Academic literature on the topic 'Geometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry"

1

Yasbiati, Yasbiati, and Titi Nurhayati. "PENINGKATAN KEMAMPUAN MENGENAL BENTUK GEOMTETRI MELALUI MEDIA COLOUR GEOMETRY BOOK (Penelitian Tindakan Kelas pada Kelompok A TK Al-Abror Kecamatan Mangkubumi Kota Tasikmalaya Tahun 2016/2017)." JURNAL PAUD AGAPEDIA 2, no. 1 (May 2, 2020): 23–35. http://dx.doi.org/10.17509/jpa.v2i1.24385.

Full text
Abstract:
ABSTRACTThe purpose of this research is to increase the ability to recognize geometry shape through Color Geometry Book media in the children of Group A in Al-Abror Kindergarten of Mangkubumi Sub-district of Tasikmalaya City. The forms of geometry that are introduced are circle, triangle, square, and rectangle. The type of research used is classroom action research, conducted in collaboration with classroom teachers. Sunjek research as many as 13 children, consisting of 5 men and 8 women. The object of this research is the ability to recognize geometry form through Color Geometry Book media. Techniques of data collection using obserbasi and documentation. The research instrument uses check list observation sheet and documentation. Data analysis technique used descriptive analysis and quantitative analysis. The indicator of success in this study is if at least 75% of all children are able to achieve the criteria of Growing Up Expectations (BSH) on each indicator. The results showed that the ability to recognize geometric shapes seen from indicators of the ability to mention geometric shapes, to show geometric shapes, to group geometric shapes, and to draw geometric shapes. Increasing the ability of children to recognize geometry shape through Color Geometry Book media in the implementation of Pre action on indicator ability mentioned 84.61% (BB) 15.39% (MB), then in Cycle III increased to 30.77% (BSH) 69.23 % (BSB), ability to show on Pre action implementation 92.31% (BB) 7.69% (MB) Cycle III increased to 7.69% (MB) 23.08% (BSH) 69.23% (BSB) Ability to classify Pre action implementation 23.08% (MB) 7.69% (BSH) 69.23% (BSB) Cycle III increased to 100% (BSB), while the ability to draw Pre action 92.31% (BB) shape 7, 69% (MB), Cycle III increased to 15.38% (MB) 30.77% (BSH) and 53.85% (BSB). Tujuan pelaksanaan penelitian ini adalah untuk meningkatkan kemampuan mengenal bentuk geometri melalui media Colour Geometry Book pada anak Kelompok A di TK Al- Abror Kecamatan Mangkubumi Kota Tasikmalaya. Bentuk geometri yang dikenalkan adalah lingkaran, segitiga, persegi, dan persegi panjang. Jenis penelitian yang digunakan adalah penelitian tindakan kelas, dilakukan bekerjasama dengan guru kelas. Sunjek penelitian sebanyak 13 anak, yang terdiri dari 5 laki-laki dan 8 perempuan. Objek penelitian ini adalah kemampuan mengenal bentuk geometri melalui media Colour Geometry Book. Teknik pengumpulan data menggunakan obserbasi dan dokumentasi. Instrumen penelitian menggunakan lembar observasi check list dan dokumentasi. Teknik analisis data menggunakan analisis deskriptif dan analisis kuantitatif. Indikator keberhasilan dalam penelitian ini adalah jika minimal 75% dari seluruh anak mampu mencapai kriteria Berkembang Sesuai Harapan (BSH) pada setiap indikatornya. Hasil penelitian menunjukan adanya peingkatan kemampuan mengenal bentuk geometri yang terlihat dari indikator kemampuan menyebutkan bentuk-bentuk geometri, menunjukan bentuk- bentuk geometri, mengelompokkan bentuk-bentuk geometri, dan menggambar bentuk-bentuk geometri. Peningkatan kemampuan anak dalam mengenal bentuk geometri melalui mediai Colour Geometry Book dalam pelaksanaan Pratindakan pada indikator kemampuan menyebutkan 84,61% (BB)15,39% (MB), kemudian pada Siklus III meningkat menjadi 30,77% (BSH) 69,23% (BSB), kemampuan menunjukan pada pelaksanaan Pratindakan 92,31% (BB) 7,69% (MB) Siklus III meningkat menjadi 7,69% (MB) 23,08% (BSH) 69,23% (BSB), kemampuan mengelompokkan pelaksanaan Pratindakan 23,08% (MB) 7,69% (BSH) 69,23% (BSB) Siklus III meningkat menjadi 100% (BSB), sedangkan kemampuan menggambar bentuk geometri Pratindakan 92,31% (BB) 7,69% (MB) ,Siklus III meningkat menjadi 15,38 % (MB) 30,77 % (BSH) dan 53,85 % (BSB).
APA, Harvard, Vancouver, ISO, and other styles
2

Puspananda, Dian Ratna, Anis Umi Khoirutunnisa’, M. Zainudin, Anita Dewi Utami, and Nur Rohman. "GEOMETRY TOWER ADVENTURE PADA ANAK USIA DINI DI DESA SUKOREJO KECAMATAN BOJONEGORO." J-ABDIPAMAS : Jurnal Pengabdian Kepada Masyarakat 1, no. 1 (October 20, 2017): 56. http://dx.doi.org/10.30734/j-abdipamas.v1i1.81.

Full text
Abstract:
ABSTRACTThe introduction of geometry is considered important since early age because part of form recognition learning. This is one of the earliest concepts that children must master in cognitive development. Children can distinguish objects by shape first before based on other features. By giving the introduction of geometric shapes from an early age means that the child will have a learning experience that will support the learning of mathematics in the next level of education. Community Service Activities under the title Geometry Tower Adventure at Early Childhood in Sukorejo Village Bojonegoro District Bojonegoro District aims to train children to know the type of shapes, colors, and soft and coarse motor skills by using their preferred game. This PKM activity started on September 11, 2017 until September 16, 2017, followed by all Singajaya Islam Kindergarten students, amounting to 100 students. As the activity progresses the students follow the game path with enthusiasm and joy. In addition we also provide five sets of props in the form of geometry towers and the steps of its use in learning to the school to be utilized in the future.Keywords: Geomerty tower adventure, Early childhoodABSTRAKPengenalan geometri dianggap penting dikenalkan sejak usia dini karena bagian dari pembelajaran pengenalan bentuk. Hal ini merupakan salah satu dari konsep paling awal yang harus dikuasai oleh anak dalam pengembangan kognitif. Anak dapat membedakan benda berdasarkan bentuk terlebih dahulu sebelum berdasarkan ciri-ciri lainnya. Dengan memberikan pengenalan bentuk geometri sejak usia dini berarti anak mendapatkan pengalaman belajar yang akan menunjang untuk pembelajaran matematika di tingkat pendidikan selanjutnya. Kegiatan Pengabdian kepada Masyarakat dengan judul Geometry Tower Adventure pada Anak Usia Dini di Desa Sukorejo Kecamatan Bojonegoro Kabupaten Bojonegoro bertujuan melatih anak untuk mengetahui jenis bentuk, warna, serta melatih motorik halus dan kasar dengan menggunakan permainan yang disukai mereka. Kegiatan PKM ini dimulai pada tanggal 11 September 2017 sampai dengan 16 September 2017, diikuti oleh seluruh siswa TK Islam Singajaya yang berjumlah 100 siswa. Saat kegiatan berlangsung siswa mengikuti alur permainan dengan antusias dan gembira. Selain itu kami juga memberikan lima set alat peraga berupa menara geometri serta langkah-langkah penggunaanya dalam pembelajaran kepada pihak sekolah agar bisa dimanfaatkan dikemudian hari.Kata Kunci: Geomerty tower adventure, Usia dini
APA, Harvard, Vancouver, ISO, and other styles
3

Clements, Douglas C., and Michael Battista. "Geometry and Geometric Measurement." Arithmetic Teacher 33, no. 6 (February 1986): 29–32. http://dx.doi.org/10.5951/at.33.6.0029.

Full text
Abstract:
Geometry is the study of objects, motions, and relationships in a spatial environment. We use it to examine containers, buildings, cars, and playgrounds—familiar things that students see, touch, or move. Because students are naturally interested in these things, geometry can be a highly motivating topic.
APA, Harvard, Vancouver, ISO, and other styles
4

Rylov, Yuri A. "Geometry without topology as a new conception of geometry." International Journal of Mathematics and Mathematical Sciences 30, no. 12 (2002): 733–60. http://dx.doi.org/10.1155/s0161171202012243.

Full text
Abstract:
A geometric conception is a method of a geometry construction. The Riemannian geometric conception and a new T-geometric one are considered. T-geometry is built only on the basis of information included in the metric (distance between two points). Such geometric concepts as dimension, manifold, metric tensor, curve are fundamental in the Riemannian conception of geometry, and they are derivative in the T-geometric one. T-geometry is the simplest geometric conception (essentially, only finite point sets are investigated) and simultaneously, it is the most general one. It is insensitive to the space continuity and has a new property: the nondegeneracy. Fitting the T-geometry metric with the metric tensor of Riemannian geometry, we can compare geometries, constructed on the basis of different conceptions. The comparison shows that along with similarity (the same system of geodesics, the same metric) there is a difference. There is an absolute parallelism in T-geometry, but it is absent in the Riemannian geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.
APA, Harvard, Vancouver, ISO, and other styles
5

Ningrum, Mallevi Agustin, and Lailatul Asmaul Chusna. "INOVASI DAKON GEOMETRI DALAM MENSTIMULASI KEMAMPUAN MENGENAL BENTUK GEOMETRI ANAK USIA DINI." Kwangsan: Jurnal Teknologi Pendidikan 8, no. 1 (August 5, 2020): 18. http://dx.doi.org/10.31800/jtp.kw.v8n1.p18--32.

Full text
Abstract:
Children aged 4-5 years need to be introduced to the geometry as a provision for further education. But in reality there are still many children aged 4-5 years who are not yet able to recognize geometric shapes (circles, triangles, and quadrilateral) due to the lack of attractive media use in the learning of children aged 4-5 years, especially in understanding geometric shapes. Therefore, the purpose of this study is to provide a media innovation that is appropriate and effective geometry to stimulate children aged 4-5 years in recognizing geometric shapes (circles, triangles and rectangles). This type of research uses Borg and Gall research and development. Material validation test results showed a score of 87% with a good category, while the product validation test results obtained a score of 80% with a good category so that the geometry taxis are worth testing. The results of large group trials using the mann whitney u-test in the experimental group were 4.6, whereas in the control group it was 3.4 and the average achievement score of the large group trial results reached 90.31%. Therefore, it can be concluded that the innovation of geometry is declared feasible and effective to stimulate the ability of children aged 4-5 years to recognize geometric shapes. AbstrakAnak usia 4-5 tahun perlu dikenalkan bentuk geometri sebagai bekal untuk pendidikan selanjutnya. Namun pada kenyataannya masih banyak anak usia 4-5 tahun yang belum bisa mengenal bentuk geometri (lingkaran, segitiga, dan segiempat) karena kurangnya pemanfaatan media yang menarik pada pembelajaran anak usia 4-5 tahun khususnya dalam memahami bentuk geometri. Oleh karena itu, tujuan dari penelitian ini adalah memberikan inovasi media dakon geometri yang layak dan efektif untuk menstimulasi anak usia 4-5 tahun dalam mengenal bentuk geometri (lingkaran, segitiga, dan segiempat). Jenis penelitian ini menggunakan research and development Borg and Gall. Hasil uji validasi materi menunjukkan skor 87% dengan kategori baik, sedangkan hasil uji validasi produk diperoleh skor 80% dengan kategori baik sehingga dakon geometri layak untuk diujicobakan. Hasil uji coba kelompok besar menggunakan uji mann whitney u-test pada kelompok eksperimen sebesar 4,6 sedangkan pada kelompok kontrol sebesar 3,4 dan rata-rata pencapaian skor hasil uji coba kelompok besar mencapai 90,31%. Oleh karena itu, dapat disimpulkan bahwa inovasi dakon geometri dinyatakan layak dan efektif untuk menstimulasi kemampuan anak usia 4-5 tahun dalam mengenal bentuk geometri.
APA, Harvard, Vancouver, ISO, and other styles
6

Misni, Misni, and Ferry Ferdianto. "Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang." Jurnal Fourier 8, no. 2 (October 31, 2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.

Full text
Abstract:
Geometri mengandung gambar dan simbol-simbol yang abstrak sehingga butuh penalaran yang tinggi. Kebanyakan siswa kurang memahami materi geometri, sehingga ketika siswa dihadapkan dengan soal geometri akan terjadi kesalahan dalam pengerjaannya. Oleh karena itu, perlu adanya identifikasi dari kesalahan-kesalahan siswa dalam menjawab soal-soal geometri. Adapun, tujuan dari penelitian ini adalah untuk mengetahui jenis-jenis kesalahan siswa dalam menyelesaikan soal geometri dan untuk mengetahui faktor-faktor yang menjadi kesalahan siswa dalam menjawab soal geomerti. Penelitian ini menggunakan metode deskriptif kualitatif. Sampel yang digunakan dalam penelitian ini adalah siswa kelas XI AK SMK Bina Warga Lemahabang. Pengambilan sampelnya yaitu dengan teknik purposive sampling berdasarkan hasil tes siswa. Cara dalam menganalisis hasil tes siswa dilakukan dengan mengidentifikasi data yang diperoleh dari hasil tes siswa lalu disimpulkan jenis-jenis kesalahannya. Adapun hasil analisis soal dan jawaban siswa, diketahui bahwa faktor-faktor yang menyebabkan kesalahan adalah (1) kesalahan dalam memahami konsep (2) kurangnya tingkat penalaran siswa untuk mencapai sebuah ruang. (3) kurang teliti (4) kurang menguasai materi (5) kesalahan dalam menuliskan formula. [Geometry contains abstract images and symbols so it needs high reasoning. Most students do not understand geometry material, so that when students are faced with geometric problems there will be errors in the process. Therefore, it is necessary to identify students' mistakes in answering geometry questions. Meanwhile, the purpose of this study is to determine the types of student errors in solving geometry problems and to find out the factors that are the students' mistakes in answering geomechanical questions. This study used descriptive qualitative method. The sample used in this study was class XI AK SMK Bina Warga Lemahabang. Sampling is by purposive sampling technique based on student test results. The way to analyze student test results is done by identifying data obtained from student test results and then concluding the types of errors. The results of the analysis of the questions and answers of students, it is known that the factors that cause errors are (1) errors in understanding the concept (2) the lack of students' level of reasoning to reach a space. (3) inaccurate (4) lack of mastery of material (5) errors in writing formula.]
APA, Harvard, Vancouver, ISO, and other styles
7

Kaldor, S., and P. K. Venuvinod. "Macro-level Optimization of Cutting Tool Geometry." Journal of Manufacturing Science and Engineering 119, no. 1 (February 1, 1997): 1–9. http://dx.doi.org/10.1115/1.2836551.

Full text
Abstract:
A new approach to the macro-level optimization of tool geometro in machining is proposed. Methods for characterizing the tool material, the work material and the optimum tool geometry are proposed and a model describing the interactions between them is developed. Empirical evidence drawn from published literature is presented in support of the new approach. In this approach, the optimum tool geometry is characterized by a geometric entity number which can be explicity calculated in terms of cutting tool angles. Practical benefits derivable from the approach are discussed along with the issues requiring further research.
APA, Harvard, Vancouver, ISO, and other styles
8

Moretti, Méricles Thadeu, and Adalberto Cans. "Releitura das Apreensões em Geometria e a Ideia de Expansão Figural a Partir dos Estudos de Raymond Duval." Jornal Internacional de Estudos em Educação Matemática 16, no. 3 (February 26, 2024): 303–10. http://dx.doi.org/10.17921/2176-5634.2023v16n3p303-310.

Full text
Abstract:
Procurou-se neste trabalho revisitar a noção de apreensão na aprendizagem da geometria com objetivo de renomear apreensões de forma a atribuir, a cada uma delas, o papel que toma na resolução de problemas em geometria com figuras. A partir dessa busca, identificou-se um tipo de expansão discursiva fortemente presente e que tem o papel de listar as regras ou resultados matemáticos oriundos da identificação de elementos geométricos na figura. Pretendeu-se, portanto, neste estudo deixar bastante visível essas operações semiocognitivas presentes na resolução de problemas em geometria. Palavras-chave: Apreensões em Geometria. Expansão Discursiva. Resolução de Problemas. AbstractThis paper sought to revisit the notion of apprehension in geometry learning with the goal of renaming apprehensions in order to assign to, each of them, the role it takes in solving problems in geometry with figures. From this search, it was identified a type of discursive expansion strongly present and that has the role of listing the rules or mathematical results arising from the identification of geometric elements in the figure. It was intended, therefore, in this study to make quite visible these semiocognitive operations present in geometry problem solving. Keywords: Apprehensions in Geometry. Discursive Expansion. Problem Solving.
APA, Harvard, Vancouver, ISO, and other styles
9

Jesus, Josenilton Santos de, and Elias Santiago de Assis. "Aprendizagem de Geometria Esférica Por Meio do Geogebra." Jornal Internacional de Estudos em Educação Matemática 16, no. 3 (February 26, 2024): 353–62. http://dx.doi.org/10.17921/2176-5634.2023v16n3p353-362.

Full text
Abstract:
Este artigo tem como objetivo identificar as contribuições do software GeoGebra no processo de aprendizagem da Geometria Esférica, um tipo de geometria não euclidiana. Neste sentido, foi realizada uma pesquisa de campo, de natureza qualitativa, envolvendo um grupo de estudantes de um curso de licenciatura em matemática de uma universidade pública do estado da Bahia. As técnicas de coleta de dados consistiram na na realização de entrevistas semiestruturadas e na aplicação de uma sequência de atividades contendo construções geométricas que foram realizadas pelos participantes no GeoGebra. Os resultados obtidos apontaram que construções realizadas no software favorecem a introdução de conceitos da Geometria Esférica, seja na criação ou refutação de conjecturas, seja na validação de resultados. Palavras-chave: Geometria Esférica. GeoGebra, Aprendizagem de Geometria. Abstract This article aims to identify the contributions of GeoGebra software in the process of learning Spherical Geometry, a type of non-Euclidean geometry. In this sense, a qualitative field research was carried out, involving a group of students from an undergraduate course in mathematics at a public university in the state of Bahia. The techniques of data collection consisted of applying a sequence of activities involving geometric constructions in the GeoGebra and conducting semi-structured interviews. The results showed that, through these constructions, it was possible to introduce GE to the participants. It was possible to identify the Spherical Geometry contents properly understood by these actors and the contributions of the software in this process.Idem resumo. Keywords: Spherical Geometry. Geogebra. Geometry Learning.
APA, Harvard, Vancouver, ISO, and other styles
10

Larke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry." Arithmetic Teacher 36, no. 1 (September 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.

Full text
Abstract:
If we can have science fairs, why not geometry fairs? They are excellent ways for elementary teachers to add pizzazz to the teaching of geometry. A geometry fair or geometric extravaganza is a display or exhibit of geometry projects representing the students' culminating work in a geometry unit. The purposes of a geometry fair a re (I) to remind students of important geometric terms and concepts; (2) to enable students to explore the world of lines, angles, points, and geometric shapes; (3) to help students identify and construct geome tric shapes and designs; (4) to help students prepare projects using their knowledge of geometry and creativity; and (5) to help students share work with othe rs. thus building pride in their work.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geometry"

1

Jadhav, Rajesh. "Geometric Routing Without Geometry." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1178080572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.

Full text
Abstract:
Cette thèse est consacrée à l’étude des orbivariétés projectives convexes géométriquement finies, et fait suite aux travaux de Ballas, Cooper, Crampon, Leitner, Long, Marquis et Tillmann sur le sujet. Une orbivariété projective convexe est le quotient d’un ouvert convexe et borné d’une carte affine de l’espace projectif réel (appelé aussi ouvert proprement convexe) par un groupe discret de transformations projectives préservant cet ouvert. S’il n’y a pas de segment dans le bord du convexe, on dit que l’orbivariété est strictement convexe, et si de plus il y a un unique hyperplan de support en chaque point du bord, on dit qu’elle est ronde. Suivant Cooper-Long-Tillmann et Crampon-Marquis, on dit qu’une orbivariété strictement convexe est géométriquement finie si son cœur convexe est l’union d’un compact et d’un nombre fini de bouts, appelés pointes, où le rayon d’injectivité est inférieur à une constante ne dépendant que de la dimension. Comprendre la géométrie des pointes est primordial pour l’étude des orbivariétés géométriquement finies. Dans le cas strictement convexe, la seule restriction connue sur l’holonomie des pointes vient d’une généralisation du lemme de Margulis due à Cooper-Long-Tillmann et Crampon-Marquis, qui implique que cette holonomie est virtuellement nilpotente. On donne dans cette thèse une caractérisation de l’holonomie des pointes des orbivariétés strictement convexes et des orbivariétés rondes. En généralisant la méthode de Cooper, qui a produit le seul exemple connu jusqu’ici d’une pointe de variété strictement convexe dont l’holonomie n’est pas virtuellement abélienne, on construit des pointes de variétés strictement convexes et de variétés rondes dont l’holonomie est isomorphe à n’importe quel groupe nilpotent sans torsion de type fini. En collaboration avec M. Islam et F. Zhu, on démontre que dans le cas des groupes relativement hyperboliques sans torsion, les représentations relativement P1-anosoviennes (au sens de Kapovich-Leeb, Zhu et Zhu-Zimmer) qui préservent un ouvert proprement convexe sont exactement les holonomies des variétés rondes géométriquement finies.Dans le cas des orbivariétés projectives convexes non strictement convexes, il n’y a pas pour l’instant de définition satisfaisante de la finitude géométrique. Toutefois, Cooper-Long-Tillmann puis Ballas-Cooper-Leitner ont proposé une définition de pointe généralisée dans ce contexte. Bien qu’ils demandent que l’holonomie des pointes généralisées soit virtuellement nilpotente, tous les exemples connus jusqu’à présent avaient une holonomie virtuellement abélienne. On construit des exemples de pointes généralisées dont l’holonomie peut être n’importe quel groupe nilpotent sans torsion de type fini. On s’autorise également à modifier la définition originale de Cooper-Long-Tillmann en affaiblissant l’hypothèse de nilpotence en une hypothèse naturelle de résolubilité, ce qui nous permet de construire de nouveaux exemples dont l’holonomie n’est pas virtuellement nilpotente.Une orbivariété géométriquement finie qui n’a pas de pointes, c’est-à-dire dont le cœur convexe est compact, est dite convexe cocompacte. On dispose par les travaux de Danciger-Guéritaud-Kassel d’une définition de la convexe cocompacité pour les orbivariétés projectives convexes sans hypothèse de stricte convexité, contrairement au cas géométriquement fini. Ils démontrent que l’holonomie d’une orbivariété projective convexe convexe cocompacte est Gromov hyperbolique si et seulement si la représentation associée est P1-anosovienne. À l’aide de ce résultat, de la théorie de Vinberg et des travaux d’Agol et Haglund-Wise sur les groupes hyperboliques cubulés, on construit en collaboration avec S. Douba, T. Weisman et F. Zhu des représentations P1-anosoviennes pour tout groupe hyperbolique cubulé. Ceci fournit de nouveaux exemples de groupes hyperboliques admettant des représentations anosoviennes
This thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
APA, Harvard, Vancouver, ISO, and other styles
3

Scott, Phil. "Ordered geometry in Hilbert's Grundlagen der Geometrie." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15948.

Full text
Abstract:
The Grundlagen der Geometrie brought Euclid’s ancient axioms up to the standards of modern logic, anticipating a completely mechanical verification of their theorems. There are five groups of axioms, each focused on a logical feature of Euclidean geometry. The first two groups give us ordered geometry, a highly limited setting where there is no talk of measure or angle. From these, we mechanically verify the Polygonal Jordan Curve Theorem, a result of much generality given the setting, and subtle enough to warrant a full verification. Along the way, we describe and implement a general-purpose algebraic language for proof search, which we use to automate arguments from the first axiom group. We then follow Hilbert through the preliminary definitions and theorems that lead up to his statement of the Polygonal Jordan Curve Theorem. These, once formalised and verified, give us a final piece of automation. Suitably armed, we can then tackle the main theorem.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Yang, and 劉洋. "Optimization and differential geometry for geometric modeling." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greene, Michael Thomas. "Some results in geometric topology and geometry." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yang. "Optimization and differential geometry for geometric modeling." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hidalgo, García Marta R. "Geometric constraint solving in a dynamic geometry framework." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134690.

Full text
Abstract:
Geometric constraint solving is a central topic in many fields such as parametric solid modeling, computer-aided design or chemical molecular docking. A geometric constraint problem consists of a set geometric objects on which a set of constraints is defined. Solving the geometric constraint problem means finding a placement for the geometric elements with respect to each other such that the set of constraints holds. Clearly, the primary goal of geometric constraint solving is to define rigid shapes. However an interesting problem arises when we ask whether allowing parameter constraint values to change with time makes sense. The answer is in the positive. Assuming a continuous change in the variant parameters, the result of the geometric constraint solving with variant parameters would result in the generation of families of different shapes built on top of the same geometric elements but governed by a fixed set of constraints. Considering the problem where several parameters change simultaneously would be a great accomplishment. However the potential combinatorial complexity make us to consider problems with just one variant parameter. Elaborating on work from other authors, we develop a new algorithm based on a new tool we have called h-graphs that properly solves the geometric constraint solving problem with one variant parameter. We offer a complete proof for the soundness of the approach which was missing in the original work. Dynamic geometry is a computer-based technology developed to teach geometry at secondary school, which provides the users with tools to define geometric constructions along with interaction tools such as drag-and-drop. The goal of the system is to show in the user's screen how the geometry changes in real time as the user interacts with the system. It is argued that this kind of interaction fosters students interest in experimenting and checking their ideas. The most important drawback of dynamic geometry is that it is the user who must know how the geometric problem is actually solved. Based on the fact that current user-computer interaction technology basically allows the user to drag just one geometric element at a time, we have developed a new dynamic geometry approach based on two ideas: 1) the underlying problem is just a geometric constraint problem with one variant parameter, which can be different for each drag-and-drop operation, and, 2) the burden of solving the geometric problem is left to the geometric constraint solver. Two classic and interesting problems in many computational models are the reachability and the tracing problems. Reachability consists in deciding whether a certain state of the system can be reached from a given initial state following a set of allowed transformations. This problem is paramount in many fields such as robotics, path finding, path planing, Petri Nets, etc. When translated to dynamic geometry two specific problems arise: 1) when intersecting geometric elements were at least one of them has degree two or higher, the solution is not unique and, 2) for given values assigned to constraint parameters, it may well be the case that the geometric problem is not realizable. For example computing the intersection of two parallel lines. Within our geometric constraint-based dynamic geometry system we have developed an specific approach that solves both the reachability and the tracing problems by properly applying tools from dynamic systems theory. Finally we consider Henneberg graphs, Laman graphs and tree-decomposable graphs which are fundamental tools in geometric constraint solving and its applications. We study which relationships can be established between them and show the conditions under which Henneberg constructions preserve graph tree-decomposability. Then we develop an algorithm to automatically generate tree-decomposable Laman graphs of a given order using Henneberg construction steps.
APA, Harvard, Vancouver, ISO, and other styles
8

Chuang, Wu-yen. "Geometric transitions, topological strings, and generalized complex geometry /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villa, E. "Methods of geometric measure theory in stochastic geometry." Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.

Full text
Abstract:
All the results of the present thesis have been obtained facing problems related to the study of the so called birth-and-growth stochastic processes, relevant in several real applications, like crystallization processes, tumour growth, angiogenesis, etc. We have introduced a Delta formalism, à la Dirac-Schwartz, for the description of random measures associated with random closed sets in R^d of lower dimensions, such that the usual Dirac delta at a point follows as particular case, in order to provide a natural framework for deriving evolution equations for mean densities at integer Hausdorff dimensions in terms of the relevant kinetic parameters associated to a given birth-and-growth process. In this context connections with the concepts of hazard functions and spherical contact distribution functions, together with local Steiner formulas at first order have been studied and, under suitable general conditions on the resulting random growing set, we may write evolution equations of the mean volume density in terms of the growing rate and of the mean surface density. To this end we have introduced definitions of discrete, continuous and absolutely continuous random closed set, which extend the standard well known definitions for random variables. Further, since in many real applications such as fibre processes, n-facets of random tessellations several problems are related to the estimation of such mean densities, in order to face such problems in the general setting of spatially inhomogeneous processes, we have analyzed an approximation of mean densities for sufficiently regular random closed sets, such that some known results in literature follow as particular cases.
APA, Harvard, Vancouver, ISO, and other styles
10

Persson, Aron. "On the Existence of Electrodynamics on Manifold-like Polyfolds." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155488.

Full text
Abstract:
This essay examines the question whether the classical theory of electrodynamics can be extended to a spacetime which locally changes dimension and if such an endeavour is mathematically possible. Recent research has developed a new generalisation of smooth manifolds, the so called M-polyfolds, which constitutes a sufficient foundation to make this endeavour a physical plausibility. These M-polyfolds then facilitate the capability to define the velocity of a curve going through a dimensionally shifting spacetime. Moreover, necessary extensions to the theory of M-polyfolds is developed in order to tailor the theory to a more physically focused framework. Concluding the essay, Maxwell’s equations on M-polyfolds are defined.
Den här uppsatsen betraktar huruvida klassisk elektrodynamik kan generaliseras till en rumtid som lokalt byter dimension samt om detta är matematiskt möjligt. Nyligen har forskningen utvecklat en generalisering av släta mångfalder, så kallade M-polyfolds, vilka ger oss en tillräcklig grund för att göra detta till en fysikalisk möjlighet. Dessa M-polyfolds möjliggör förmågan att definiera hastigheten av en kurva som går igenom en dimensionellt varierande rumtid. Därutöver utvecklas vissa nödvändiga förlängningar av teorin om M-polyfolds, detta för att skräddarsy teorin till ett mer fysikaliskt ramverk. Därefefter avslutas uppsatsen genom att definiera Maxwells ekvationer på M-polyfolds.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geometry"

1

Sal'kov, Nikolay. Geometry in education and science. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1158751.

Full text
Abstract:
This monograph consists of the author's articles on geometry, geometric education, and the formation of the teaching staff. Various problems concerning the development of geometric science itself, as well as those that periodically arise in the pedagogical environment of universities, are considered. It is intended for a wide range of readers: not only geometers and those interested in geometry, but also those related to pedagogy and science.
APA, Harvard, Vancouver, ISO, and other styles
2

Collezione Maramotti (Gallery : Reggio Emilia, Italy), ed. Geometria figurativa: Figurative geometry. Cinisello Balsamo, Milano: Silvana editoriale, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pedoe, Daniel. Geometry: A comprehensive course. New York: Dover, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pedoe, Daniel. Geometry, a comprehensive course. New York: Dover Publications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jost, Jürgen. Riemannian geometry and geometric analysis. 3rd ed. New York: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

W, Henderson David. Differential geometry: A geometric introduction. Upper Saddle River, N.J: Prentice Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quinto, Eric, Fulton Gonzalez, and Jens Christensen, eds. Geometric Analysis and Integral Geometry. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jost, Jürgen. Riemannian Geometry and Geometric Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03118-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jost, Jürgen. Riemannian Geometry and Geometric Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61860-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elkadi, Mohamed, Bernard Mourrain, and Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geometry"

1

Pütz, Ralph, and Ton Serné. "Geometrie Geometry." In Rennwagentechnik - Praxislehrgang Fahrdynamik, 105–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16102-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pütz, Ralph, and Ton Serné. "Geometrie Geometry." In Rennwagentechnik - Praxislehrgang Fahrdynamik, 127–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26704-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vince, John. "Geometry Using Geometric Algebra." In Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wattenhofer, Mirjam, Roger Wattenhofer, and Peter Widmayer. "Geometric Routing Without Geometry." In Structural Information and Communication Complexity, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11429647_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Wen-tsün. "Orthogonal geometry, metric geometry and ordinary geometry." In Mechanical Theorem Proving in Geometries, 63–113. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-6639-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jost, Jürgen. "Geometry." In Geometry and Physics, 1–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stillwell, John. "Geometry." In Numbers and Geometry, 37–67. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol, and Heiner Muehlig. "Geometry." In Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bronshtein, I. N., K. A. Semendyayev, Gerhard Musiol, and Heiner Mühlig. "Geometry." In Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hurlbert, Glenn H. "Geometry." In Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry"

1

Qing, Ni, and Wang Zhengzhi. "Geometric invariants using geometry algebra." In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caticha, Ariel. "Geometry from information geometry." In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivic, Aleksandar. "Number of digital convex polygons inscribed into an (m,m)-grid." In Vision Geometry II. SPIE, 1993. http://dx.doi.org/10.1117/12.165003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allili, Madjid. "A deformable model with topology analysis and adaptive clustering for boundary detection." In Vision Geometry XIV. SPIE, 2006. http://dx.doi.org/10.1117/12.642353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, Hung, Rolf Clackdoyle, and Laurent Desbat. "Automatic geometric calibration in 3D parallel geometry." In Physics of Medical Imaging, edited by Hilde Bosmans and Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Plauschinn, Erik. "Non-geometric fluxes and non-associative geometry." In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lima, Guilherme. "In-memory Geometry Converter." In In-memory Geometry Converter. US DOE, 2023. http://dx.doi.org/10.2172/2204991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fernández, M., A. Tomassini, L. Ugarte, R. Villacampa, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "On Special Hermitian Geometry." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Szabo, Richard. "Higher Quantum Geometry and Non-Geometric String Theory." In Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.318.0151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, Y. K., S. M. Hu, D. X. Gu, and R. R. Martin. "Geometric texture synthesis and transfer via geometry images." In the 2005 ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1060244.1060248.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometry"

1

Chuang, Wu-yen, and /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heath, Daniel, and Joshua Jacobs. Geometry Playground. Washington, DC: The MAA Mathematical Sciences Digital Library, November 2010. http://dx.doi.org/10.4169/loci003567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Foster, Karis. Exposed Geometry. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ungar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ungar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Earnshaw, Connie. Overgrown geometry. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Butler, Lee A., and Clifford Yapp. Adaptive Geometry Shader Tessellation for Massive Geometry Display. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hansen, Mark D. Results in Computational Geometry: Geometric Embeddings and Query- Retrieval Problems. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

CONCEPT ANALYSIS CORP PLYMOUTH MI. Missile Geometry Package. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada253181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhanchun Tu, Zhanchun Tu. Geometry of Membranes. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-45-75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography