Academic literature on the topic 'Geometry, Algebraic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry, Algebraic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometry, Algebraic"
Hacon, Christopher, Daniel Huybrechts, Yujiro Kawamata, and Bernd Siebert. "Algebraic Geometry." Oberwolfach Reports 12, no. 1 (2015): 783–836. http://dx.doi.org/10.4171/owr/2015/15.
Full textPLOTKIN, BORIS. "SOME RESULTS AND PROBLEMS RELATED TO UNIVERSAL ALGEBRAIC GEOMETRY." International Journal of Algebra and Computation 17, no. 05n06 (August 2007): 1133–64. http://dx.doi.org/10.1142/s0218196707003986.
Full textTyurin, N. A. "Algebraic Lagrangian geometry: three geometric observations." Izvestiya: Mathematics 69, no. 1 (February 28, 2005): 177–90. http://dx.doi.org/10.1070/im2005v069n01abeh000527.
Full textVoisin, Claire. "Algebraic Geometry versus Kähler geometry." Milan Journal of Mathematics 78, no. 1 (March 17, 2010): 85–116. http://dx.doi.org/10.1007/s00032-010-0113-8.
Full textToën, Bertrand. "Derived algebraic geometry." EMS Surveys in Mathematical Sciences 1, no. 2 (2014): 153–245. http://dx.doi.org/10.4171/emss/4.
Full textDebarre, Olivier, David Eisenbud, Gavril Farkas, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 18, no. 2 (August 24, 2022): 1519–77. http://dx.doi.org/10.4171/owr/2021/29.
Full textDarke, Ian, and M. Reid. "Undergraduate Algebraic Geometry." Mathematical Gazette 73, no. 466 (December 1989): 351. http://dx.doi.org/10.2307/3619332.
Full textDebarre, Olivier, David Eisenbud, Frank-Olaf Schreyer, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 9, no. 2 (2012): 1845–93. http://dx.doi.org/10.4171/owr/2012/30.
Full textCatanese, Fabrizio, Christopher Hacon, Yujiro Kawamata, and Bernd Siebert. "Complex Algebraic Geometry." Oberwolfach Reports 10, no. 2 (2013): 1563–627. http://dx.doi.org/10.4171/owr/2013/27.
Full textDebarre, Olivier, David Eisenbud, Gavril Farkas, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 11, no. 3 (2014): 1695–745. http://dx.doi.org/10.4171/owr/2014/31.
Full textDissertations / Theses on the topic "Geometry, Algebraic"
Miscione, Steven. "Loop algebras and algebraic geometry." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116115.
Full textLurie, Jacob 1977. "Derived algebraic geometry." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.
Full textIncludes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Balchin, Scott Lewis. "Augmented homotopical algebraic geometry." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40623.
Full textRennie, Adam Charles. "Noncommutative spin geometry." Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Full textDos, Santos João Pedro Pinto. "Fundamental groups in algebraic geometry." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252015.
Full textSlaatsveen, Anna Aarstrand. "Decoding of Algebraic Geometry Codes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13729.
Full textBirkar, Caucher. "Topics in modern algebraic geometry." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421475.
Full textLundman, Anders. "Topics in Combinatorial Algebraic Geometry." Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176878.
Full textDen här avhandlingen utgörs av sex artiklar inom algebraisk geometri som är nära kopplade till kombinatorik. I artikel A betraktar vi kompletta inbäddningar av glatta toriska variteter X ↪ PN sådana att för något fixt heltal k är det t-te oskulerande rummet i varje punkt av maximal dimension om och endast om t ≤ k. Vårt huvudresultat är att detta antagande är ekvivalent med att den polytop som motsvarar inbäddningen är en Cayleypolytop av ordning k, vars samtliga kanter har längd åtminstonde k. Detta resultat generaliserar en tidigare känd karaktärisering av David Perkinson. Vi visar även att ovanstående antagande är ekvivalent med antagandet att Seshadri- konstanten är lika med k i varje punkt i X. Därmed generaliserar vårt resultat ett tidigare resultat av Atsushi Ito. I artikel B introducerar vi H-konstanter, vilka mäter negativiteten av kurvor på uppblåsningar av ytor. Vi relaterar dessa konstanter till den begränsade negativitetsförmodan. Vidare erhåller vi begränsningar för konstanterna när vi enbart betraktar unioner av linjer i det reella och komplexa projektiva planet. I artikel C studerar vi Gaussavbildningen av ordning k, för k > 1, som avbildar en punkt i en varitet på det k-te oskulerande rummet i samma punkt. Vårt huvudresultat är att, i likhet med fallet k = 1, är dessa högre ordningens Gaussavbildningar ändliga på glatta variteter vars k-te oskulerande rum är fulldimensionellt överallt. Vidare ger vi konvexgeometriska beskrivningar av dessa avbildningar för toriska variteter. I artikel D klassificerar vi scheman av tjocka punkter på Hirzebruchytor vars initalsekvenser är av maximal eller nära maximal längd. Intitialgraden och initialsekvensen för sådana scheman är nära relaterade till den välkända Nagata- förmodan. I artikel E introducerar vi paketet LatticePolytopes till Macaulay2. Detta paket utökar funktionaliteten i Macaulay2 för beräkningar inom torisk och konvex geometri. I artikel F beräknar vi Seshadrikonstanten i generella punkter på glatta toriska ytor som uppfyller vissa konvexgeometriska villkor på de associerade polygonerna. Våra beräkningar koppplar samman Seshadrikonstanten i en generell punkt med jetsepareringen och det icke-normaliserade spektralvärdet hos ytorna.
