profiles and conditions within regression analyses, which profiles explain significant variance in posttest scores? Repeated measures analysis of variance, principle axis factor analysis, and simple linear regressions were used to examine the differences between conditions at posttest, to create propensity scores, and to determine whether there were any interactions between propensity scores and conditions. Results indicated a significant effect of fading on posttest scores. A regression with propensity factors indicated that the fading conditions appeared to benefit low propensity students moreso than high propensity students. Findings are discussed in terms of educational implications and future research that can complement these findings to contribute to future research.
Temple University--Theses
Gonçalves, Junior Eduardo Manuel. "Aspectos computacionais na geometria da espiral de Teodoro." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/7647.
Full textMade available in DSpace on 2015-11-25T14:11:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 21722062 bytes, checksum: bb67c86f0d2ae8a89632226cb61b3636 (MD5) Previous issue date: 2015-02-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The present work is a study of Teodoro spiral, for the geometric aspects of the curve. At rst, the construction of Teodoro spiral in two and three dimensions is made. And through the softwares, GeoGebra and wxMaxima were developed respectively, the geometric constructions and the necessary calculations. With the possession of the spiral of concatenation, observe the pattern of behavior of growth and position, the collared peccary in the n - th triangle. Going through measurements of Teodoro spiral with other spirals such as the Archimedean, we come to denote behavior patterns in expanding spiral. The following is an arithmetic study on the spiral obtained by the length of the branches of the same, both perfect and imperfect hits with square also spaced apart relationship between them allows us to observe numbers as the . The distribution of prime numbers is seen as the nal part of this study, where you see speculatively allowing the formation of new curves on the spiral, as parabolas.
O presente trabalho faz um estudo da espiral de Teodoro, no tocante aos aspectos geométricos da curva. De início, é feita a construção da espiral de Teodoro em duas e três dimensões. E por meio dos softwares, GeoGebra e wxMaxima, foram desenvolvidas respectivamente, as construções geométricas e os cálculos necessários. Com a posse da concatenação da espiral, observa-se o comportamento do padrão de crescimento e posição, do cateto no enésimo triângulo. Passando por aferições da espiral de Teodoro com outras espirais, como por exemplo a arquimediana, chega-se a denotar padrões de comportamento na expansão da espiral. A seguir, é mostrado um estudo aritmético na espiral, obtido através do comprimento dos ramos da mesma, que tanto atinge quadrados perfeitos e imperfeitos como também a relação de afastamento entre eles nos permite observar números como o . A distribuição dos números primos é vista como parte fi nal desse estudo, onde se vê de forma especulativa, possibilitando a formação de novas curvas sobre a espiral, como parábolas.
Bernardini, Geferson. "Uma atividade didática envolvendo área e volume do cilindro e de prismas." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/5965.
Full textFinanciadora de Estudos e Projetos
This paper presents a didactic proposal for Spatial Geometry classes in High School. We were taken to create this proposal from our experience as a teacher, when we observed that the study of this content requires experimentation and contextualization activities. The study of the Spatial Geometry is of great importance in High School. It contributes to the development of the capacity of abstraction, solving practical problems of everyday life and helps to acquire skills to estimate and compare results, recognize properties of geometric shapes, calculate areas, volume and working with different units of measure. Our work uses as motivation the problem of constructing a silo for grain storage, for this it is necessary to compare the volumes of the prisms with triangular, square and hexagonal base and of the cylinder without the cover, height and total area of the fixed surface to choose the format representing the highest volume. Our work is not intended to define or obtain formulas to calculate areas and volumes. The main focus of this work is to develop the ability to manipulate these formulas and other knowledge, such as solving quadratic equation, using the Pythagorean theorem, and correctly use the calculator to solve a practical problem. This activity has been applied to three classes of Second Grade High School students in a State School of São Paulo in Agudos town. For this purpose two classes of 100 minutes were used. The pupils enjoyed the activity that was carried out in groups of three and the lesson was without complications. This is a didactic sequence that does not require many resources and may be useful for teachers who want to work the theme in context. Our proposal adopts suggestions from the National Curricular Parameters (NCP) and we believe that can be used by fellow teachers, to which our product is available.
