Academic literature on the topic 'Geometry of null manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry of null manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry of null manifolds"

1

Atindogbé, C., M. Gutiérrez, and R. Hounnonkpe. "Compact null hypersurfaces in Lorentzian manifolds." Advances in Geometry 21, no. 2 (April 1, 2021): 251–63. http://dx.doi.org/10.1515/advgeom-2021-0001.

Full text
Abstract:
Abstract We show how the topological and geometric properties of the family of null hypersurfaces in a Lorentzian manifold are related with the properties of the ambient manifold itself. In particular, we focus in how the presence of global symmetries and curvature conditions restrict the existence of compact null hypersurfaces. We use these results to show the influence on the existence of compact totally umbilic null hypersurfaceswhich are not totally geodesic. Finally we describe the restrictions that they impose in causality theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Massamba, Fortuné. "Symmetries of Null Geometry in Indefinite Kenmotsu Manifolds." Mediterranean Journal of Mathematics 10, no. 2 (June 24, 2012): 1079–99. http://dx.doi.org/10.1007/s00009-012-0205-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoffman, Neil R., and Nathan S. Sunukjian. "Null-homologous exotic surfaces in 4–manifolds." Algebraic & Geometric Topology 20, no. 5 (November 4, 2020): 2677–85. http://dx.doi.org/10.2140/agt.2020.20.2677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cuadros Valle, Jaime. "Null Sasaki $$\eta $$ -Einstein structures in 5-manifolds." Geometriae Dedicata 169, no. 1 (April 24, 2013): 343–59. http://dx.doi.org/10.1007/s10711-013-9859-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akamine, Shintaro, Atsufumi Honda, Masaaki Umehara, and Kotaro Yamada. "Null hypersurfaces in Lorentzian manifolds with the null energy condition." Journal of Geometry and Physics 155 (September 2020): 103751. http://dx.doi.org/10.1016/j.geomphys.2020.103751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rovenski, Vladimir, Sergey Stepanov, and Josef Mikeš. "A Note on the Geometry of Certain Classes of Lichnerowicz Laplacians and Their Applications." Mathematics 11, no. 21 (October 26, 2023): 4434. http://dx.doi.org/10.3390/math11214434.

Full text
Abstract:
In the present paper, we prove vanishing theorems for the null space of the Lichnerowicz Laplacian acting on symmetric two tensors on complete and closed Riemannian manifolds and further estimate its lowest eigenvalue on closed Riemannian manifolds. In addition, we give an application of the obtained results to the theory of infinitesimal Einstein deformations.
APA, Harvard, Vancouver, ISO, and other styles
7

Massamba, Fortuné, and Samuel Ssekajja. "Some Remarks on Quasi-Generalized CR-Null Geometry in Indefinite Nearly Cosymplectic Manifolds." International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9613182.

Full text
Abstract:
Attention is drawn to some distributions on ascreen Quasi-Generalized Cauchy-Riemannian (QGCR) null submanifolds in an indefinite nearly cosymplectic manifold. We characterize totally umbilical and irrotational ascreen QGCR-null submanifolds. We finally discuss the geometric effects of geodesity conditions on such submanifolds.
APA, Harvard, Vancouver, ISO, and other styles
8

Massamba, Fortuné, and Samuel Ssekajja. "A geometric flow on null hypersurfaces of Lorentzian manifolds." Topological Algebra and its Applications 10, no. 1 (January 1, 2022): 185–95. http://dx.doi.org/10.1515/taa-2022-0126.

Full text
Abstract:
Abstract We introduce a geometric flow on a screen integrable null hypersurface in terms of its local second fundamental form. We use it to give an alternative proof to the vorticity free Raychaudhuri’s equation for null hypersurface, as well as establishing conditions for the existence of constant mean curvature (CMC) null hypersurfaces, and leaves of constant scalar curvatures.
APA, Harvard, Vancouver, ISO, and other styles
9

Duggal, K. L. "A Review on Unique Existence Theorems in Lightlike Geometry." Geometry 2014 (July 7, 2014): 1–17. http://dx.doi.org/10.1155/2014/835394.

Full text
Abstract:
This is a review paper of up-to-date research done on the existence of unique null curves, screen distributions, Levi-Civita connection, symmetric Ricci tensor, and scalar curvature for a large variety of lightlike submanifolds of semi-Riemannian (in particular, Lorentzian) manifolds, supported by examples and an extensive bibliography. We also propose some open problems.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Jin Hong. "On null cobordism classes of quasitoric manifolds and their small covers." Topology and its Applications 285 (November 2020): 107412. http://dx.doi.org/10.1016/j.topol.2020.107412.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geometry of null manifolds"

1

Vilatte, Matthieu. "Adventures in (thermal) Wonderland." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04791687.

Full text
Abstract:
Le travail que nous présentons dans cette thèse est structuré autour de la notion de théorie des champs et de géométrie, qui sont appliquées à la gravité et la thermalisation.En gravité, notre travail donne un éclairage nouveau sur la structure asymptotique du champ gravitationnel dans le contexte des espace-temps asymptotiquement plats, ceci en utilisant l'information codée sur leur bord conforme. Ce dernier est une hypersurface de genre lumière sur laquelle émerge la physique carrollienne au lieu de la physique relativiste. Une structure carrollienne sur une variété est constituée une métrique dégénérée et un champ de vecteurs couvrant le noyau de cette dernière. Ce vecteur sélectionne une direction particulière qui peut être le point de départ de la description des structures carrolliennes dans un cadre séparé. Nous développons d'abord la géométrie carrollienne, y compris une étude complète des connexions et isométries (conformes). Des actions effectives peuvent vivre sur un arrière-plan carrollien. Les moments canoniques conjugués à la géométrie ou à la connexion peuvent être définis, et la variation de l'action donnera leurs équations de conservation, à partir desquelles les charges isométriques peuvent être bâties.La physique carrollienne émerge également lorsque la vitesse de la lumière tend vers zéro. Cette limite donne généralement plus de descendants carrolliens que ce qui est attendu après une analyse intrinsèque, comme le montrent les exemples explicites des fluides carrolliens, des champs scalaires carrolliens (pour lesquels deux actions, électrique et magnétique, apparaissent dans la limite) et du tenseur de Cotton carrollien. La richesse de la limite est due à sa possibilité de décrire plus de degrés de liberté, ce qui s'avère être un outil fondamental dans l'étude de la relation entre les espace-temps asymptotiquement anti de Sitter et plats.Les espace-temps asymptotiquement plats peuvent être écrits comme une expansion infinie dans une jauge covariante par rapport à leur bord nul. Cette légère extension de la jauge de Newman-Unti est également valable dans AdS, ce qui permet de prendre la limite plate dans le bulk, équivalente à la limite carrollienne sur le bord. Nous démontrons que l'espace des solutions infini des espace-temps Ricci-plat provient en fait du développement en série de Laurent du tenseur énergie-impulsion d'AdS. Ces répliques obéissent à chaque ordre une dynamique carrollienne (lois de flux). Dans le cadre des espaces algébriquement spéciaux de Petrov (pour lesquels le développement infinie se resomme), nous utilisons les lois de flux carrolliennes ainsi que la conservation des tenseurs énergie-impulsion et de Cotton pour construire, du point de vue du bord, deux tours duales de charges du bulk. Parmi elles, nous retrouvons l'expansion mutipolaire de la masse et du moment angulaire pour la famille Kerr-Taub-NUT. La jauge covariante est également le cadre approprié pour dévoiler l'action des symétries cachées de la gravité sur le bord nul. Dans ce travail, nous étudions le cas de la symétrie SL(2,R) d'Ehlers.Du côté de la théorie thermique des champs, nous travaillons sur l'ensemble minimal de données nécessaires pour les décrire à température finie. Alors qu'à température infinie toutes les valeurs moyennes des opérateurs primaires s’annulent, leurs valeurs non nulle dans le cas thermique constituent les données supplémentaires qu'il faut calculer pour caractériser la théorie. Les simulations numériques, la dualité avec un trou noir dans AdS ou une analyse spectrale sont généralement les méthodes employées pour trouver la valeur de ces coefficients. Notre travail propose une nouvelle approche à ce problème en montrant, à partir de deux oscillateurs harmoniques couplés, que ces coefficients sont en fait liés à des graphes conformes de théories de type fishnet. A partir de cette observation, nous avons établi une correspondance entre les fonctions de partition thermique et ces graphes
The work we present in this thesis is structured around the concepts of field theories and geometry, which are applied to gravity and thermalisation.On the gravity side, our work aims at shedding new light on the asymptotic structure of the gravitational field in the context of asymptotically flat spacetimes, using information encoded on the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector field spanning the kernel of the latter. This vector selects a particular direction which can be the starting point for describing Carroll structures in a split frame. We first elaborate on the geometry one can construct on such a manifold in this frame, including a comprehensive study of connections and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical momenta conjugate to the geometry or the connection are introduced, and the variation of the action shall give their conservation equations, upon which isometric charges can be reached.Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics. This limit usually exhibits more Carrollian descendants than what might be expected from a naive intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for which two actions, electric and magnetic arise in the limit) and the Carrollian Chern-Simons action. The richness of the limiting procedure is due to this versatility in describing a palette of degrees of freedom. This turns out to be an awesome tool in studying the relationship between asymptotically anti de Sitter (AdS) and flat spacetimes.Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge, covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit on the boundary, while preserving this covariance feature. We demonstrate that the infinite solution space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite expansion resums), we use the Carrollian flux/balance laws together with the conservation of the energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely boundary perspective. Among them we recover the mass and angular momentum mutipolar moments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study exhaustively the case of Ehlers' $SL(2,mathbb{R})$ symmetry.On the side of thermal field theory we see that while at infinite temperature a CFT is described by its spectrum and the OPE coefficients, additional data is needed in the thermal case. These are the average values of primary operators, completely determined up to a constant coefficient. Numerical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually employed to uncover the latter. Our work features a new breadth. Starting from two coupled harmonic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This observation is the first step for setting a new correspondence between thermal partition functions and graphs
APA, Harvard, Vancouver, ISO, and other styles
2

