Dissertations / Theses on the topic 'Geometry, Algebraic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Geometry, Algebraic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Miscione, Steven. "Loop algebras and algebraic geometry." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116115.
Full textLurie, Jacob 1977. "Derived algebraic geometry." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.
Full textIncludes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Balchin, Scott Lewis. "Augmented homotopical algebraic geometry." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40623.
Full textRennie, Adam Charles. "Noncommutative spin geometry." Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Full textDos, Santos João Pedro Pinto. "Fundamental groups in algebraic geometry." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252015.
Full textSlaatsveen, Anna Aarstrand. "Decoding of Algebraic Geometry Codes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13729.
Full textBirkar, Caucher. "Topics in modern algebraic geometry." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421475.
Full textLundman, Anders. "Topics in Combinatorial Algebraic Geometry." Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176878.
Full textDen här avhandlingen utgörs av sex artiklar inom algebraisk geometri som är nära kopplade till kombinatorik. I artikel A betraktar vi kompletta inbäddningar av glatta toriska variteter X ↪ PN sådana att för något fixt heltal k är det t-te oskulerande rummet i varje punkt av maximal dimension om och endast om t ≤ k. Vårt huvudresultat är att detta antagande är ekvivalent med att den polytop som motsvarar inbäddningen är en Cayleypolytop av ordning k, vars samtliga kanter har längd åtminstonde k. Detta resultat generaliserar en tidigare känd karaktärisering av David Perkinson. Vi visar även att ovanstående antagande är ekvivalent med antagandet att Seshadri- konstanten är lika med k i varje punkt i X. Därmed generaliserar vårt resultat ett tidigare resultat av Atsushi Ito. I artikel B introducerar vi H-konstanter, vilka mäter negativiteten av kurvor på uppblåsningar av ytor. Vi relaterar dessa konstanter till den begränsade negativitetsförmodan. Vidare erhåller vi begränsningar för konstanterna när vi enbart betraktar unioner av linjer i det reella och komplexa projektiva planet. I artikel C studerar vi Gaussavbildningen av ordning k, för k > 1, som avbildar en punkt i en varitet på det k-te oskulerande rummet i samma punkt. Vårt huvudresultat är att, i likhet med fallet k = 1, är dessa högre ordningens Gaussavbildningar ändliga på glatta variteter vars k-te oskulerande rum är fulldimensionellt överallt. Vidare ger vi konvexgeometriska beskrivningar av dessa avbildningar för toriska variteter. I artikel D klassificerar vi scheman av tjocka punkter på Hirzebruchytor vars initalsekvenser är av maximal eller nära maximal längd. Intitialgraden och initialsekvensen för sådana scheman är nära relaterade till den välkända Nagata- förmodan. I artikel E introducerar vi paketet LatticePolytopes till Macaulay2. Detta paket utökar funktionaliteten i Macaulay2 för beräkningar inom torisk och konvex geometri. I artikel F beräknar vi Seshadrikonstanten i generella punkter på glatta toriska ytor som uppfyller vissa konvexgeometriska villkor på de associerade polygonerna. Våra beräkningar koppplar samman Seshadrikonstanten i en generell punkt med jetsepareringen och det icke-normaliserade spektralvärdet hos ytorna.
QC 20151112
Hu, Jiawei. "Partial actions in algebraic geometry." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/273459.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Garcia-Puente, Luis David. "Algebraic Geometry of Bayesian Networks." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11133.
Full textPh. D.
Mikami, Ryota. "Tropical geometry and algebraic cycles." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263437.
Full textKileel, Joseph David. "Algebraic Geometry for Computer Vision." Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282753.
Full textThis thesis uses tools from algebraic geometry to solve problems about three-dimensional scene reconstruction. 3D reconstruction is a fundamental task in multiview geometry, a field of computer vision. Given images of a world scene, taken by cameras in unknown positions, how can we best build a 3D model for the scene? Novel results are obtained for various challenging minimal problems, which are important algorithmic routines in Random Sampling Consensus pipelines for reconstruction. These routines reduce overfitting when outliers are present in image data.
Our approach throughout is to formulate inverse problems as structured systems of polynomial equations, and then to exploit underlying geometry. We apply numerical algebraic geometry, commutative algebra and tropical geometry, and we derive new mathematical results in these fields. We present simulations on image data as well as an implementation of general-purpose homotopy-continuation software for implicitization in computational algebraic geometry.