Este trabalho apresenta uma proposta didática para aulas de Geometria Espacial no Ensino Médio. Fomos levados a criar essa proposta a partir de nossa experiência como professor, quando observamos que o estudo desse conteúdo necessita de atividades de experimentação e contextualização. O estudo da Geometria Espacial é de grande importância no Ensino Médio. Contribui para o desenvolvimento da capacidade de abstração, resolução de problemas práticos do quotidiano, e ajuda a adquirir habilidades como estimar e comparar resultados, reconhecer propriedades das formas geométricas, calcular áreas, volumes e trabalhar com diferentes unidades de medida. Nosso trabalho usa como motivação o problema de construir um silo para armazenamento de grãos, para isso é preciso comparar os volumes dos prismas de base triangular, quadrada, hexagonal e do cilindro, sem a tampa, altura e área total da superfície fixa para escolher o formato que apresente o maior volume. Nosso trabalho não tem o objetivo de definir ou obter fórmulas para calcular áreas e volumes. O foco principal deste trabalho é desenvolver a capacidade de manipular tais fórmulas e outros conhecimentos, como por exemplo, resolver equações do segundo grau, utilizar o teorema de Pitágoras e utilizar corretamente a calculadora para resolver um problema prático. Esta atividade foi aplicada em três turmas da segunda série do Ensino Médio de uma escola da Rede Estadual de Ensino de São Paulo em Agudos. Para isso foram utilizadas duas aulas de 100 minutos. Os alunos gostaram da atividade que foi realizada em grupos de três e a aula transcorreu sem complicações. Trata-se de uma sequência didática que não requer muitos recursos e pode ser útil para os professores que pretendam trabalhar o tema de maneira contextualizada. Nossa proposta adota sugestões dos Parâmetros Curriculares Nacionais (PCN) e acreditamos que pode ser utilizada por colegas professores, aos quais nosso produto está disponível.
Books on the topic "Geometry priors"
Boothroyd, Jennifer. Rectangular prism. Minneapolis, MN: LernerClassroom, 2008.
Find full textHanson, Anders. What in the world is a prism? Edina, Minn: ABDO Pub. Company, 2008.
Find full textillustrator, Mitter Kathy, ed. Prisms. Minneapolis: Magic Wagon, 2012.
Find full textBremen, Kunsthalle. Szenen aus dem alten Japan: Japanische Farbholzschnitte aus eigenem Besitz. Bremen: Kunsthalle Bremen, 1990.
Find full textBremen, Kunsthalle. Szenen aus dem alten Japan: Japanische Farbholzschnitte. Heidelberg: Edition Braus, 1993.
Find full textShparlinski, Igor E., and David R. Kohel. Frobenius distributions: Lang-Trotter and Sato-Tate conjectures : Winter School on Frobenius Distributions on Curves, February 17-21, 2014 [and] Workshop on Frobenius Distributions on Curves, February 24-28, 2014, Centre International de Rencontres Mathematiques, Marseille, France. Providence, Rhode Island: American Mathematical Society, 2016.
Find full text1973-, Tobias Uwe, Görner Veit, Schrader Kristin, Takis George Frederick, and Kestner-Gesellschaft, eds. Gert & Uwe Tobias. Köln: Snoeck, 2009.
Find full textartist, Tobias Uwe 1973, and Sprengel Museum Hannover, eds. Gert & Uwe Tobias: Collagen. Dortmund: Verlag Kettler, 2016.
Find full text1973-, Tobias Uwe, Gronert Stefan, Löbke Matthia, Städtisches Kunstmuseum Bonn, and Kunstverein Heilbronn, eds. Gert & Uwe Tobias. Köln: Snoeck, 2008.
Find full text1973-, Tobias Uwe, and Nöllenheidt Sarah, eds. Gert & Uwe Tobias. Köln: Snoeck, 2007.
Find full textBook chapters on the topic "Geometry priors"
Li, Chaojian, Bichen Wu, Albert Pumarola, Peizhao Zhang, Yingyan Lin, and Peter Vajda. "INGeo: Accelerating Instant Neural Scene Reconstruction with Noisy Geometry Priors." In Lecture Notes in Computer Science, 686–94. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25066-8_40.
Full textFu, Xiao, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao Long. "GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image." In Lecture Notes in Computer Science, 241–58. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72670-5_14.
Full textHacyan, Shahen. "Geometry a Priori." In The Frontiers Collection, 111–17. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21254-3_13.
Full textKoch-Medina, Pablo, and Cosimo Munari. "Random Variables: Topology and Geometry." In Market-Consistent Prices, 59–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39724-1_3.
Full textBlackwell, Kenneth, Andrew Brink, Nicholas Griffin, Richard A. Rempel, and John G. Slater. "The À Priori in Geometry [1896]." In The Collected Papers of Bertrand Russell, Volume 1, 289–304. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003555698-58.
Full textLötjönen, J., I. E. Magnin, L. Reinhardt, J. Nenonen, and T. Katila. "Automatic Reconstruction of 3D Geometry Using Projections and a Geometric Prior Model." In Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, 192–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/10704282_21.
Full textRiklin-Raviv, Tammy, Nahum Kiryati, and Nir Sochen. "Unlevel-Sets: Geometry and Prior-Based Segmentation." In Lecture Notes in Computer Science, 50–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24673-2_5.
Full textBöhm, Janko, Wolfram Decker, Claus Fieker, Santiago Laplagne, and Gerhard Pfister. "Bad Primes in Computational Algebraic Geometry." In Mathematical Software – ICMS 2016, 93–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42432-3_12.