Iakovidis, Nikolaos. "Geometry of Toric Manifolds." Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277709.

Full text
Abstract:
This project is an overview of Hamiltonian geometry on Kahler manifolds and of Kähler reduction. In the first section we define complex manifolds, give their basic properties and build some structures on them. We are mainly interested in Kähler manifolds which are a subset of symplectic manifolds. In the second section we discuss group actions on manifolds. We are only concerned with Hamiltonian actions for which we can compute their moment maps. From these we prove how to construct new manifolds using a process called Kähler reduction. Finally we define toric manifolds and review Delzant polytopes and their corresponding manifolds. In the third section we present detailed examples in order to clarify all previously given definitions.
APA, Harvard, Vancouver, ISO, and other styles
3

Buttler, Michael. "The geometry of CR manifolds." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Welly, Adam. "The Geometry of quasi-Sasaki Manifolds." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20466.

Full text
Abstract:
Let (M,g) be a quasi-Sasaki manifold with Reeb vector field xi. Our goal is to understand the structure of M when g is an Einstein metric. Assuming that the S^1 action induced by xi is locally free or assuming a certain non-negativity condition on the transverse curvature, we prove some rigidity results on the structure of (M,g). Naturally associated to a quasi-Sasaki metric g is a transverse Kahler metric g^T. The transverse Kahler-Ricci flow of g^T is the normalized Ricci flow of the transverse metric. Exploiting the transverse Kahler geometry of (M,g), we can extend results in Kahler-Ricci flow to our transverse version. In particular, we show that a deep and beautiful theorem due to Perleman has its counterpart in the quasi-Sasaki setting. We also consider evolving a Sasaki metric g by Ricci flow. Unfortunately, if g(0) is Sasaki then g(t) is not Sasaki for t>0. However, in some instances g(t) is quasi-Sasaki. We examine this and give some qualitative results and examples in the special case that the initial metric is eta-Einstein.
APA, Harvard, Vancouver, ISO, and other styles
5

Clancy, Robert. "Spin(7)-manifolds and calibrated geometry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c37748b3-674a-4d95-8abf-7499474abce3.

