Contents
Academic literature on the topic 'Géométrie algébrique dérivée non-commutative'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Géométrie algébrique dérivée non-commutative.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Géométrie algébrique dérivée non-commutative"
Toledo, Castro Angel Israel. "Espaces de produits tensoriels sur la catégorie dérivée d'une variété." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4001.
Full textIn this thesis we are interested in studying derived categories of smooth projective varieties over a field. Concretely, we study the geometric and categorical information from the variety and from it's derived category in order to understand the set of monoidal structures one can equip the derived category with. The motivation for this project comes from two theorems. The first is Bondal-Orlov reconstruction theorem which says that the derived category of a variety with ample (anti-)canonical bundle is enough to recover the variety. On the other hand, we have Balmer's spectrum construction which uses the derived tensor product to recover a much larger number of varieties from it's derived category of perfect complexes as a monoidal category. The existence of different monoidal structure is in turn guaranteed by the existence of varieties with equivalent derived categories. We have as a goal then to understand the role of the tensor products in the existence (or not ) of these sort of varieties. The main results we obtained are If X is a variety with ample (anti-)canonical bundle, and ⊠ is a tensor triangulated category on Db(X) such that the Balmer spectrum Spc(Db(X),⊠) is isomorphic to X, then for any F,G∈Db(X) we have F⊠G≃F⊗G where ⊗ is the derived tensor product. We have used Toën's Morita theorem for dg-categories to give a characterization of a truncated structure in terms of bimodules over a product of dg-algebras, which induces a tensor triangulated category at the level of homotopy categories. We studied the deformation theory of these structures in the sense of Davydov-Yetter cohomology, concretely showing that there is a relationship between one of these cohomology groups and the set of associators that the tensor product can deform into. We utilise techniques at the level of triangulated categories and also perspectives from higher category theory like dg-categories and quasi-categories
Pippi, Massimo. "Catégories des singularités, factorisations matricielles et cycles évanescents." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30049.
Full textThe aim of this thesis is to study the dg categories of singularities Sing(X, s) of pairs (X, s), where X is a scheme and s is a global section of some vector bundle over X. Sing(X, s) is defined as the kernel of the dg functor from Sing(X0) to Sing(X) induced by the pushforward along the inclusion of the (derived) zero locus X0 of s in X. In the first part, we restrict ourselves to the case where the vector bundle is trivial. We prove a structure theorem for Sing(X, s) when X = Spec(B) is affine. Roughly, it tells us that every object in Sing(X, s) is represented by a complex of B-modules concentrated in n + 1 consecutive degrees (if s epsilon Bn). By specializing to the case n = 1, we generalize Orlov's theorem, which identifies Sing(X, s) with the dg category of matrix factorizations MF(X, s), to the case where s epsilon OX(X) is not flat. In the second part, we study the l-adic cohomology of Sing(X, s) (as defined by A. Blanc - M. Robalo - B. Toën and G. Vezzosi) when s is a global section of a line bundle. In order to do so, we introduce the l-adic sheaf of monodromy-invariant vanishing cycles. Using a theorem of D. Orlov generalized by J. Burke and M. Walker, we compute the l-adic realization of Sing(Spec(B), (f1 ,..., fn)) for (f1 ,..., fn) epsilon Bn. In the last chapter, we introduce the l-adic sheaves of iterated vanishing cycles of a scheme over a discrete valuation ring of rank 2. We relate one of these l-adic sheaves to the l-adic realization of the dg category of singularities of the fiber over a closed subscheme of the base
Porta, Marco. "Sur les catégories triangulées bien engendrées." Phd thesis, Université Paris-Diderot - Paris VII, 2008. http://tel.archives-ouvertes.fr/tel-00338033.
Full textUsnich, Alexandr. "Sur le groupe de Cremona et ses sous-groupes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812808.
Full textMalik, Amin. "Some non commutative topics related to symmetric spaces." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/241304.
Full textMoustafa, Haïja. "Gap-labeling des pavages de type pinwheel." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00509886.
Full textSagnier, Aurélien. "Un site arithmétique de type connes-consani pour les corps quadratiques imaginaires de nombre de classes 1." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC190/document.
Full textWe construct, for imaginary quadratic number fields with class number 1, an arithmetic site of Connes-Consani type. The main difficulty here is that the constructions of Connes and Consani and part of their results strongly rely on the natural order existing on real numbers which is compatible with basic arithmetic operations. Of course nothing of this sort exists in the case of imaginary quadratic number fields with class number 1. We first define what we call arithmetic site for such number fields, we then calculate the points of those arithmetic sites and we express them in terms of the ad\`eles class space considered by Connes to give a spectral interpretation of zeroes of Hecke L functions of number fields. We get therefore that for a fixed imaginary quadratic number field with class number 1, that the points of our arithmetic site are related to the zeroes of the Dedekind zeta function of the number field considered and to the zeroes of some Hecke L functions. We then study the relation between the spectrum of the ring of integers of the number field and the arithmetic site. Finally we construct the square of the arithmetic site
Books on the topic "Géométrie algébrique dérivée non-commutative"
Inc, ebrary, ed. Geometry of time-spaces: Non-commutative algebraic geometry, applied to quantum theory. Singapore: World Scientific, 2011.
Find full text