Full textHarney, Hanns L. "Beyond Form Invariance: The Geometric Prior." In Bayesian Inference, 71–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06006-3_9.
Full textLorenzen, Paul. "Geometry as the Measure-Theoretic a Priori of Physics." In Constructivism and Science, 127–44. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0959-5_7.
Full textConference papers on the topic "Geometry priors"
Wang, Qingfeng, Lingyu Liang, and Shuangping Huang. "Document Image Dewarping Guided by 3D Geometry and Layout Priors." In 2024 IEEE International Conference on Multimedia and Expo (ICME), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icme57554.2024.10687513.
Full textPerry, Travis, and Andrew Gallaher. "Automated Layout with a Python Integrated NDARC Environment." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12723.
Full textDong, Yuan, Qi Zuo, Xiaodong Gu, Weihao Yuan, Zhengyi Zhao, Zilong Dong, Liefeng Bo, and Qixing Huang. "GPLD3D: Latent Diffusion of 3D Shape Generative Models by Enforcing Geometric and Physical Priors." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 56–66. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00014.
Full textJi, Shihao, Kun Jiang, Peng Wang, and Mingyi He. "RE-Net: Road Extraction from Remote Sensing Images with Deep Learning and Geometric Priors." In 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/iciea61579.2024.10664713.
Full textMyers, Adele, and Nina Miolane. "On Accuracy and Speed of Geodesic Regression: Do Geometric Priors Improve Learning on Small Datasets?" In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2714–22. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00277.
Full textKnoll, Jonathan, and Jeffrey Nissen. "Integration of 3D Scan Data into the Finite Element Analysis Workflow for Simulation of Rotorcraft Components." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10264.
Full textJohari, Mohammad Mahdi, Yann Lepoittevin, and Francois Fleuret. "GeoNeRF: Generalizing NeRF with Geometry Priors." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01782.
Full textRombach, Robin, Patrick Esser, and Bjorn Ommer. "Geometry-Free View Synthesis: Transformers and no 3D Priors." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.01409.
Full textChen, Huiqin, Emanuel Aldea, Sylvie Le Hegarat-Mascle, and Vincent Despiegel. "Use of Scene Geometry Priors for Data Association in Egocentric Views." In 2020 8th International Workshop on Biometrics and Forensics (IWBF). IEEE, 2020. http://dx.doi.org/10.1109/iwbf49977.2020.9107955.
Full textShahsavari, Sina, Jiawen Chen, and Piya Pal. "Exploring the Geometry of Generative Priors with Applications in Cellular MRI." In 2022 56th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2022. http://dx.doi.org/10.1109/ieeeconf56349.2022.10052006.
Full textReports on the topic "Geometry priors"
Moorehead, Stewart. Unsettled Topics in Obstacle Detection for Autonomous Agricultural Vehicles. SAE International, December 2021. http://dx.doi.org/10.4271/epr2021029.
Full textZevotek, Robin, and Steve Kerber. Fire Service Summary Report: Study of the Effectiveness of Fire Service Positive Pressure Ventilation During Fire Attack in Single Family Homes Incorporating Modern Construction Practices. UL Firefighter Safety Research Institute, May 2016. http://dx.doi.org/10.54206/102376/ncck4947.
Full textZevotek, Robin, and Steve Kerber. Study of the Effectiveness of Fire Service Positive Pressure Ventilation During Fire Attack in Single Family Homes Incorporating Modern Construction Practices. UL Firefighter Safety Research Institute, May 2016. http://dx.doi.org/10.54206/102376/gsph6169.
Full textNäslund-Hadley, Emma, Haydée Alonzo, Neulin Villanueva, Ricardo Gideon, and Yvonne Flowers. The Effects of the COVID-19 Pandemic on Education Outcomes in Belize. Inter-American Development Bank, April 2023. http://dx.doi.org/10.18235/0004836.
Full textBeshouri. PR-309-04200-R01 Modeling Methodology for Parametric Emissions Monitoring System for Combustion Turbines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0010731.
Full textKyriakides. L51559 Factors Affecting Pipe Collapse Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1988. http://dx.doi.org/10.55274/r0010129.
Full textYoosef-Ghodsi, Ozkan, and Bandstra. PR-244-114501-R01 Review of Compressive Strain Capacity Assessment Methods Final Report. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2013. http://dx.doi.org/10.55274/r0010402.
Full textBriggs, Nicholas E., Robert Bailey Bond, and Jerome F. Hajjar. Cyclic Behavior of Steel Headed Stud Anchors in Concrete-filled Steel Deck Diaphragms through Push-out Tests. Northeastern University. Department of Civil and Environmental Engineering., February 2023. http://dx.doi.org/10.17760/d20476962.
Full textLeis and Brust. L51665 Hydrotest Strategies for Gas Transmission Pipelines Based on Ductile-Flaw-Growth Considerations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1992. http://dx.doi.org/10.55274/r0010296.
Full textPerdigão, Rui A. P., and Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Full text