Full text
Abstract:
In this thesis we study Spin(7)-manifolds, that is Riemannian 8-manifolds with torsion-free Spin(7)-structures, and Cayley submanifolds of such manifolds. We use a construction of compact Spin(7)-manifolds from Calabi–Yau 4-orbifolds with antiholomorphic involutions, due to Joyce, to find new examples of compact Spin(7)-manifolds. We search the class of well-formed quasismooth hypersurfaces in weighted projective spaces for suitable Calabi–Yau 4-orbifolds. We consider antiholomorphic involutions induced by the restriction of an involution of the ambient weighted projective space and we classify anti-holomorphic involutions of weighted projective spaces. We consider the moduli problem for Cayley submanifolds of Spin(7)-manifolds and show that there is a fine moduli space of unobstructed Cayley submanifolds. This result improves on the work of McLean in that we consider the global issues of how to patch together the local result of McLean. We also use the work of Kriegl and Michor on ‘convenient manifolds’ to show that this moduli space carries a universal family of Cayley submanifolds. Using the analysis necessary for the study of the moduli problem of Cayleys we find examples of compact Cayley submanifolds in any compact Spin(7)-manifold arising, using Joyce’s construction, from a suitable Calabi–Yau 4-orbifold with antiholomorphic involution. For the analysis to work, we need to show that a given Cayley submanifold is unobstructed. To show that particular examples of Cayley submanifolds are unobstructed, we relate the obstructions of complex surfaces in Calabi–Yau 4-folds as complex submanifolds to the obstructions as Cayley submanifolds.
APA, Harvard, Vancouver, ISO, and other styles
6

Pena, Moises. "Geodesics on Generalized Plane Wave Manifolds." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/866.

Full text
Abstract:
A manifold is a Hausdorff topological space that is locally Euclidean. We will define the difference between a Riemannian manifold and a pseudo-Riemannian manifold. We will explore how geodesics behave on pseudo-Riemannian manifolds and what it means for manifolds to be geodesically complete. The Hopf-Rinow theorem states that,“Riemannian manifolds are geodesically complete if and only if it is complete as a metric space,” [Lee97] however, in pseudo-Riemannian geometry, there is no analogous theorem since in general a pseudo-Riemannian metric does not induce a metric space structure on the manifold. Our main focus will be on a family of manifolds referred to as a generalized plane wave manifolds. We will prove that all generalized plane wave manifolds are geodesically complete.
APA, Harvard, Vancouver, ISO, and other styles
7

Tievsky, Aaron M. "Analogues of Kähler geometry on Sasakian manifolds." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45349.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2008.
Includes bibliographical references (p. 53-54).
A Sasakian manifold S is equipped with a unit-length, Killing vector field ( which generates a one-dimensional foliation with a transverse Kihler structure. A differential form a on S is called basic with respect to the foliation if it satisfies [iota][epsilon][alpha] = [iota][epsilon]d[alpha] = 0. If a compact Sasakian manifold S is regular, i.e. a circle bundle over a compact Kähler manifold, the results of Hodge theory in the Kahler case apply to basic forms on S. Even in the absence of a Kähler base, there is a basic version of Hodge theory due to El Kacimi-Alaoui. These results are useful in trying to imitate Kähler geometry on Sasakian manifolds; however, they have limitations. In the first part of this thesis, we will develop a "transverse Hodge theory" on a broader class of forms on S. When we restrict to basic forms, this will give us a simpler proof of some of El Kacimi-Alaoui's results, including the basic dd̄-lemma. In the second part, we will apply the basic dd̄-lemma and some results from our transverse Hodge theory to conclude (in the manner of Deligne, Griffiths, and Morgan) that the real homotopy type of a compact Sasakian manifold is a formal consequence of its basic cohomology ring and basic Kähler class.
by Aaron Michael Tievsky.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Kotschick, Dieter. "On the geometry of certain 4 - manifolds." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Viaggi, Gabriele [Verfasser]. "Geometry of random 3-manifolds / Gabriele Viaggi." Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1208764896/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baier, P. D. "Special Lagrangian geometry." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365884.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geometry of null manifolds"

1

1940-, Shiohama K., Japan Monbushō, and Symposium on Differential Geometry (1988- ) (35th : 1988 : Shinshu University), eds. Geometry of manifolds. Boston: Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crittenden, Richard J., d. 1996., ed. Geometry of manifolds. Providence, R.I: American Mathematical Society, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kock, Anders. Synthetic Geometry of Manifolds. Leiden: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Earle, Clifford J., William J. Harvey, and Sevín Recillas-Pishmish, eds. Complex Manifolds and Hyperbolic Geometry. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/conm/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brozos-Vázquez, Miguel, Eduardo García-Río, Peter Gilkey, Stana Nikčević, and Ramón Vázques-Lorenzo. The Geometry of Walker Manifolds. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-02397-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sunada, Toshikazu, ed. Geometry and Analysis on Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0083042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matić, Gordana, and Clint McCrory, eds. Topology and Geometry of Manifolds. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/pspum/071.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geometry of null manifolds"