QC 20151112
Hu, Jiawei. "Partial actions in algebraic geometry." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/273459.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Garcia-Puente, Luis David. "Algebraic Geometry of Bayesian Networks." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11133.
Full textPh. D.
Books on the topic "Geometry, Algebraic"
Cox, David A. Using algebraic geometry. New York: Springer, 1998.
Find full textCox, David A. Using algebraic geometry. 2nd ed. New York: Springer, 2005.
Find full textLefschetz, Solomon. Algebraic geometry. Mineola, N.Y: Dover Publications, 2005.
Find full textHarris, Joe. Algebraic Geometry. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8.
Full textSommese, Andrew John, Aldo Biancofiore, and Elvira Laura Livorni, eds. Algebraic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0083328.
Full textAbramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.1.
Full textAbramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.2.
Full textKeum, JongHae, and Shigeyuki Kondō, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/conm/422.
Full textKurke, H., and J. H. M. Steenbrink, eds. Algebraic Geometry. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3.
Full textPerrin, Daniel. Algebraic Geometry. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-056-8.
Full textBook chapters on the topic "Geometry, Algebraic"
Stillwell, John. "Algebraic Geometry." In Undergraduate Texts in Mathematics, 85–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_6.
Full textWells, Raymond O. "Algebraic Geometry." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 5–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_1.
Full textMazzola, Guerino. "Algebraic Geometry." In The Topos of Music IV: Roots, 1411–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64495-0_6.
Full textSuzuki, Joe. "Algebraic Geometry." In WAIC and WBIC with Python Stan, 153–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3841-4_7.
Full textWallach, Nolan R. "Algebraic Geometry." In Universitext, 3–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65907-7_1.
Full textElliott, David L. "Algebraic Geometry." In Bilinear Control Systems, 247–50. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1023/b101451_11.
Full textBeshaj, Lubjana. "Algebraic Geometry." In Mathematics in Cyber Research, 97–132. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-3.
Full textSuzuki, Joe. "Algebraic Geometry." In WAIC and WBIC with R Stan, 151–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3838-4_7.
Full textHarris, Joe. "Algebraic Groups." In Algebraic Geometry, 114–29. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8_10.
Full textBogomolov, F. A., and A. N. Landia. "2-Cocycles and Azumaya algebras under birational transformations of algebraic schemes." In Algebraic Geometry, 1–5. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3_1.
Full textConference papers on the topic "Geometry, Algebraic"
Sharir, Micha. "Algebraic Techniques in Geometry." In ISSAC '18: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3208976.3209028.
Full textRoan, Shi-shyr. "Algebraic Geometry and Physics." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0042.
Full textLÊ, DŨNG TRÁNG, and BERNARD TEISSIER. "GEOMETRY OF CHARACTERISTIC VARIETIES." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.
Full textBorghesi, Simone. "Cohomology operations and algebraic geometry." In International Conference in Homotopy Theory. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.10.75.
Full textBIRKAR, CAUCHER. "BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0068.
Full textSoleev, A., and N. Soleeva. "Power geometry and algebraic equations." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823880.
Full textDaniyarova, E., A. Myasnikov, and V. Remeslennikov. "Unification theorems in algebraic geometry." In A Festschrift in Honor of Anthony Gaglione. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793416_0007.
Full textBarczik, Günter, Oliver Labs, and Daniel Lordick. "Algebraic Geometry in Architectural Design." In eCAADe 2009: Computation: The New Realm of Architectural Design. eCAADe, 2009. http://dx.doi.org/10.52842/conf.ecaade.2009.455.
Full textWampler, Charles W. "Numerical algebraic geometry and kinematics." In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277506.
Full textCariñena, J. F., A. Ibort, G. Marmo, G. Morandi, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "Geometrical description of algebraic structures: Applications to Quantum Mechanics." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146238.
Full textReports on the topic "Geometry, Algebraic"
Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437184.
Full textStiller, Peter. Algebraic Geometry and Computational Algebraic Geometry for Image Database Indexing, Image Recognition, And Computer Vision. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada384588.
Full textThompson, David C., Joseph Maurice Rojas, and Philippe Pierre Pebay. Computational algebraic geometry for statistical modeling FY09Q2 progress. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/984161.
Full textBates, Daniel J., Daniel A. Brake, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler. Real Numerical Algebraic Geometry: Finding All Real Solutions of a Polynomial System. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada597283.
Full textRabier, Patrick J., and Werner C. Rheinboldt. A Geometric Treatment of Implicit Differential-Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236991.
Full textWatts, Paul. Differential geometry on Hopf algebras and quantum groups. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/89507.
Full textYau, Stephen S. PDE, Differential Geometric and Algebraic Methods in Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada260967.
Full textYau, Stephen S. PDE, Differential Geometric and Algebraic Methods for Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada310330.
Full textMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada282926.
Full textMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada271395.
Full text