Chapter 1 introduces some relevant computer vision. Chapters 2 and 3 are devoted to the recovery of camera positions from images. We resolve an open problem concerning two calibrated cameras raised by Sameer Agarwal, a vision expert at Google Research, by using the algebraic theory of Ulrich sheaves. This gives a robust test for identifying outliers in terms of spectral gaps. Next, we quantify the algebraic complexity for notorious poorly understood cases for three calibrated cameras. This is achieved by formulating in terms of structured linear sections of an explicit moduli space and then computing via homotopy-continuation. In Chapter 4, a new framework for modeling image distortion is proposed, based on lifting algebraic varieties in projective space to varieties in other toric varieties. We check that our formulation leads to faster and more stable solvers than the state of the art. Lastly, Chapter 5 concludes by studying possible pictures of simple objects, as varieties inside products of projective planes. In particular, this dissertation exhibits that algebro-geometric methods can actually be useful in practical settings.
Waelder, Robert. "Elliptic genera in algebraic geometry." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1619148881&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textMilione, Piermarco. "Shimura curves and their p-adic uniformization = Corbes de Shimura i les seves uniformitzacions p-àdiques." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/402209.
Full textEklund, David. "Topics in computation, numerical methods and algebraic geometry." Doctoral thesis, KTH, Matematik (Avd.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25941.
Full textQC 20101115
Björklund, Johan. "Knots and Surfaces in Real Algebraic and Contact Geometry." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156908.
Full textHeier, Gordon. "Some effective results in algebraic geometry." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965086631.
Full textDe, Zeeuw Frank. "An algebraic view of discrete geometry." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/38158.
Full textThaddeus, Michael. "Algebraic geometry and the Verlinde formula." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:12af7dda-26f7-44ec-b335-74193ce1c538.
Full textFrancis, John (John Nathan Kirkpatrick). "Derived algebraic geometry over En̳-rings." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43792.
Full textIn title on t.p., double underscored "n" appears as subscript.
Includes bibliographical references (p. 55-56).
We develop a theory of less commutative algebraic geometry where the role of commutative rings is assumed by En-rings, that is, rings with multiplication parametrized by configuration spaces of points in Rn. As n increases, these theories converge to the derived algebraic geometry of Tobn-Vezzosi and Lurie. The class of spaces obtained by gluing En-rings form a geometric counterpart to En-categories, which are higher topological variants of braided monoidal categories. These spaces further provide a geometric language for the deformation theory of general E, structures. A version of the cotangent complex governs such deformation theories, and we relate its values to E&-Hochschild cohomology. In the affine case, this establishes a claim made by Kontsevich. Other applications include a geometric description of higher Drinfeld centers of SE-categories, explored in work with Ben-Zvi and Nadler.
by John Francis.
Ph.D.
Kotschick, Dieter. "On the geometry of certain 4 - manifolds." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236179.
Full textLi, Shiyue. "Tropical Derivation of Cohomology Ring of Heavy/Light Hassett Spaces." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/104.
Full textLundkvist, Christian. "Moduli spaces of zero-dimensional geometric objects." Doctoral thesis, Stockholm : Matematik, Kungliga Tekniska högskolan, 2009. http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:223079.
Full textSarmiento-Lopez, X. I. "Algebraic problems in matroid theory." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298554.
Full textLewis, Matthew. "Error correction of generalised algebraic-geometry codes." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407473.
Full textZong, Hong R. "Topics in birational geometry of algebraic varieties." Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3665359.
Full textVarious questions related to birational properties of algebraic varieties are concerned.
Rationally connected varieties are recognized as the buildings blocks of all varieties by the Minimal Model theory. We prove that every curve on a separably rationally connected variety is rationally equivalent to a (non-effective) integral sum of rational curves. That is, the Chow group of 1-cycles is generated by rational curves. As a consequence, we solve a question of Professor Burt Totaro on integral Hodge classes on rationally connected 3-folds. And by a result of Professor Claire Voisin, the general case will be a consequence of the Tate conjecture for surfaces over finite fields.
Using the same philosophy looking for degenerated rational components through forgetful maps between moduli spaces of curves, we prove Weak Approximation conjecture to Prof. Hassett and Prof. Tschinkel for isotrivial families of rationally connected varieties. Theory of Twisted Stable maps is essentially used, with an alternative proof where some notion from Derived Algebraic Geometry is applied. It is remarkable that technics and ideas developed in this part, shed light upon and essentially led to the final solution to weak approximation of Cubic Surfaces, which is a problem concerned by Number Theorists for many years, and this is currently the best known result in this subject.
Then we turn to Minimal Model theory in both zero and positive characteristics. Firstly, projective globally F-regular threefolds of characteristic p ≥ 11, are shown to be rationally chain connected, and back to characteristic zero, we use hard-core technics of Minimal Model program, esp. finite generate of canonical rings due to Professor Hacon, Professor McKernan et al. to characterize Toric varieties and geometric rational varieties as log canonical log-Calabi Yau varieties with "large" boundary, where the specific meanings of "large" are originated from some notion of "charges" from String theory, and hence is related to Mirror Symmetry. This part of works also answered a Conjecture due to Prof. Shokurov.
Shifler, Ryan M. "Computational Algebraic Geometry Applied to Invariant Theory." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23154.
Full textMaster of Science
Massarenti, Alex. "Biregular and Birational Geometry of Algebraic Varieties." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4679.
Full textRedman, Lynn. "Algebraic Methods for Proving Geometric Theorems." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/923.
Full textHammes, Emily. "Unifications of Pythagorean Triple Schema." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/honors/502.
Full textMiadantsoa, Rakoto. "Groupes finis d'automorphismes des varietes abeliennes de dimension deux." Toulouse 3, 1988. http://www.theses.fr/1988TOU30051.
Full textMOUSSA, OUSMANE. "Theoremes des zeros centraux en geometrie analytique reelle." Rennes 1, 1989. http://www.theses.fr/1989REN10062.
Full textLe, Stum Bernard. "Cohomologie rigide et varietes abeliennes." Rennes 1, 1985. http://www.theses.fr/1985REN10007.
Full textJadda, Zoubida. "Constructions de places reelles et geometrie semi-algebrique." Rennes 1, 1986. http://www.theses.fr/1986REN10102.
Full textFekak, Azzeddine. "Sur les exposants de Lojasiewicz." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37597565q.
Full textDeshpande, D. V. "Topological methods in algebraic geometry : cohomology rings, algebraic cobordism and higher Chow groups." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598515.
Full textGong, Shengjun, and 龔勝軍. "Linear coordinates, test elements, retracts and automorphic orbits." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988065.
Full textGong, Shengjun. "Linear coordinates, test elements, retracts and automorphic orbits." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988065.
Full textNyman, Adam. "The geometry of points on quantum projectivizations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5727.
Full textAbbott, Kevin Toney. "Applications of algebraic geometry to object/image recognition." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1935.
Full textDindyal, Jaguthsing Presmeg Norma C. "Algebraic thinking in geometry at high school level." Normal, Ill. Illinois State University, 2003. http://wwwlib.umi.com/cr/ilstu/fullcit?p3087865.
Full textTitle from title page screen, viewed November 15, 2005. Dissertation Committee: Norma C. Presmeg (chair), Nerida F. Ellerton, Beverly S. Rich, Sharon S. McCrone. Includes bibliographical references (leaves 208-219) and abstract. Also available in print.
Hampton, III Earl Ravi M. "A PRIMER FOR THE FOUNDATIONS OF ALGEBRAIC GEOMETRY." [Greenville, N.C.] : East Carolina University, 2010. http://hdl.handle.net/10342/2797.
Full textTang, Xin. "Applications of noncommutative algebraic geometry to representation theory /." Search for this dissertation online, 2006. http://wwwlib.umi.com/cr/ksu/main.
Full textJost, Christine. "Topics in Computational Algebraic Geometry and Deformation Quantization." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-87399.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.
Riccomagno, Eva M. "Algebraic geometry in experimental design and related fields." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263314.
Full textDi, Natale Carmelo. "Grassmannians and period mappings in derived algebraic geometry." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709191.
Full textAnderson, William Erik 1976. "Applications of algebraic geometry to coding & cryptography." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86656.
Full textIncludes bibliographical references (p. 73-74).
by William Erik Anderson.
S.M.
Abou-Rached, John. "Sheaves and schemes: an introduction to algebraic geometry." Kansas State University, 2016. http://hdl.handle.net/2097/32608.
Full textDepartment of Mathematics
Roman Fedorov
The purpose of this report is to serve as an introduction to the language of sheaves and schemes via algebraic geometry. The main objective is to use examples from algebraic geometry to motivate the utility of the perspective from sheaf and scheme theory. Basic facts and definitions will be provided, and a categorical approach will be frequently incorporated when appropriate.
Berardini, Elena. "Algebraic geometry codes from surfaces over finite fields." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0170.
Full textIn this thesis we provide a theoretical study of algebraic geometry codes from surfaces defined over finite fields. We prove lower bounds for the minimum distance of codes over surfaces whose canonical divisor is either nef or anti-strictly nef and over surfaces without irreducible curves of small genus. We sharpen these lower bounds for surfaces whose arithmetic Picard number equals one, surfaces without curves with small self-intersection and fibered surfaces. Then we apply these bounds to surfaces embedded in P3. A special attention is given to codes constructed from abelian surfaces. In this context we give a general bound on the minimum distance and we prove that this estimation can be sharpened under the assumption that the abelian surface does not contain absolutely irreducible curves of small genus. In this perspective we characterize all abelian surfaces which do not contain absolutely irreducible curves of genus up to 2. This approach naturally leads us to consider Weil restrictions of elliptic curves and abelian surfaces which do not admit a principal polarization
Drake, Nathan. "Decoding of multipoint algebraic geometry codes via lists." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1263409538/.
Full text