1

Duggal, Krishan L., and Aurel Bejancu. "Geometry of Null Curves in Lorentz Manifolds." In Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, 52–76. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Olea, Benjamín. "Null Hypersurfaces on Lorentzian Manifolds and Rigging Techniques." In Lorentzian Geometry and Related Topics, 237–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66290-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carmo, Manfredo Perdigão do. "Differentiable Manifolds." In Riemannian Geometry, 1–34. Boston, MA: Birkhäuser Boston, 2013. http://dx.doi.org/10.1007/978-1-4757-2201-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Conlon, Lawrence. "Riemannian Geometry." In Differentiable Manifolds, 293–348. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Serge. "Manifolds." In Fundamentals of Differential Geometry, 22–42. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0541-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Livingston, Charles. "Null-homologous unknottings." In Topology and Geometry, 59–68. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/irma/33-1/3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ballmann, Werner. "Manifolds." In Introduction to Geometry and Topology, 27–67. Basel: Springer Basel, 2018. http://dx.doi.org/10.1007/978-3-0348-0983-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eschrig, Helmut. "Manifolds." In Topology and Geometry for Physics, 55–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14700-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dragomir, Sorin, and Liviu Ornea. "L.c.K. Manifolds." In Locally Conformal Kähler Geometry, 1–5. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2026-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shafarevich, Igor R. "Complex Manifolds." In Basic Algebraic Geometry 2, 153–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57956-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry of null manifolds"

1

ROMERO, ANTONIO, ROCIO VELÁZQUEZ-MATA, ANTONIO TADEU, and PEDRO GALVÍN. "ACOUSTIC WAVE SCATTERING BY NULL-THICKNESS BODIES WITH COMPLEX GEOMETRY." In BEM/MRM 47, 135–46. Southampton UK: WIT Press, 2024. http://dx.doi.org/10.2495/be470111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NAKOVA, Galia. "NULL CURVES ON THE UNIT TANGENT BUNDLE OF A TWO-DIMENSIONAL KÄHLER-NORDEN MANIFOLD." In 5th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220911_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Masa, Xosé, Enrique Macias-Virgós, and Jesús A. Alvarez López. "Analysis and Geometry in Foliated Manifolds." In 7th International Collóquium on Differential Geometry. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814533119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PESTOV, IVANGOE B. "GEOMETRY OF MANIFOLDS AND DARK MATTER." In Proceedings of the 5th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810144_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ARSLAN, KADRI, and CENGIZHAN MURATHAN. "CONTACT METRIC R-HARMONIC MANIFOLDS." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Defever, Filip, Ryszard Deszcz, Marian Hotloś, Marek Kucharski, and Zerrin Şentürk. "ON MANIFOLDS OF PSEUDOSYMMETRIC TYPE." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boyom, Michel Nguiffo. "Some lagrangian invariants of symplectic manifolds." In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadowski, Michał. "Holonomy groups of complete flat manifolds." In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bordoni, Manlio, Carlos Herdeiro, and Roger Picken. "Construction of Isospectral Manifolds." In XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3599144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Libermann, Paulette. "Charles Ehresmann's concepts in differential geometry." In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometry of null manifolds"

1

Naber, Gregory. Invariants of Smooth Four-manifolds: Topology, Geometry, Physics. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-105-140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beurlot, Kyle, Mark Patterson, and Timothy Jacobs. PR-457-22210-R01 Effects of Inlet Port Geometry on MCC Mixing Sensitivity Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2024. http://dx.doi.org/10.55274/r0000061.

Full text
Abstract:
Lean burning large bore natural gas two-stroke engines have remained critical components of the North American natural gas pipeline ecosystem for decades and will continue to persist as vital means of natural gas transportation well into the coming years. As increasing lean ignition limits are explored, Pre-Combustion Chambers (PCCs) serve as pathway to increased stability and repeatability of combustion as well as substantial engine emissions reduction. This study aims to further research the interaction between PCCs and the main combustion chamber (MCC) by investigating the sensitivity of in-cylinder mixing to changes in the geometry of intake manifolds and port design. A CFD model of a Cooper Ajax E-565 large bore lean burn two-stroke was used for this study. Several novel intake manifold designs were created to promote distinct flow characteristics and examined extensively for overall air flow results, mixing quality, general cycle performance, impact on residual methane, and impact on NOx production.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography