Academic literature on the topic 'Geometric Phase Transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric Phase Transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometric Phase Transition"
ZHU, SHI-LIANG. "GEOMETRIC PHASES AND QUANTUM PHASE TRANSITIONS." International Journal of Modern Physics B 22, no. 06 (March 10, 2008): 561–81. http://dx.doi.org/10.1142/s0217979208038855.
Full textWei, Shao-Wen, Yu-Xiao Liu, Chun-E. Fu, and Hai-Tao Li. "Geometric Curvatures of Plane Symmetry Black Hole." Advances in High Energy Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/734138.
Full textGebhart, Valentin, Kyrylo Snizhko, Thomas Wellens, Andreas Buchleitner, Alessandro Romito, and Yuval Gefen. "Topological transition in measurement-induced geometric phases." Proceedings of the National Academy of Sciences 117, no. 11 (March 2, 2020): 5706–13. http://dx.doi.org/10.1073/pnas.1911620117.
Full textLiu, Kun, and Shujuan Yi. "Geometric Phase and Quantum Phase Transition in Charge-Qubit Array." International Journal of Theoretical Physics 57, no. 9 (June 16, 2018): 2828–30. http://dx.doi.org/10.1007/s10773-018-3802-7.
Full textDEMIRTÜRK, SEMRA, and YIĞIT GÜNDÜÇ. "A GEOMETRIC APPROACH TO THE PHASE TRANSITIONS." International Journal of Modern Physics C 12, no. 09 (November 2001): 1361–73. http://dx.doi.org/10.1142/s0129183101002632.
Full textFranzosi, Roberto, Domenico Felice, Stefano Mancini, and Marco Pettini. "A geometric entropy detecting the Erdös-Rényi phase transition." EPL (Europhysics Letters) 111, no. 2 (July 1, 2015): 20001. http://dx.doi.org/10.1209/0295-5075/111/20001.
Full textBel-Hadj-Aissa, Ghofrane, Matteo Gori, Vittorio Penna, Giulio Pettini, and Roberto Franzosi. "Geometrical Aspects in the Analysis of Microcanonical Phase-Transitions." Entropy 22, no. 4 (March 26, 2020): 380. http://dx.doi.org/10.3390/e22040380.
Full textViotti, Ludmila, Ana Laura Gramajo, Paula I. Villar, Fernando C. Lombardo, and Rosario Fazio. "Geometric phases along quantum trajectories." Quantum 7 (June 2, 2023): 1029. http://dx.doi.org/10.22331/q-2023-06-02-1029.
Full textZhang, Ruifeng, and Xiaojing Wang. "On generalized geometric domain-wall models." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 141, no. 4 (July 15, 2011): 881–95. http://dx.doi.org/10.1017/s0308210510001198.
Full textCui, H. T., K. Li, and X. X. Yi. "Geometric phase and quantum phase transition in the Lipkin–Meshkov–Glick model." Physics Letters A 360, no. 2 (December 2006): 243–48. http://dx.doi.org/10.1016/j.physleta.2006.08.040.
Full textDissertations / Theses on the topic "Geometric Phase Transition"
Al-Sawai, Wael. "Non-equilibrium Phase Transitions in Interacting Diffusions." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7660.
Full textAlves, Júnior Francisco Artur Pinheiro. "Modelos cosmológicos numa teoria geométrica escalar - tensorial da gravitação: aspectos clássicos e quânticos." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9539.
Full textMade available in DSpace on 2017-09-18T11:29:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1956067 bytes, checksum: 845c3d0cd5113c8498d955af9cdcd907 (MD5) Previous issue date: 2016-09-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this thesis, we deal with a particular geometric scalar tensor theory, which is a version of the Brans-Dicke gravitation, formulated in aWeyl integrable space-time. This formulation is done using the Palatini's variation procedure. The main point of our work is to perform two particular applications of the geometrical Brans-Dicke theory. The rst one is the study of geometric fase transition phenomena, that's related to a continuous change in the space-time structure of the universe from a Riemann's geometry to a Weyl's geometry, or in the inverse sense, from Weyl's geometry to Riemann's geometry. This phenomena seems to take place when the universe starts to expand in a accelerated rate. The second one is the investigation of classical and quantum behaviour of a anisotropic n-dimensional universe . To nd solutions that display the dynamical compacti cation of non observed extra dimensions is the main motivation to study such universe.
Nesta tese, reapresentamos uma teoria escalar tensorial geométrica, que é uma versão da gravitação de Brans-Dicke formulada em um espaço-tempo de Weyl integrável. Com esta teoria fazemos duas aplicações especí cas. Uma delas para o estudo de um fenômeno, que chamamos de transição de fase geométrica, uma mudança contínua na estrutura geom étrica do espaço-tempo. Este fenômeno parece ocorrer quando o universo se expande aceleradamente. A segunda aplicação reside no estudo clássico e quântico do comportamento de um modelo de universo n-dimensional anisotrópico. A motivação para esta investigação é a busca de soluções que exibem o compactação dinâmica das dimensões extras, que não são observadas.
Swift, Michael Robert. "Surface phase transitions in novel geometries." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279938.
Full textGori, Matteo. "Phase transitions theory and applications to biophysics." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4111.
Full textThe studies and results reported in this manuscript are aimed to develop a deeper understanding of the principles at the basis of self-organization in biological system.The Topological Theory of phase transitions is one of the possible approaches to provide a generalization of description of phase transitions in small or mesoscopic systems. This theory has been rigorously rooted in two theorems: a counterexample to one of these theorems has been recently found. The first part of this manuscript is devoted to investigation of the "counterexample" to understand if and how the theory can be saved. In the second part of this manuscript the results of theoretical, numerical and experimental investigations on Fr"ohlich-like condensation for normal modes of biomolecules are reported. This is a prerequisite for the activation of giant dipole oscillations in biomolecules which entail long-range electrodynamic interactions between coresonant molecules. In this thesis is shown that long-range interactions markedly affect the self-diffusion properties of molecules in solution. A fingerprint of long-range interactions could be a "transitional" phenomenon concerning the self-diffusion coefficient as a function of a control parameter proportional to interaction strength. Analogous simulations have been performed to validate an experimental approach aimed at finding such "fingerprint" in systems with built-in long-range interactions
Diaz, Polanco Jose Luis Bernardo. "Geometria do espaço-tempo no interior de um sistema em transição de fases." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278478.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-10T14:46:54Z (GMT). No. of bitstreams: 1 DiazPolanco_JoseLuisBernardo_M.pdf: 1930205 bytes, checksum: dd4e314538444eec0ce22039909d4483 (MD5) Previous issue date: 2003
Resumo: São apresentadas soluções numéricas do sistema de equações diferenciais de Tolman-Oppenheimer- Volkov para um gás de partículas em transição de fases, no contexto da relatividade geral, encontrando a estrutura do espaço-tempo associada com a transição de fases. Para isto assumimos que o gás está formado por partículas autogravitantes, idênticas, com simetria esférica, e cujo tensor de energia-momentum é do tipo fluido perfeito. As interações internas do gás são representadas por uma equação de estado capaz de descrever uma transição de fase do tipo gás-Iíquido. Um gás estacionário deste tipo poderia representar uma estrela em equilíbrio hidrodinâmico. Concluímos que a termo dinâmica não perde sentido no contexto da relatividade geral, apresentando claramente que a transição de fases acontece só numa superfície esférica e concêntrica no interior da estrela, na qual a curvatura do espaço-tempo reflete, mais uma vez, o mesmo comportamento que a distribuição interna de matéria na estrela, neste caso, uma descontinuidade na região de coexistência de fases
Abstract: We present numerical solutions for the differencial equations the Tolman-Oppenheimer-Voltov for a gas particles in phase transition in the general relativity background, obtaining the space-time structure involved in the phase transition. For this purpouse, we consider the gas as formed by identical self-gravitating particles with spherical simetry and whose momentum- energy tensor is do like perfect fluid type. The internal interactions of the gas are represented by a state equation that has the property of describing gas-liquid phases transition. A stacionary gas like this is supposed to represent a star in hydrodynamic equilibrium. We conclude that there is no conflict of using thermodynamics in general relativity context, showing cleary that the phase transtition happens only in a spherical shell centered in the star geometrical center, about what the space-time curvature ilustrates, once more, the same behaviour expect by the distribution of matter inside the star, in such case, a descontinuity in the region of phase's coexistence
Mestrado
Física
Mestre em Física
Ronquillo, David Carlos. "Magnetic-Field-Driven Quantum Phase Transitions of the Kitaev Honeycomb Model." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587035230123328.
Full textAwoga, Oladunjoye Aina. "QUANTUM PHASE TRANSITION IN SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES IN OPTICAL LATTICES OF DIFFERENT GEOMETRIES." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25548.
Full textCatmull, Benjamin John. "Colour and photochromism in diamonds and fluid phase transitions in confined geometries : positron and positronium annihilation studies." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411076.
Full textLian, Bo. "Unified Physical Property Estimation Relationships, UPPER." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311104.
Full textBenzid, Khalif. "Etude de l'effet de l'anisotropie magnétique sur la phase dynamique et sur la phase géométrique des bits quantiques de spins électroniques d'ions de métaux de transition Mn2+, Co2+, Fe3+ isolés et des complexes d'ions Fe3+ dans l'oxyde de zinc monocristallin." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE009/document.
Full textWe studied by pulsed EPR (p-EPR), the quantum coherence of electronic spins qubits of isolated transition metal ions of Mn2+, Co2+, Fe3+ and Fe3+/Cs+ as well as Fe3+/Na+ complexes, all found as traces in mono-crystalline ZnO. Indeed, we experimentally demonstrated that the magnetic anisotropy can alter the coherence of the dynamic phase of electronic spins qubits. We found a small decoherence for Mn2+ and Fe3+, spins having a small uniaxial magnetic anisotropy, and on the contrary, we found a very strong decoherence for Co2+ spins having a very strong uniaxial magnetic anisotropy. We found that the electronic spins of the Fe3+/Cs+ complex, having a more complex tensor magnetic anisotropy compared to the simplest uniaxial one of isolated Fe3+ spins in ZnO, have almost the same coherence time. By the perturbation method, we have found theoretically an additional term to the usual geometric Berry phase, due to the magnetic anisotropy which exists in any system having a spin S>1/2
Books on the topic "Geometric Phase Transition"
Flat Level Set Regularity of P-laplace Phase Transitions (Memoirs of the American Mathematical Society). American Mathematical Society, 2006.
Find full textHarshad K. D. H. Bhadeshia. Geometry of Crystals, Polycrystals, and Phase Transformations. Taylor & Francis Group, 2017.
Find full textHarshad K. D. H. Bhadeshia. Geometry of Crystals, Polycrystals, and Phase Transformations. Taylor & Francis Group, 2017.
Find full textHarshad K. D. H. Bhadeshia. Geometry of Crystals, Polycrystals, and Phase Transformations. Taylor & Francis Group, 2017.
Find full textGeometry of Crystals, Polycrystals, and Phase Transformations. Taylor & Francis Group, 2017.
Find full textHarshad K. D. H. Bhadeshia. Geometry of Crystals, Polycrystals, and Phase Transformations. Taylor & Francis Group, 2017.
Find full textIliopoulos, John, and Theodore N. Tomaras. Elementary Particle Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.001.0001.
Full textBook chapters on the topic "Geometric Phase Transition"
Firoozye, Nikan B., and Robert V. Kohn. "Geometric Parameters and the Relaxation of Multiwell Energies." In Microstructure and Phase Transition, 85–109. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8360-4_6.
Full textNachtergaele, Bruno. "A Stochastic Geometric Approach to Quantum Spin Systems." In Probability and Phase Transition, 237–46. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8326-8_14.
Full textKotecký, Roman. "Geometric Representation of Lattice Models and Large Volume Asymptotics." In Probability and Phase Transition, 153–76. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8326-8_9.
Full textFranzina, Giovanni, and Enrico Valdinoci. "Geometric Analysis of Fractional Phase Transition Interfaces." In Geometric Properties for Parabolic and Elliptic PDE's, 117–30. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2841-8_8.
Full textShida, Norihiro. "Onset Dynamics of Phase Transition in Ar7." In Geometric Structures of Phase Space in Multidimensional Chaos, 129–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch13.
Full textAlikakos, Nicholas D. "On the structure of phase transition maps for three or more coexisting phases." In Geometric Partial Differential Equations proceedings, 1–31. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-473-1_1.
Full textWiesenfeld, Laurent. "Geometry of Phase-Space Transition States: Many Dimensions, Angular Momentum." In Geometric Structures of Phase Space in Multidimensional Chaos, 217–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch4.
Full textJaffé, Charles, Shinnosuke Kawai, Jesús Palacián, Patricia Yanguas, and Turgay Uzer. "A New Look at the Transition State: Wigner's Dynamical Perspective Revisited." In Geometric Structures of Phase Space in Multidimensional Chaos, 171–216. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch3.
Full textTakatsuka, Kazuo. "Temperature, Geometry, and Variational Structure in Microcanonical Ensemble for Structural Isomerization Dynamics of Clusters: A Multichannel Chemical Reaction beyond the Transition-State Concept." In Geometric Structures of Phase Space in Multidimensional Chaos, 25–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch11.
Full textAlhassid, Y. "Transition strength fluctuations and the onset of chaos." In The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function, 117–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17894-5_332.
Full textConference papers on the topic "Geometric Phase Transition"
Crnkic, Edin, Lijuan He, and Yan Wang. "Loci Surface Guided Crystal Phase Transition Pathway Search." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47750.
Full textMaguid, Elhanan, Michael Yannai, Arkady Faerman, Igor Yulevich, Vladimir Kleiner, and Erez Hasman. "Disordered Geometric Phase: Photonic Transition from Spin Hall to Random Rashba Effect." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.fth4j.8.
Full textAtou, T., M. Kikuchi, K. Fukuoka, and Y. Syona. "Shock-induced phase transition of scandium sesquioxide: Geometric factor governing high pressure transitions on rare earth sesquioxides." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46109.
Full textQi, Cheng, and Yan Wang. "Metamorphosis of Periodic Surface Models." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87101.
Full textBaryshev, Yu V., and S. A. Oschepkov. "Gravitation theory in multi-messenger astronomy I: comparison of geometrical and field approaches to the physics of gravitational interaction." In SN 1987A, Quark Phase Transition in Compact Objects and Multimessenger Astronomy. Институт ядерных исследования Российской академии наук, 2018. http://dx.doi.org/10.26119/sao.2020.1.52283.
Full textRibeiro Pla´cido, Joa˜o Carlos, Guilherme F. Miscow, Paulo E. V. de Miranda, and Theodoro A. Netto. "Drill Pipe Fatigue Analysis: Full Size Apparatus and Coupon Tests." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28354.
Full textPORTESI, MARIELA, ANGEL L. PLASTINO, and FLAVIA PENNINI. "INFORMATION GEOMETRY AND PHASE TRANSITIONS." In Proceedings of the 13th International Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772787_0033.
Full textGoossen, K. W., and R. B. Hammond. "Modeling of Picosecond-Pulse Propagation in Silicon Integrated-Circuits." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.we14.
Full textKövecses, J., W. L. Cleghorn, and R. G. Fenton. "A Dynamic Performance Evaluation Model for Target Capture by Robot Mechanisms, With the Consideration of Structural Flexibility." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8245.
Full textSibanda, Charmaine, Gurthwin Bosman, and Erich Rohwer. "Diffusivity of single fluorescent probes embedded in thin polymer films." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6p_a409_2.
Full textReports on the topic "Geometric Phase Transition"
Mestre Fons, Bartolomé, and Fabian Maucher. Finite temperature effects on Dipolar Superfluids. Fundación Avanza, May 2023. http://dx.doi.org/10.60096/fundacionavanza/1672022.
Full textAmelunxen, Dennis, Martin Lotz, Michael B. McCoy, and Joel A. Tropp. Living on the Edge: A Geometric Theory of Phase Transitions in Convex Optimization. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada591124.
Full textBhatt, Ravindra, Frederick Haldane, Edward Rezayi, and Kun Yang. GEOMETRY, DISORDER AND PHASE TRANSITIONS IN TOPOLOGICAL STATES OF MATTER. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1923750.
Full textBiagio, Massimo Di. PR-182-124505-R04 Developing Tools to Assure Safety Against Crack Propagation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2018. http://dx.doi.org/10.55274/r0011472.
Full textKirchhoff, Helmut, and Ziv Reich. Protection of the photosynthetic apparatus during desiccation in resurrection plants. United States Department of Agriculture, February 2014. http://dx.doi.org/10.32747/2014.7699861.bard.
Full text