To see the other types of publications on this topic, follow the link: Geometric PDEs.

Dissertations / Theses on the topic 'Geometric PDEs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Geometric PDEs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ndiaye, Cheikh Birahim. "Geometric PDEs on compact Riemannian manifolds." Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4088.

Full text
Abstract:
In this thesis, some nonlinear problems coming from conformal geometry and physics, namely the prescription of Q-curvature, T-curvature ones and the generalized 2×2 Toda system are studied. We study also the existence of extremal functions of two Moser-Trudinger type inequalities (which is a common feature of those problems) due to Fontana[40] and Chang-Yang[23].
APA, Harvard, Vancouver, ISO, and other styles
2

Burovskiy, Pavel Andreevich. "Second order quasilinear PDEs in 3D : integrability, classification and geometric aspects." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/26691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CHERMISI, MILENA. "Crystalline flow of planar partitions and a geometric approach for systems of PDEs." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202647.

Full text
Abstract:
La presente tesi tratta due argomenti distinti. Il Capitolo 1 e il Capitolo 2 riguardano problemi di evoluzione di interfacce nel piano. Nel Capitolo 1 viene considerata l’evoluzione di un materiale policristallino con tre (o più) fasi, in presenza di un’anisotropia cristallina (pari) ϕo la cui linea di livello 1, Fϕ :={ϕo ≤1} (Frank diagram), è un poligono regolare di n lati. La funzione duale ϕ : R2 →R definita da ϕ(ξ) := sup{ξ·η : ϕo(η)≤1}´e anch’essa un’anisotropia cristallina e Wϕ := {ϕ ≤ 1} è detta Wulff shape. In particolare, viene studiato il moto per curvatura cristallina di triodi elementari, ossia speciali reti piane di curve che sono frontiere regolari di insiemi rappresentanti tre fasi distinte di un materiale. Un triodo elementare è formato dall’unione di tre curve Lipschitziane, le interfacce, che si intersecano in un unico punto detto giunzione tripla. Ogni interfaccia è l’unione di un segmento di lunghezza finita e di una semiretta che riproduce due lati consecutivi della Wulff shape Wϕ. Viene analizzata l’esitenza locale e globale e la stabilità del flusso. Si dimostra l’esistenza locale di un unico flusso regolare stabile a partire da un dato iniziale regolare stabile: se n, il numero dei lati della Wulff shapeWϕ, è un multiplo di 6 allora il flusso è globale e converge a un flusso omotetico per t →+∞. L’analisi del comportamento del flusso per tempi grandi richiede lo studio della stabilità. La stabilità è l’ingrediente che assicura che nessun segmento si sviluppa dalla giunzione tripla durante il flusso. In generale, il flusso può diventare instabile in un tempo finito: se ciò accade e tutte le lunghezze dei segmenti finiti sono strettamente positive per tale tempo,è possibile costruire un flusso regolare per tempi successivi aggiungendo in corrispondenza della giunzione tripla in una delle tre interfacce un segmento infinitesimo opportuno (o addirittura un arco di curva a curvatura cristallina nulla). ´E anche possibile che durante il flusso uno dei tre segmenti scompaia in un tempo finito. In tal caso, in tale tempo il campo vettoriale di Cahn-Hoffman ha un salto di discontinuità e ai tempi successivi la giunzione tripla si muove traslando lungo la semiretta adiacente. Ognuno di questi flussi ha la proprietà che tutte le curvature cristalline rimangono limitate (persino se un segmento appare o scompare). ´E importante sottolineare che Taylor aveva già predetto la nascita di nuovi segmenti dalla giunzione tripla (senza però dimostrarlo). Viene inoltre considerato il flusso per curvatura cristalina di una partizione regolare stabile formata da due triodi elementari adiacenti. Vengono discussi alcuni esempi di situazioni di colasso che portano a cambi di topologia, come ad esempio la collisione di due giunzioni triple. Questi esempi (come anche il risultato di esistenza per tempi piccoli) mostrano uno dei vantaggi del flusso per curvatura cristallino rispetto, ad esempio, all’usuale moto per curvatura: calcoli espliciti possono essere fatti, e nel caso di non unicità, è possibile confrontare le energie delle diverse evoluzioni (difficile nel caso euclideo). Nel Capitolo 2 viene introdotta, usando la teoria delle funzioni a variazione limitata a valori in S1, la sfera diR2, una nuova classe di funzionali energia definiti su partizioni. Attraverso la variazione prima del funzionale energia, viene fornito un nuovo modello per l’evoluzione di interfacce che parzialmente estende quello introdotto nel Capitolo 1 e che consiste in un problema di frontiera libera definito sulle funzioni a variazione limitata a valori in S1. Questo modello è legato all’evoluzione di materiali policristallini dove è consentito alla Wulff shape di ruotare. Assumendo l’esitenza locale del flusso, si dimostra che durante il flusso curve chiuse convesse rimangono convesse e curve chiuse embedded rimangono embedded. Il secondo argomento della tesi è trattato nel Capitolo 3: l’obiettivo è quello di estendere il metodo delle linee di livello a sistemi di equazioni differenziali alle derivate parziali. Il metodo che viene proposto è consistente con la precedente ricerca portata avanti da Evans per l’equazione del calore e da Giga e Sato per equazioni di Hamilton-Jacobi. Il nostro approccio segue una costruzione geometrica che è legate alla nozione di barriera introdotta da De Giorgi. L’idea principale è quella di forzare un principio di confronto tra varietà di diversa codimensione e richiedere che ogni sottolivello di una soluzione dell’equazione per le linee di livello, detta level set equation, sia una barriera per i grafici di soluzioni del corrispondente sistema. Tale metodo ben si applica a una classe di sistemi di equazioni quasi-lineari del primo ordine. Viene fornita la level set equation associata ad opportuni sitemi di leggi di conservazione del primo ordine, al flusso per curvatura media di una varietà di codimensione arbitraria e a sitemi di equazioni di reazione-diffusione. Infine, viene calcolata la level set equation associata al sistema soddisfatto dalle parametrizzazioni di curve piane che si muovono per curvatura.
The present thesis deals with two different subjects. Chapter 1 and Chapter 2 concern interfaces evolution problems in the plane. In Chapter 1 I consider the evolution of a polycrystalline material with three (or more) phases, in presence of for an even crystalline anisotropy ϕo whose one-sublevel set Fϕ := {ϕo ≤ 1} (the Frank diagram) is a regular polygon of n sides. The dual function ϕ : R2 → R defined by ϕ(ξ) := sup{ξ ·η : ϕo(η) ≤ 1} is crystalline too and Wϕ := {ϕ ≤ 1} is called the Wulff shape. I am particularly interested in the motion by crystalline curvature of special planar networks called elementary triods, namely a regular three-phase boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing two consecutive sides of Wϕ. I analyze local and global existence and stability of the flow. I prove that there exists, locally in time, a unique stable regular flow starting from a stable regular initial datum. I show that if n, the number of sides of Wϕ, is a multiple of 6 then the flow is global and converge to a homothetic flow as t → +∞. The analysis of the long time behavior requires the study of the stability. Stability is the ingredient that ensures that no additional segments develop at the triple junction during the flow. In general, the flow may become unstable at a finite time: if this occurs and none of the segments desappears, it is possible to construct a regular flow at subsequent times by adding an infinitesimal segment (or even an arc with zero crystalline curvature) at the triple junction. I also show that a segment may desappear. In such a case, the Cahn-Hoffman vector field Nmin has a jump discontinuity and the triple junction translates along the remaining adjacent half-line at subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded (even if a segment appears or disappears). I want to stress that Taylor already predicted the appearance of new edges from a triple junction. I also consider the crystalline curvature flow starting from a stable ϕ-regular partition formed by two adjacent elementary triods. I discuss some examples of collapsing situations that lead to changes of topology, such as for instance the collision of two triple junctions. These examples (as well as the local in time existence result) show one of the advantages of crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations can be performed to some extent, and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in the euclidean case) can be made. In Chapter 2 we introduce, using the theory of S1-valued functions of bounded variations, a class of energy functionals defined on partitions and we produce, through the first variation, a new model for the evolution of interfaces which partially extends the one in Chapter 1 and which consists of a free boundary problem defined on S1-valued functions of bounded variation. This model is related to the evolution of polycrystals where the Wulff shape is allowed to rotate. Assuming the local existence of the flow, we show convexity preserving and embeddedness preserving properties. The second subject of the thesis is considered in Chapter 3 where we aim to extend the level set method to systems of PDEs. The method we propose is consistent with the previous research pursued by Evans for the heat equation and by Giga and Sato for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method for a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations. Finally, we provide a level set equation associated with the parametric curvature flow of planar curves.
APA, Harvard, Vancouver, ISO, and other styles
4

Benatti, Luca. "Monotonicity Formulas in Nonlinear Potential Theory and their geometric applications." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/346959.

Full text
Abstract:
In the setting of Riemannian manifolds with nonnegative Ricci curvature, we provide geometric inequalities as consequences of the Monotonicity Formulas holding along the flow of the level sets of the p-capacitary potential. The work is divided into three parts. (1) In the first part, we describe the asymptotic behaviour of the p-capactitary potential in a natural class of Riemannian manifolds. (2) The second part is devoted to the proof of our Monotonicity-Rigidity Theorems. (3) In the last part, we apply the Monotonicity Theorems to obtain geometric inequalities, focusing on the Extended Minkowski Inequality.
APA, Harvard, Vancouver, ISO, and other styles
5

Mascellani, Giovanni. "Fourth-order geometric flows on manifolds with boundary." Doctoral thesis, Scuola Normale Superiore, 2017. http://hdl.handle.net/11384/85715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakauchi, Gene. "Analytical and numerical results for a curvature-driven geometric flow rule." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127335/1/Gene_Nakauchi_Thesis.pdf.

Full text
Abstract:
This research studies a particular curvature-driven geometric flow rule in the plane using techniques from differential geometry, computational mathematics, and formal asymptotics. The flow rule is a combination of the well-studied curve shortening flow, which is governed by a parabolic system of partial differential equations, and the Eikonal equation, which is governed by a hyperbolic system. The physical motivations for considering our model include propagating fire fronts and phase separation. The focus is on a variety of mathematical problems related to the flow rule, such as the explicit form of travelling wave solutions, linear stability, self-intersection, singularity formation, and the extinction problem for convex curves.
APA, Harvard, Vancouver, ISO, and other styles
7

Junca, Stéphane. "Oscillating waves for nonlinear conservation laws." Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00845827.

Full text
Abstract:
The manuscript presents my research on hyperbolic Partial Differential Equations (PDE), especially on conservation laws. My works began with this thought in my mind: ''Existence and uniqueness of solutions is not the end but merely the beginning of a theory of differential equations. The really interesting questions concern the behavior of solutions.'' (P.D. Lax, The formation and decay of shock waves 1974). To study or highlight some behaviors, I started by working on geometric optics expansions (WKB) for hyperbolic PDEs. For conservation laws, existence of solutions is still a problem (for large data, $L^\infty$ data), so I early learned method of characteristics, Riemann problem, $BV$ spaces, Glimm and Godunov schemes, \ldots In this report I emphasize my last works since 2006 when I became assistant professor. I use geometric optics method to investigate a conjecture of Lions-Perthame-Tadmor on the maximal smoothing effect for scalar multidimensional conservation laws. With Christian Bourdarias and Marguerite Gisclon from the LAMA (Laboratoire de \\ Mathématiques de l'Université de Savoie), we have obtained the first mathematical results on a $2\times2$ system of conservation laws arising in gas chromatography. Of course, I tried to put high oscillations in this system. We have obtained a propagation result exhibiting a stratified structure of the velocity, and we have shown that a blow up occurs when there are too high oscillations on the hyperbolic boundary. I finish this subject with some works on kinetic équations. In particular, a kinetic formulation of the gas chromatography system, some averaging lemmas for Vlasov equation, and a recent model of a continuous rating system with large interactions are discussed. Bernard Rousselet (Laboratoire JAD Université de Nice Sophia-Antipolis) introduced me to some periodic solutions related to crak problems and the so called nonlinear normal modes (NNM). Then I became a member of the European GDR: ''Wave Propagation in Complex Media for Quantitative and non Destructive Evaluation.'' In 2008, I started a collaboration with Bruno Lombard, LMA (Laboratoire de Mécanique et d'Acoustique, Marseille). We details mathematical results and challenges we have identified for a linear elasticity model with nonlinear interfaces. It leads to consider original neutral delay differential systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Jevnikar, Aleks. "Variational aspects of Liouville equations and systems." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cekić, Mihajlo. "The Calderón problem for connections." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267829.

Full text
Abstract:
This thesis is concerned with the inverse problem of determining a unitary connection $A$ on a Hermitian vector bundle $E$ of rank $m$ over a compact Riemannian manifold $(M, g)$ from the Dirichlet-to-Neumann (DN) map $\Lambda_A$ of the associated connection Laplacian $d_A^*d_A$. The connection is to be determined up to a unitary gauge equivalence equal to the identity at the boundary. In our first approach to the problem, we restrict our attention to conformally transversally anisotropic (cylindrical) manifolds $M \Subset \mathbb{R}\times M_0$. Our strategy can be described as follows: we construct the special Complex Geometric Optics solutions oscillating in the vertical direction, that concentrate near geodesics and use their density in an integral identity to reduce the problem to a suitable $X$-ray transform on $M_0$. The construction is based on our proof of existence of Gaussian Beams on $M_0$, which are a family of smooth approximate solutions to $d_A^*d_Au = 0$ depending on a parameter $\tau \in \mathbb{R}$, bounded in $L^2$ norm and concentrating in measure along geodesics when $\tau \to \infty$, whereas the small remainder (that makes the solution exact) can be shown to exist by using suitable Carleman estimates. In the case $m = 1$, we prove the recovery of the connection given the injectivity of the $X$-ray transform on $0$ and $1$-forms on $M_0$. For $m > 1$ and $M_0$ simple we reduce the problem to a certain two dimensional $\textit{new non-abelian ray transform}$. In our second approach, we assume that the connection $A$ is a $\textit{Yang-Mills connection}$ and no additional assumption on $M$. We construct a global gauge for $A$ (possibly singular at some points) that ties well with the DN map and in which the Yang-Mills equations become elliptic. By using the unique continuation property for elliptic systems and the fact that the singular set is suitably small, we are able to propagate the gauges globally. For the case $m = 1$ we are able to reconstruct the connection, whereas for $m > 1$ we are forced to make the technical assumption that $(M, g)$ is analytic in order to prove the recovery. Finally, in both approaches we are using the vital fact that is proved in this work: $\Lambda_A$ is a pseudodifferential operator of order $1$ acting on sections of $E|_{\partial M}$, whose full symbol determines the full Taylor expansion of $A$ at the boundary.
APA, Harvard, Vancouver, ISO, and other styles
10

Ugail, Hassan, M. I. G. Bloor, and M. J. Wilson. "Manipulation of PDE surfaces using an interactively defined parameterisation." Elsevier, 1999. http://hdl.handle.net/10454/2669.

Full text
Abstract:
No
Manipulation of PDE surfaces using a set of interactively defined parameters is considered. The PDE method treats surface design as a boundary-value problem and ensures that surfaces can be defined using an appropriately chosen set of boundary conditions and design parameters. Here we show how the data input to the system, from a user interface such as the mouse of a computer terminal, can be efficiently used to define a set of parameters with which to manipulate the surface interactively in real time.
APA, Harvard, Vancouver, ISO, and other styles
11

Ugail, Hassan. "Time-dependent shape parameterisation of complex geometry using PDE surfaces." Nashboro Press, 2004. http://hdl.handle.net/10454/2686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yang, Weiye. "Stochastic analysis and stochastic PDEs on fractals." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.

Full text
Abstract:
Stochastic analysis on fractals is, as one might expect, a subfield of analysis on fractals. An intuitive starting point is to observe that on many fractals, one can define diffusion processes whose law is in some sense invariant with respect to the symmetries and self-similarities of the fractal. These can be interpreted as fractal-valued counterparts of standard Brownian motion on Rd. One can study these diffusions directly, for example by computing heat kernel and hitting time estimates. On the other hand, by associating the infinitesimal generator of the fractal-valued diffusion with the Laplacian on Rd, it is possible to pose stochastic partial differential equations on the fractal such as the stochastic heat equation and stochastic wave equation. In this thesis we investigate a variety of questions concerning the properties of diffusions on fractals and the parabolic and hyperbolic SPDEs associated with them. Key results include an extension of Kolmogorov's continuity theorem to stochastic processes indexed by fractals, and existence and uniqueness of solutions to parabolic SPDEs on fractals with Lipschitz data.
APA, Harvard, Vancouver, ISO, and other styles
13

Marini, Michele. "Some problems in convex analysis across geometry and PDEs." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rucci, Marco. "Geometric Surface Processing and Virtual Modeling." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3426305.

Full text
Abstract:
In this work we focus on two main topics "Geometric Surface Processing" and "Virtual Modeling". The inspiration and coordination for most of the research work contained in the thesis has been driven by the project New Interactive and Innovative Technologies for CAD (NIIT4CAD), funded by the European Eurostars Programme. NIIT4CAD has the ambitious aim of overcoming the limitations of the traditional approach to surface modeling of current 3D CAD systems by introducing new methodologies and technologies based on subdivision surfaces in a new virtual modeling framework. These innovations will allow designers and engineers to transform quickly and intuitively an idea of shape in a high-quality geometrical model suited for engineering and manufacturing purposes. One of the objective of the thesis is indeed the reconstruction and modeling of surfaces, representing arbitrary topology objects, starting from 3D irregular curve networks acquired through an ad-hoc smart-pen device. The thesis is organized in two main parts: "Geometric Surface Processing" and "Virtual Modeling". During the development of the geometric pipeline in our Virtual Modeling system, we faced many challenges that captured our interest and opened new areas of research and experimentation. In the first part, we present these theories and some applications to Geometric Surface Processing. This allowed us to better formalize and give a broader understanding on some of the techniques used in our latest advancements on virtual modeling and surface reconstruction. The research on both topics led to important results that have been published and presented in articles and conferences of international relevance.
In questa tesi sono trattati due argomenti principali "Geometric Surface Processing" e "Virtual Modeling". L'ispirazione e la coordinazione di gran parte del lavoro di ricerca contenuto nella tesi e' dovuta al progetto New Interactive and Innovative Technologies for CAD (NIIT4CAD), finanziato dall'European Eurostars Programme. NIIT4CAD ha l'ambizioso obiettivo di superare le limitazioni degli approcci tradizionali alla modellazione di superfici dei moderni sistemi di progettazione assistita al calcolatore, introducendo nuove metodologie e tecnologie basate su superfici di suddivisione in un nuovo framework virtuale di modellazione. Tali innovazioni permetteranno progettisti ed ingegneri a trasformare velocemente ed intuitivamente l'idea di una forma in un modello geometrico ad alta qualita' adatto per scopi ingegneristici e di produzione. Uno degli obiettivi della tesi e' proprio la ricostruzione e modellazione di superfici, rappresentanti oggetti a topologia arbitraria, partendo da curve 3D irregolari acquisite tramite un dispositivo smart-pen sviluppato ad-hoc. La tesi e' organizzata in due parti: "Geometric Surface Processing" e "Virtual Modeling". Durante lo sviluppo della pipeline geometrica del nostro sistema di modellazione virtuale, abbiamo affrontato diverse problematiche che hanno attratto il nostro interesse ed aperto nuove aree di ricerca e sperimentazione. Nella prima parte, presentiamo tali teorie ed alcune applicazioni nell'ambito di Geometric Surface Processing. Questo ci permette di formalizzare meglio e dare una visione piu' ampia ad alcune delle tecniche usate nelle ultime versioni del nostro sistema ricostruzione di superfici e modellazione virtuale. Il lavoro di ricerca per entrambi gli argomenti ha portato al raggiungimento di importanti risultati che sono stati pubblicati e presentati in articoli e conferenze di rilevanza internazionale.
APA, Harvard, Vancouver, ISO, and other styles
15

Sabra, Ahmad. "Nonlinear PDE and Optical Surfaces Design." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/345398.

Full text
Abstract:
Mathematics
Ph.D.
We introduce two models to design near field reflectors in R^3 that solve an inverse problem in radiometry, taking into account the inverse square law of irradiance. The problem leads to a Monge-Ampere type inequality. The surfaces in the first model are strictly convex and require to be far from the source to avoid obstruction. In the second model, the reflectors are neither convex nor concave and do not block the rays even if they are close to the source.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
16

Ahmat, Norhayati. "Geometric modelling and shape optimisation of pharmaceutical tablets. Geometric modelling and shape optimisation of pharmaceutical tablets using partial differential equations." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5702.

Full text
Abstract:
Pharmaceutical tablets have been the most dominant form for drug delivery and they need to be strong enough to withstand external stresses due to packaging and loading conditions before use. The strength of the produced tablets, which is characterised by their compressibility and compactibility, is usually deter-mined through a physical prototype. This process is sometimes quite expensive and time consuming. Therefore, simulating this process before hand can over-come this problem. A technique for shape modelling of pharmaceutical tablets based on the use of Partial Differential Equations is presented in this thesis. The volume and the sur-face area of the generated parametric tablet in various shapes have been es-timated numerically. This work also presents an extended formulation of the PDE method to a higher dimensional space by increasing the number of pa-rameters responsible for describing the surface in order to generate a solid tab-let. The shape and size of the generated solid tablets can be changed by ex-ploiting the analytic expressions relating the coefficients associated with the PDE method. The solution of the axisymmetric boundary value problem for a finite cylinder subject to a uniform axial load has been utilised in order to model a displace-ment component of a compressed PDE-based representation of a flat-faced round tablet. The simulation results, which are analysed using the Heckel model, show that the developed model is capable of predicting the compressibility of pharmaceutical powders since it fits the experimental data accurately. The opti-mal design of pharmaceutical tablets with particular volume and maximum strength has been obtained using an automatic design optimisation which is performed by combining the PDE method and a standard method for numerical optimisation.
APA, Harvard, Vancouver, ISO, and other styles
17

Ahmat, Norhayati Binti. "Geometric modelling and shape optimisation of pharmaceutical tablets : geometric modelling and shape optimisation of pharmaceutical tablets using partial differential equations." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5702.

Full text
Abstract:
Pharmaceutical tablets have been the most dominant form for drug delivery and they need to be strong enough to withstand external stresses due to packaging and loading conditions before use. The strength of the produced tablets, which is characterised by their compressibility and compactibility, is usually deter-mined through a physical prototype. This process is sometimes quite expensive and time consuming. Therefore, simulating this process before hand can over-come this problem. A technique for shape modelling of pharmaceutical tablets based on the use of Partial Differential Equations is presented in this thesis. The volume and the sur-face area of the generated parametric tablet in various shapes have been es-timated numerically. This work also presents an extended formulation of the PDE method to a higher dimensional space by increasing the number of pa-rameters responsible for describing the surface in order to generate a solid tab-let. The shape and size of the generated solid tablets can be changed by ex-ploiting the analytic expressions relating the coefficients associated with the PDE method. The solution of the axisymmetric boundary value problem for a finite cylinder subject to a uniform axial load has been utilised in order to model a displace-ment component of a compressed PDE-based representation of a flat-faced round tablet. The simulation results, which are analysed using the Heckel model, show that the developed model is capable of predicting the compressibility of pharmaceutical powders since it fits the experimental data accurately. The opti-mal design of pharmaceutical tablets with particular volume and maximum strength has been obtained using an automatic design optimisation which is performed by combining the PDE method and a standard method for numerical optimisation.
APA, Harvard, Vancouver, ISO, and other styles
18

Gonzalez, Castro Gabriela, and Hassan Ugail. "Shape morphing of complex geometries using partial differential equations." Academy Publisher, 2007. http://hdl.handle.net/10454/2643.

Full text
Abstract:
An alternative technique for shape morphing using a surface generating method using partial differential equations is outlined throughout this work. The boundaryvalue nature that is inherent to this surface generation technique together with its mathematical properties are hereby exploited for creating intermediate shapes between an initial shape and a final one. Four alternative shape morphing techniques are proposed here. The first one is based on the use of a linear combination of the boundary conditions associated with the initial and final surfaces, the second one consists of varying the Fourier mode for which the PDE is solved whilst the third results from a combination of the first two. The fourth of these alternatives is based on the manipulation of the spine of the surfaces, which is computed as a by-product of the solution. Results of morphing sequences between two topologically nonequivalent surfaces are presented. Thus, it is shown that the PDE based approach for morphing is capable of obtaining smooth intermediate surfaces automatically in most of the methodologies presented in this work and the spine has been revealed as a powerful tool for morphing surfaces arising from the method proposed here.
APA, Harvard, Vancouver, ISO, and other styles
19

Mazzieri, Lorenzo. "Somme connesse generalizzate per problemi della geometria." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85700.

Full text
Abstract:
[Introduction]: In questi ultimi due decenni le tecniche di somma connessa, basate essenzialmente su strumenti di natura analitica, hanno permesso di fare importanti progressi nella comprensione di svariati problemi non lineari derivati dalla geometria (studio di metriche a curvatura scalare costante in geometria Riemanniana, metriche autoduali, metriche con gruppi di olonomia speciali, metriche estremali in geometria K¨ahleriana, equazioni di Yang-Mills, studio di ipersuperfici minime e di superfici a curvatura media costante, metriche di Einstein,...). Queste tecniche si sono rivelate essere uno strumento potente per dimostrare l’esistenza di soluzioni di problemi altamente non lineari. La somma connessa (ossia l’aggiunta di un manico) è un’operazione topologica che consiste nel prendere due varietà M1 e M2, rimuovere da ciascuna di esse una piccola palla geodetica e identificare i bordi (i.e., due sfere) che si sono formati al fine di ottenere una nuova variet`a M1♯M2 che, in generale, sar`a topologicamente diversa dalle due variet`a iniziali. Pi`u in generale si può considerare la sommma connessa di due varietà M1 ed M2 lungo una sottovarietà K (somma connessa generalizzata). In questo caso si rimuove un piccolo intorno tubolare di K nelle due varietà iniziali e si identificano i bordi ottenuti per costruire M1 ♯K M2. Osserviamo che per effettuare una tale costruzione bisogna richiedere che i fibrati normali di K in M1 ed M2 siano diffeomorfi. Le cose si complicano quando le due variet`a iniziali sono munite di una particolare struttura (come nel caso di variet`a con metriche a curvatura scalare costante, o varietà che sono superfici minime,...) e si vuole preservare questa struttura, o quando sulle varietà iniziali esistono soluzioni di certe equazioni non lineari e si vogliono risolvere le stesse equazioni sulla somma connessa delle due variet`a M1 e M2 (come ad esempio le equazioni di Yang-Mills). Se da un lato le tecniche che permettono di effettuare le somme connesse in punti isolati sono state ben comprese e frequentemente utilizzate, dall’altro non si ha ancora un’effettiva padronanza delle tecniche che permettono di effettuare la somma connessa lungo sottovarietà. Il principale obiettivo di questo lavoro `e quello di colmare (parzialmente) questa lacuna, sviluppando questo tipo di tecnologie nel quadro delle metriche a curvatura scalare costante e nel quadro delle equazioni di vincolo di Einstein, in relatività generale.
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Siran. "Analysis of several non-linear PDEs in fluid mechanics and differential geometry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:20866cbb-e5ab-4a6b-b9dc-88a247d15572.

Full text
Abstract:
In the thesis we investigate two problems on Partial Differential Equations (PDEs) in differential geometry and fluid mechanics. First, we prove the weak L p continuity of the Gauss-Codazzi-Ricci (GCR) equations, which serve as a compatibility condition for the isometric immersions of Riemannian and semi-Riemannian manifolds. Our arguments, based on the generalised compensated compactness theorems established via functional and micro-local analytic methods, are intrinsic and global. Second, we prove the vanishing viscosity limit of an incompressible fluid in three-dimensional smooth, curved domains, with the kinematic and Navier boundary conditions. It is shown that the strong solution of the Navier-Stokes equation in H r+1 (r > 5/2) converges to the strong solution of the Euler equation with the kinematic boundary condition in H r, as the viscosity tends to zero. For the proof, we derive energy estimates using the special geometric structure of the Navier boundary conditions; in particular, the second fundamental form of the fluid boundary and the vorticity thereon play a crucial role. In these projects we emphasise the linkages between the techniques in differential geometry and mathematical hydrodynamics.
APA, Harvard, Vancouver, ISO, and other styles
21

Guo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lieb, Michael [Verfasser]. "Efficient Simulation of Flows Through Complex Geometries in the PDE Framework Peano / Michael Lieb." München : Verlag Dr. Hut, 2014. http://d-nb.info/1060588102/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

ALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.

Full text
Abstract:
Consideriamo un'ipersuperficie liscia di ℝⁿ⁺¹, con n≥2, e la sua evoluzione secondo una classe di flussi geometrici. La velocità di questi flussi ha direzione normale alla superficie e il modulo è una funzione simmetrica delle curvature principali. Inizialmente mostriamo alcune proprietà generali di questi flussi e calcoliamo l'equazione di evoluzione per una generica funzione omogenea delle curvature principali. In particolare applichiamo il flusso con velocità S=(H/(logH)), dove H è la curvatura media a meno di una costante, ad una superficie con curvatura media positiva per ottenere delle stime di convessità. Usando solamente il principio del massimo dimostriamo che, su un limite di riscalamenti delle superfici che si evolvono vicino alla singolarità, la parte negativa della curvatura scalare tende a zero. La parte successiva è dedicata allo studio di un'ipersuperficie convessa che si evolve secondo potenze della curvatura scalare: S=R^{p}, con p>1/2. Si dimostra che se la superficie iniziale soddisfa delle stime di "pinching" sulle curvature principali allora si contrae ad un punto in tempo finito e la forma delle superfici che si evolvono approssima sempre più quella di una sfera. In questo caso il grado di omogeneità, strettamente maggiore di uno, permette di concludere la dimostrazione della convergenza ad un "punto rotondo" tramite il solo principio del massimo, evitando l'uso di stime integrali. Viene anche costruito un esempio di superficie convessa che forma una singolarità di tipo "neck pinching". Infine studiamo il caso di un grafico intero su ℝⁿ con crescita al più lineare all'infinito e mostriamo che un grafico che si evolve secondo un qualsiasi flusso nella classe considerata rimane un grafico. Inoltre dimostriamo un risultato di esistenza per tempi lunghi per i flussi con velocità S=R^{p} con p≥1/2 e descriviamo delle soluzioni esplicite per grafici a simmetria di rotazione.
We consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
APA, Harvard, Vancouver, ISO, and other styles
24

von, Nessi Gregory Thomas, and greg vonnessi@maths anu edu au. "Regularity Results for Potential Functions of the Optimal Transportation Problem on Spheres and Related Hessian Equations." The Australian National University. Mathematical Sciences Institute, 2008. http://thesis.anu.edu.au./public/adt-ANU20081215.120059.

Full text
Abstract:
In this thesis, results will be presented that pertain to the global regularity of solutions to boundary value problems having the general form \begin{align} F\left[D^2u-A(\,\cdot\,,u,Du)\right] &= B(\,\cdot\,,u,Du),\quad\text{in}\ \Omega^-,\notag\\ T_u(\Omega^-) &= \Omega^+, \end{align} where $A$, $B$, $T_u$ are all prescribed; and $\Omega^-$ along with $\Omega^+$ are bounded in $\mathbb{R}^n$, smooth and satisfying notions of c-convexity and c^*-convexity relative to one another (see [MTW05] for definitions). In particular, the case where $F$ is a quotient of symmetric functions of the eigenvalues of its argument matrix will be investigated. Ultimately, analogies to the global regularity result presented in [TW06] for the Optimal Transportation Problem to this new fully-nonlinear elliptic boundary value problem will be presented and proven. It will also be shown that the A3w condition (first presented in [MTW05]) is also necessary for global regularity in the case of (1). The core part of this research lies in proving various a priori estimates so that a method of continuity argument can be applied to get the existence of globally smooth solutions. The a priori estimates vary from those presented in [TW06], due to the structure of F, introducing some complications that are not present in the Optimal Transportation case.¶ In the final chapter of this thesis, the A3 condition will be reformulated and analysed on round spheres. The example cost-functions subsequently analysed have already been studied in the Euclidean case within [MTW05] and [TW06]. In this research, a stereographic projection is utilised to reformulate the A3 condition on round spheres for a general class of cost-functions, which are general functions of the geodesic distance as defined relative to the underlying round sphere. With this general expression, the A3 condition can be readily verified for a large class of cost-functions that depend on the metrics of round spheres, which is tantamount (combined with some geometric assumptions on the source and target domains) to the classical regularity for solutions of the Optimal Transportation Problem on round spheres.
APA, Harvard, Vancouver, ISO, and other styles
25

Elyan, Eyad, and Hassan Ugail. "Reconstruction of 3D human facial images using partial differential equations." Academy Publisher, 2007. http://hdl.handle.net/10454/2644.

Full text
Abstract:
One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry of human faces based on the use of Elliptic Partial Differential Equations (PDE). Here the geometry corresponding to a human face is treated as a set of surface patches, whereby each surface patch is represented using four boundary curves in the 3-space that formulate the appropriate boundary conditions for the chosen PDE. These boundary curves are extracted automatically using 3D data of human faces obtained using a 3D scanner. The solution of the PDE generates a continuous single surface patch describing the geometry of the original scanned data. In this study, through a number of experimental verifications we have shown the efficiency of the PDE based method for 3D facial surface reconstruction using scan data. In addition to this, we also show that our approach provides an efficient way of facial representation using a small set of parameters that could be utilized for efficient facial data storage and verification purposes.
APA, Harvard, Vancouver, ISO, and other styles
26

Westmoreland, Shawn Michael. "Optical black holes and solitons." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/6910.

Full text
Abstract:
Doctor of Philosophy
Department of Mathematics
Louis Crane
We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.
APA, Harvard, Vancouver, ISO, and other styles
27

DE, LEO ROBERTO. "On some geometrical and analytical problems arising from the theory of Isometric Immersion." Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/266285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pennec, Xavier. "Statistical Computing on Manifolds for Computational Anatomy." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2006. http://tel.archives-ouvertes.fr/tel-00633163.

Full text
Abstract:
During the last decade, my main research topic was on medical image analysis, and more particularly on image registration. However, I was also following in background a more theoretical research track on statistical computing on manifolds. With the recent emergence of computational anatomy, this topic gained a lot of importance in the medical image analysis community. During the writing of this habilitation manuscript, I felt that it was time to present a more simple and uni ed view of how it works and why it can be important. This is why the usual short synthesis of the habilitation became a hundred pages long text where I tried to synthesizes the main notions of statistical computing on manifolds with application in registration and computational anatomy. Of course, this synthesis is centered on and illustrated by my personal research work.
APA, Harvard, Vancouver, ISO, and other styles
29

Strazzullo, Francesco. "Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/449.

Full text
Abstract:
In this dissertation we applied geometric methods to study underdetermined second order scalar ordinary differential equations (called general Monge equations), nonlinear involutive systems of two scalar partial differential equations in two independent variables and one unknown and non-Monge-Ampere Goursat parabolic scalar PDE in the plane. These particular kinds of differential equations are related to general rank-3 Pfaffian systems in five variables. Cartan studied these objects in his 1910 paper. In this work Cartan provided normal forms only for some general rank-3 Pfaffian systems with 14-, 7-, and 6-dimensional symmetry algebra. We applied our normal forms to [i] sharpen Cartan's integration method of nonlinear involutive systems, [ii] classify all general Monge equations with a freely acting transverse 3-dimensional symmetry algebra, of which many new examples are presented, and [iii] provide a broad classification of non-Monge-Ampere Darboux integrable hyperbolic PDE in the plane. We developed a computer software, called FiveVariables, that classifies general rank-3 Pfaffian systems. FiveVariables runs in the environment DifferentialGeometry of Maple, version 11 and later.
APA, Harvard, Vancouver, ISO, and other styles
30

Bustillo, Jaime. "Rigidité symplectique et EDPs hamiltoniennes." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE050/document.

Full text
Abstract:
On étudie les propriétés de rigidité symplectique des difféomorphismes hamiltoniens en dimension finie et en dimension infinie. En dimension finie, les outils principaux qu'on utilise sont les fonctions génératrices et les capacités symplectiques. En dimension infinie on regarde les flots des équations en dérivées partielles (EDPs) hamiltoniennes et, en particulier, les flots qui peuvent être approchés uniformément par des flots hamiltoniens de dimension finie.Dans la première partie de la thèse on étudie les sélecteurs d'action définies à partir des fonctions génératrices et on construit des invariants hamiltoniens pour les sous-ensembles de $R^{2m}times T^*T^k$. Cela nous permet de démontrer un théorème non-squeezing coisotrope pour les difféomorphismes hamiltoniens à support compact de $R^{2n}$. On montre à continuation que cette propriété apparaisse dans certains cas non compacts. Finalement, on explique comment ce résultat donne aussi l'information sur le problème de rigidité symplectique en dimension intermédiaire. Encore en dimension finie, on démontre qu'on peut utiliser le théorème du chameau symplectique pour produire des sous-ensembles invariants compacts dans des surfaces d'energie.Dans la deuxième partie on étudie les propriétés de rigidité symplectique des flots des EDPs hamiltoniennes. On se place dans le contexte introduit par Kuksin et on étudie une classe particulière de EDPs semi-linéaires qui peuvent être approchées par flots hamiltoniens de dimension finie. D'abord on donne une nouvelle construction de capacité symplectique en dimension infinie à partir des capacités de Viterbo. Puis on démontre l'analogue de la rigidité intermédiaire pour certaines EDPs hamiltoniennes. Cette classe inclue l'équation d'ondes en dimension 1 avec une non-linéarité bornée, comme par exemple l'équation de Sine-Gordon. Dans la dernière partie de la thèse on s'intéresse à un analogue de la conjecture d'Arnold pour l'équation de Schrödinger périodique avec une non linéarité de convolution
We study symplectic rigidity properties in both finite and infinite dimension. In finite dimension, the main tools that we use are generating functions and symplectic capacities. In infinite dimension we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.In the first part of this thesis we study the action selectors defined from generating functions and we build Hamiltonian invariants for subsets of $R^{2m}times T^*T^k$. This allows us to prove a coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of $R^{2n}$. We then extend this result to some non-compact settings. Finally we explain how this result can give information about the middle dimensional symplectic rigidity problem. Still in finite dimensions, we show that it is possible to use the symplectic camel theorem to create energy surfaces with compact invariant subsets.In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms. We first give a new construction of an infinite dimensional capacity using Viterbo's capacities. The main result of this part is the proof of the analogue of the middle dimensional rigidity for certain types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold's conjecture for the periodic Schrödinger equations with a convolution nonlinearity
APA, Harvard, Vancouver, ISO, and other styles
31

Calatroni, Luca. "New PDE models for imaging problems and applications." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/256139.

Full text
Abstract:
Variational methods and Partial Differential Equations (PDEs) have been extensively employed for the mathematical formulation of a myriad of problems describing physical phenomena such as heat propagation, thermodynamic transformations and many more. In imaging, PDEs following variational principles are often considered. In their general form these models combine a regularisation and a data fitting term, balancing one against the other appropriately. Total variation (TV) regularisation is often used due to its edgepreserving and smoothing properties. In this thesis, we focus on the design of TV-based models for several different applications. We start considering PDE models encoding higher-order derivatives to overcome wellknown TV reconstruction drawbacks. Due to their high differential order and nonlinear nature, the computation of the numerical solution of these equations is often challenging. In this thesis, we propose directional splitting techniques and use Newton-type methods that despite these numerical hurdles render reliable and efficient computational schemes. Next, we discuss the problem of choosing the appropriate data fitting term in the case when multiple noise statistics in the data are present due, for instance, to different acquisition and transmission problems. We propose a novel variational model which encodes appropriately and consistently the different noise distributions in this case. Balancing the effect of the regularisation against the data fitting is also crucial. For this sake, we consider a learning approach which estimates the optimal ratio between the two by using training sets of examples via bilevel optimisation. Numerically, we use a combination of SemiSmooth (SSN) and quasi-Newton methods to solve the problem efficiently. Finally, we consider TV-based models in the framework of graphs for image segmentation problems. Here, spectral properties combined with matrix completion techniques are needed to overcome the computational limitations due to the large amount of image data. Further, a semi-supervised technique for the measurement of the segmented region by means of the Hough transform is proposed.
APA, Harvard, Vancouver, ISO, and other styles
32

Ugail, Hassan, M. Robinson, M. I. G. Bloor, and M. J. Wilson. "Interactive design of complex mechanical parts using a parametric representation." Springer, 2000. http://hdl.handle.net/10454/2713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ismail, Nur Baini Binti. "Modelling facial action units using partial differential equations." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14425.

Full text
Abstract:
This thesis discusses a novel method for modelling facial action units. It presents facial action units model based on boundary value problems for accurate representation of human facial expression in three-dimensions. In particular, a solution to a fourth order elliptic Partial Differential Equation (PDE) subject to suitable boundary conditions is utilized, where the chosen boundary curves are based on muscles movement defined by Facial Action Coding System (FACS). This study involved three stages: modelling faces, manipulating faces and application to simple facial animation. In the first stage, PDE method is used in modelling and generating a smooth 3D face. The PDE formulation using small sets of parameters contributes to the efficiency of human face representation. In the manipulation stage, a generic PDE face of neutral expression is manipulated to a face with expression using PDE descriptors that uniquely represents an action unit. A combination of the PDE descriptor results in a generic PDE face having an expression, which successfully modelled four basic expressions: happy, sad, fear and disgust. An example of application is given using simple animation technique called blendshapes. This technique uses generic PDE face in animating basic expressions.
APA, Harvard, Vancouver, ISO, and other styles
34

Ismail, Nur B. B. "Modelling facial action units using partial differential equations." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14425.

Full text
Abstract:
This thesis discusses a novel method for modelling facial action units. It presents facial action units model based on boundary value problems for accurate representation of human facial expression in three-dimensions. In particular, a solution to a fourth order elliptic Partial Differential Equation (PDE) subject to suitable boundary conditions is utilized, where the chosen boundary curves are based on muscles movement defined by Facial Action Coding System (FACS). This study involved three stages: modelling faces, manipulating faces and application to simple facial animation. In the first stage, PDE method is used in modelling and generating a smooth 3D face. The PDE formulation using small sets of parameters contributes to the efficiency of human face representation. In the manipulation stage, a generic PDE face of neutral expression is manipulated to a face with expression using PDE descriptors that uniquely represents an action unit. A combination of the PDE descriptor results in a generic PDE face having an expression, which successfully modelled four basic expressions: happy, sad, fear and disgust. An example of application is given using simple animation technique called blendshapes. This technique uses generic PDE face in animating basic expressions.
Ministry of Higher Education, Malaysia and Universiti Malaysia Terengganu
APA, Harvard, Vancouver, ISO, and other styles
35

Patty, Spencer R. "3D Image Reconstruction and Level Set Methods." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2812.

Full text
Abstract:
We give a concise explication of the theory of level set methods for modeling motion of an interface as well as the numerical implementation of these methods. We then introduce the geometry of a camera and the mathematical models for 3D reconstruction with a few examples both simulated and from a real camera. We finally describe the model for 3D surface reconstruction from n-camera views using level set methods.
APA, Harvard, Vancouver, ISO, and other styles
36

Cortier, Julien. "Etude mathématique de trous noirs et de leurs données initiales en relativité générale." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20068/document.

Full text
Abstract:
L'objet de cette thèse est l'étude mathématique de familles d'espaces-temps satisfaisant aux équations d'Einstein de la Relativité Générale. Deux approches sont considérées pour cette étude. La première partie, composée des trois premiers chapitres, examine les propriétés géométriques des espaces-temps d'Emparan-Reall et dePomeransky-Senkov, de dimension 5. Nous montrons qu'ils contiennent un trou noir, dont l'horizon des événements est à sections compactes non-homéomorphes à la sphère. Nous en construisons une extension analytique et prouvons que cette extension est maximale et unique dans une certaine classe d'extensions pour les espaces-temps d'Emparan-Reall. Nous établissons ensuite le diagramme de Carter-Penrose de ces extensions, puis analysons la structure de l'ergosurface des espaces-temps de Pomeransky-Senkov. La deuxième partie est consacrée à l'étude de données initiales, solutions des équations des contraintes, induites par les équations d'Einstein. Nous effectuons un recollement d'une classe de données initiales avec des données initiales d'espaces-temps de Kerr-Kottler-deSitter, en utilisant la méthode de Corvino. Nous construisons, d'autre part, des métriques asymptotiquement hyperboliques en dimension 3, satisfaisant les hypothèses du théorème de masse positive à l'exception de la complétude, et ayant un vecteur moment-énergie de genre causal arbitraire
The aim of this thesis is the mathematical study of families of spacetimes satisfying the Einstein's equations of General Relativity. Two methodsare used in this context.The first part, consisting of the first three chapters of this work,investigates the geometric properties of the Emparan-Reall andPomeransky-Senkov families of 5-dimensional spacetimes. We show that they contain a black-hole region, whose event horizon has non-spherical compact cross sections. We construct an analytic extension, and show its maximality and its uniqueness within a natural class in the Emparan-Reallcase. We further establish the Carter-Penrose diagram for these extensions, and analyse the structure of the ergosurface of the Pomeransky-Senkovspacetimes.The second part focuses on the study of initial data, solutions of theconstraint equations induced by the Einstein's equations. We perform agluing construction between a given family of inital data sets andinitial data of Kerr-Kottler-de Sitter spacetimes, using Corvino'smethod.On the other hand, we construct 3-dimensional asymptotically hyperbolicmetrics which satisfy all the assumptions of the positive mass theorem but the completeness, and which display an energy-momentum vector of arbitry causal type
APA, Harvard, Vancouver, ISO, and other styles
37

Ugail, Hassan, M. I. G. Bloor, and M. J. Wilson. "Implementing automatic design optimisation in an interactive environment." American Institute of Aeronautics and Astronautics, 2000. http://hdl.handle.net/10454/2942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zelasco, José Francisco. "Gestion des données : contrôle de qualité des modèles numériques des bases de données géographiques." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20232.

Full text
Abstract:
Les modèles numériques de terrain, cas particulier de modèles numériques de surfaces, n'ont pas la même erreur quadratique moyenne en planimétrie qu'en altimétrie. Différentes solutions ont été envisagées pour déterminer séparément l'erreur en altimétrie et l'erreur planimétrique, disposant, bien entendu, d'un modèle numérique plus précis comme référence. La démarche envisagée consiste à déterminer les paramètres des ellipsoïdes d'erreur, centrées dans la surface de référence. Dans un premier temps, l'étude a été limitée aux profils de référence avec l'ellipse d'erreur correspondante. Les paramètres de cette ellipse sont déterminés à partir des distances qui séparent les tangentes à l'ellipse du centre de cette même ellipse. Remarquons que cette distance est la moyenne quadratique des distances qui séparent le profil de référence des points du modèle numérique à évaluer, c'est à dire la racine de la variance marginale dans la direction normale à la tangente. Nous généralisons à l'ellipsoïde de révolution. C'est le cas ou l'erreur planimétrique est la même dans toutes les directions du plan horizontal (ce n'est pas le cas des MNT obtenus, par exemple, par interférométrie radar). Dans ce cas nous montrons que le problème de simulation se réduit à l'ellipse génératrice et la pente du profil correspondant à la droite de pente maximale du plan appartenant à la surface de référence. Finalement, pour évaluer les trois paramètres d'un ellipsoïde, cas où les erreurs dans les directions des trois axes sont différentes (MNT obtenus par Interférométrie SAR), la quantité des points nécessaires pour la simulation doit être importante et la surface tr ès accidentée. Le cas échéant, il est difficile d'estimer les erreurs en x et en y. Néanmoins, nous avons remarqué, qu'il s'agisse de l'ellipsoïde de révolution ou non, que dans tous les cas, l'estimation de l'erreur en z (altimétrie) donne des résultats tout à fait satisfaisants
A Digital Surface Model (DSM) is a numerical surface model which is formed by a set of points, arranged as a grid, to study some physical surface, Digital Elevation Models (DEM), or other possible applications, such as a face, or some anatomical organ, etc. The study of the precision of these models, which is of particular interest for DEMs, has been the object of several studies in the last decades. The measurement of the precision of a DSM model, in relation to another model of the same physical surface, consists in estimating the expectancy of the squares of differences between pairs of points, called homologous points, one in each model which corresponds to the same feature of the physical surface. But these pairs are not easily discernable, the grids may not be coincident, and the differences between the homologous points, corresponding to benchmarks in the physical surface, might be subject to special conditions such as more careful measurements than on ordinary points, which imply a different precision. The generally used procedure to avoid these inconveniences has been to use the squares of vertical distances between the models, which only address the vertical component of the error, thus giving a biased estimate when the surface is not horizontal. The Perpendicular Distance Evaluation Method (PDEM) which avoids this bias, provides estimates for vertical and horizontal components of errors, and is thus a useful tool for detection of discrepancies in Digital Surface Models (DSM) like DEMs. The solution includes a special reference to the simplification which arises when the error does not vary in all horizontal directions. The PDEM is also assessed with DEM's obtained by means of the Interferometry SAR Technique
APA, Harvard, Vancouver, ISO, and other styles
39

Diarra, Karamoko. "Construction de déformations isomonodromiques par revêtements." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00746795.

Full text
Abstract:
Le système de Garnier de rang N est un système d'équations différentielles non linéaires. Ses solutions locales, de dimension N, paramétrisent les déformations isomonodromiques d'équations différentielles scalaires d'ordre 2 sur la sphère de Riemann avec 2N + 3 singularités fuchsiennes (N + 3 points singuliers essentiels et N points singuliers apparents). Ces solutions sont en générales très transcendantes, mais il possède aussi des solutions algébriques. Ces dernières apparaissent par exemple lorsque l'on déforme une équation scalaire à monodromie finie, ou pour certaines monodromies réductibles. On peut aussi construire des déformations isomonodromiques algébriques en tirant en arrière une équation fuchsienne fixée par une famille à N paramètres de revêtements ramifiés : c'est la méthode utilisée par Kitaev dans le cas N = 1, i.e. pour l'équation de Painlevé VI. Nous classifions toutes les solutions algébriques obtenues par cette méthode pour N arbitraire, dont la monodromie n'est pas élémentaire (en particulier irréductible et infinie). Il n'y en a pas pour N supérieur ou égal à 4. Certaines de ces solutions sont calculées explicitement dans la dernière section. La méthode de Kitaev permet de construire des solutions algébriques incomplètes pour tout N (c'est à dire de dimension plus petite que N, la solution complète n'étant pas nécessairement algébrique) et aussi en genre quelconque. Dans le cas des connexions holomorphes de rang 2 sur les courbes de genre 2, nous classifions les déformations algébriques non élémentaires obtenue par cette méthode : elles sont toutes incomplètes, de dimension 1. Toujours dans ce cadre, nous étudions une famille de dimension 4 déformations à 2 paramètres obtenues à partir de solutions de systèmes de Garnier de rang N = 2. Cette famille, qui apparait sur les courbes bi-elliptiques, est caractérisée en termes de monodromie.
APA, Harvard, Vancouver, ISO, and other styles
40

Mokdad, Mokdad. "Champs de Maxwell en espace-temps de Reissner - Nordstr∫m- De Sitter : décroissance et scattering conforme." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0060/document.

Full text
Abstract:
Nous étudions les champs de Maxwell à l'extérieur de trous noirs de Reissner-Nordstrom-de Sitter. Nous commençons par étudier la géométrie de ces espaces-temps : nous donnons une condition sous laquelle la métrique admet trois horizons puis dans ce cadre nous construisons l'extension analytique maximale d'un trou noir de Reissner-Nordstrom-de Sitter. Nous donnons ensuite une description générale des champs de Maxwell en espace-temps courbe, de leur décomposition en composantes spinorielle ainsi que de leur énergie. La première étude analytique établit la décroissance ponctuelle de champs de Maxwell à l'extérieur d'un trou noir de Reissner-Nordstrom-de Sitter ainsi que la décroissance uniforme de l'énergie sur un hyperboloïde qui s'éloigne dans le futur. Ce chapitre utilise des méthodes de champs de vecteurs (estimations d'énergie géométriques) dans l'esprit des travaux de Pieter Blue. Enfin nous construisons une théorie du scattering conforme pour les champs de Maxwell à l'extérieur du trou noir. Ceci consiste en la résolution du problème de Goursat pour les champs de Maxwell à la frontière isotrope de l'extérieur du trou noir, constituée des horizons du trou noir et horizons cosmologiques futurs et passés. Les estimations de décroissance uniforme de l'énergie sont cruciales dans cette partie
We study Maxwell fields on the exterior of Reissner-Nordstrom-de Sitter black holes. We start by studying the geometry of these spacetimes: we give the condition under which the metric admits three horizons and in this case we construct the maximal analytic extension of the Reissner-Nordstrom-de Sitter black hole. We then give a general description of Maxwell fields on curves spacetimes, their decomposition into spin components, and their energies. The first result establishes the pointwise decay of the Maxwell field in the exterior of a Reissner-Nordstrom-de Sitter black hole, as well as the uniform decay of the energy flux across a hyperboloid that recedes in the future. This chapter uses the vector fields methods (geometric energy estimates) in the spirit of the work of Pieter Blue. Finally, we construct a conformal scattering theory for Maxwell fields in the exterior of the black hole. This amounts to solving the Goursat problem for Maxwell fields on the null boundary of the exterior region, consisting of the future and past black hole and cosmological horizons. The uniform decay estimates of the energy are crucial to the construction of the conformal scattering theory
APA, Harvard, Vancouver, ISO, and other styles
41

Klein, Guillaume. "Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD050/document.

Full text
Abstract:
Dans cette thèse nous considérons l’équation des ondes amorties vectorielle sur une variété riemannienne compacte, lisse et sans bord. L’amortisseur est ici une fonction lisse allant de la variété dans l’espace des matrices hermitiennes de taille n. Les solutions de cette équation sont donc à valeurs vectorielles. Nous commençons dans un premier temps par calculer le meilleur taux de décroissance exponentiel de l’énergie en fonction du terme d’amortissement. Ceci nous permet d’obtenir une condition nécessaire et suffisante la stabilisation forte de l’équation des ondes amorties vectorielle. Nous mettons aussi en évidence l’apparition d’un phénomène de sur-amortissement haute fréquence qui n’existait pas dans le cas scalaire. Dans un second temps nous nous intéressons à la répartition asymptotique des fréquences propres de l’équation des ondes amorties vectorielle. Nous démontrons que, à un sous ensemble de densité nulle près, l’ensemble des fréquences propres est contenu dans une bande parallèle à l’axe imaginaire. La largeur de cette bande est déterminée par les exposants de Lyapunov d’un système dynamique défini à partir du coefficient d’amortissement
In this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term
APA, Harvard, Vancouver, ISO, and other styles
42

Lutz, Mathieu. "Étude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00875703.

Full text
Abstract:
Cette thèse propose différentes méthodes théoriques et numériques pour simuler à coût réduit le comportement des plasmas ou des faisceaux de particules chargées sous l'action d'un champ magnétique fort. Outre le champ magnétique externe, chaque particule est soumise à un champ électromagnétique créé par les particules elles-mêmes. Dans les modèles cinétiques, les particules sont représentées par une fonction de distribution f(x,v,t) qui vérifie l'équation de Vlasov. Afin de déterminer le champ électromagnétique, cette équation est couplée aux équations de Maxwell ou de Poisson. L'aspect champ magnétique fort est alors pris en compte par un adimensionnement adéquat qui fait apparaître un paramètre de perturbation singulière 1/ε. Le premier chapitre de cette thèse est une introduction à la fusion contrôlée par confinement magnétique dans les Tokamaks. Le second chapitre est consacré à la théorie gyrocinétique géométrique. Cette théorie repose sur la géométrie différentielle et la dynamique des systèmes hamiltoniens. L'objectif est de faire une succession de changements de coordonnées afin de se ramener à un système proche du centre-guide historique dans lequel les expressions de la matrice de Poisson et du Hamiltonien permettent une réduction de la dimension des trajectoires. Le chapitre 3 met en pratique les mêmes techniques sur un autre problème, la modélisation paraxiale d'un faisceau de particules chargées. Le dernier chapitre est dédié à un schéma numérique basé sur un intégrateur exponentiel en vitesse. Ce schéma a pour objectif d'approcher numériquement des solutions fortement oscillantes avec une méthode Particle-In-Cell en utilisant un pas de temps beaucoup plus grand que la période d'oscillation rapide. Il est testé sur une équation de Vlasov linéaire ainsi que sur le système de Vlasov-Poisson.
APA, Harvard, Vancouver, ISO, and other styles
43

Jézéquel, Tiphaine. "Formes normales de champs de vecteurs : restes exponentiellement petits dans le cas non autonome périodique et orbites homoclines à plusieurs boucles au voisinage de la résonance 0²iw hamiltonienne." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00649382.

Full text
Abstract:
Dans cette thèse on s'intéresse à deux problèmes faisant intervenir des formes normales de champs de vecteurs et des phénomènes exponentiellement petits. Dans le premier chapitre on démontre tout d'abord deux théorèmes de normalisation avec restes exponentiellement petits pour des champs de vecteurs analytiques au voisinage d'un point d'équilibre, dans le cas non autonome périodique. Le premier théorème de normalisation permet de construire une quasi-variété invariante à un exponentiellement petit près, tandis que le deuxième met le champ de vecteur sous la forme normale de Elphick-Tirapegui-Brachet-Coullet-Iooss à un exponentiellement petit près. Dans le deuxième chapitre on travaille près d'un point d'équilibre d'une famille de systèmes hamiltoniens au voisinage d'une résonance 0²iw. On démontre l'existence d'une famille d'orbites périodiques entourant l'équilibre puis l'existence d'orbites homoclines à plusieurs boucles à chacune de ces orbites périodiques, aussi proche de cet équilibre que l'on veut à l'exception de l'équilibre lui-même. La démonstration est basée sur la preuve d'un théorème de forme normale hamiltonien inspiré des formes normales de Elphick-Tirapegui-Brachet-Coullet-Iooss ainsi que sur une normalisation locale hamiltonienne s'appuyant sur un résultat de Moser. On obtient ensuite le résultat grâce à des arguments géométriques liés à la petite dimension et à un théorème KAM qui permet de confiner les boucles. Pour le même problème dans le cadre d'un champ de vecteurs réversible non hamiltonien, l'apparition d'exponentiellement petits lors de la perturbation de l'orbite homocline de la forme normale empêche la démonstration de l'existence d'orbites homoclines à des orbites périodiques de taille exponentiellement petite. Le même phénomène apparait ici mais l'obstacle est contourné grâce à des arguments géométriques spécifiques aux système Hamiltoniens.
APA, Harvard, Vancouver, ISO, and other styles
44

Goldman, Michael. "Quelques applications des fonctions a variation bornée en dimension finie et infinie." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00650401.

Full text
Abstract:
Cette thèse a pour but d'étudier quelques applications des fonctions à variation bornée et des ensembles de périmètre fini. Nous nous intéressons en particulier à des applications en traitement d'images et en géométrie de dimension finie et infinie. Nous étudions tout d'abord une méthode dite Primale-Duale proposée par Appleton et Talbot pour la résolution de nombreux problèmes en traitement d'images. Nous réinterprétons cette méthode sous un oeil nouveau, ce qui aide à mieux la comprendre mathématiquement. Ceci permet par exemple de démontrer sa convergence et d'établir de nouvelles estimations a posteriori qui sont d'une grande importance pratique. Nous considérons ensuite le problème de courbure moyenne prescrite en milieu périodique. A l'aide de la théorie des ensembles de périmètre fini, nous démontrons l'existence de solutions approchées compactes de ce problème. Nous étudions également le comportement asymptotique de ces solutions lorsque leur volume tend vers l'infini. Les deux dernières parties de la thèse sont consacrées à l'étude de problèmes géométriques dans les espaces de Wiener. Nous étudions d'une part les liens entre symétrisations, semi-continuité et inégalités isopérimétriques ce qui permet d'obtenir un résultat d'approximation et de relaxation pour le périmètre dans ces espaces de dimension infinie. Nous démontrons d'autre part la convexité des solutions de certains problèmes variationnels dans ces espaces, en développant au passage l'étude de la semi-continuité et de la relaxation dans ce contexte.
APA, Harvard, Vancouver, ISO, and other styles
45

Svensson, Pamela H. W. "Everything you wanted to know about the TPA molecule adsorbed on Au(111)." Thesis, Uppsala universitet, Materialteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417648.

Full text
Abstract:
The electronic properties of Triphenylamine (TPA) in gas phase and adsorbed on gold(111) have been simulated with Quantum Espresso using Density Functional Theory (DFT). To better understand how the presence of a gold surface affects sunlight absorption in the system, partial Density Of States (pDOS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) of the system have been calculated. To describe the electronic excitation, three different methods have been used, No Core Hole (NCH), Full Core Hole (FCH) and Half Core Hole (HCH) approximation. The excitation of the TPA molecule was made in the nitrogen (N) atom and in the four different carbon (C) atoms with different electronic environments, C-ipso, C-ortho, C-meta and C-para. When using the HCH method, the absorbing atom must be described by a pseudopotential (PP) which includes half of a hole in the 1s orbital. This PP has been generated and a detailed summary of the process is described. The TPA/gold system relaxes to a position with the central N atom of TPA above an gold (Au) atom in the second layer of the surface and at a distance of 3.66 Angstrom, to the first layer. TPA keeps its symmetry with only small differences in the length of atomic bonds when adsorbed. The most striking result of this study is how the band gap of TPA is affected by the gold layer. From the pDOS we can observe that TPA in gas phase has a clear band gap of 2.2 eV with C-ortho dominating in the valence region and the four carbons dominating in the first unoccupied states. When depositing the molecule on the surface of Au(111), the band gap is essentially gone and a number of states appear between the previous highest occupied and lowest unoccupied molecular orbital in TPA. These new states align in energy with three clusters of states of the gold suggesting an interaction between the molecule and the surface. In the generated NEXAFS of nitrogen and carbon in TPA gas phase, one can observe a small pre-peak before the first unoccupied state. This is reinforced when adsorbing the molecule, which generates a pre-peak of approximately 3 eV in width. The pre-peak is connected to the new peaks seen in pDOS, correlating with experimental results on the same system.
APA, Harvard, Vancouver, ISO, and other styles
46

Caubet, Fabien. "Détection d’un objet immergé dans un fluide." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3006/document.

Full text
Abstract:
Cette thèse s’inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de détection à l’aide du calcul de forme et de l’analyse asymptotique. L’objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes :– peut-on détecter un objet immergé dans un fluide à partir d’une mesure effectuée à la surface ?– peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ?– peut-on connaître le nombre d’objets présents dans le fluide en utilisant cette mesure ?Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse :– le premier met en place un cadre mathématique pour démontrer l’existence des dérivées de forme d’ordre un et deux pour les problèmes de détection d’inclusions ;– le deuxième analyse le problème de détection à l’aide de l’optimisation géométrique de forme : un résultat d’identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l’instabilité de ce problème inverse est enfin démontrée ;– le chapitre 3 utilise nos résultats théoriques pour reconstruire numériquement des objets immergés dans un fluide à l’aide d’un algorithme de gradient de forme ;– le chapitre 4 analyse la localisation de petites inclusions dans un fluide à l’aide de l’optimisation topologique de forme : le gradient topologique d’une fonctionnelle de forme de Kohn-Vogelius est caractérisé ;– le dernier chapitre utilise cette dernière expression théorique pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l’aide d’un algorithme de gradient topologique
This dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm
APA, Harvard, Vancouver, ISO, and other styles
47

Stöcker, Christina. "Level set methods for higher order evolution laws." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1205350171405-81971.

Full text
Abstract:
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work
In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben
APA, Harvard, Vancouver, ISO, and other styles
48

Stöcker, Christina. "Level set methods for higher order evolution laws." Doctoral thesis, Forschungszentrum caesar, 2007. https://tud.qucosa.de/id/qucosa%3A24054.

Full text
Abstract:
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work.
In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
APA, Harvard, Vancouver, ISO, and other styles
49

Jbilou, Asma. "Equations hessiennes complexes sur des variétés kählériennes compactes." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00463111.

Full text
Abstract:
Sur une variété kählérienne compacte connexe de dimension 2m, ! étant la forme de Kähler, ­ une forme volume donnée dans [!]m et k un entier 1 < k < m, on cherche à résoudre de façon unique dans [!] l'équation ˜ !k ^!m−k = ­ en utilisant une notion de k-positivité pour ˜ ! 2 [!] (les cas extrêmes sont résolus : k = m par Yau, k = 1 trivialement). Nous résolvons par la méthode de continuité l'équation hessienne d'ordre k complexe elliptique correspondante sous l'hypothèse que la variété est à courbure bisectionelle holomorphe non-négative, ici requise seulement pour établir un pincement a priori de valeurs propres.
APA, Harvard, Vancouver, ISO, and other styles
50

Houwaart, Torsten. "Cobalt porphyrins on coinage metal surfaces - adsorption and template properties." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0927.

Full text
Abstract:
Cette thèse est une étude théorique sur la interface de porphyrine de cobalt avec des surfaces métalliques avec le code VASP DFT. Le cadre DFT nécessaire a été introduit dans le chapitre 1. La structure de la jBardeen, une programme ecrit en Java, pour la simulation de la STM est expliqué dans le chapitre 2 et le code source est jointe en annexe. Une étude de l'adsorption de CoTPP sur les surfaces métalliques a été entrepris dans le chapitre 3. Différents paramètres de calcul ont été évalués: Le site d'adsorption et de la géométrie à la fois la molécule et la surface ont été étudiés par rapport à la xc-fonctionnel et correction de la dispersion utilisée. Une adsorption site le plus stable est identifié. Par conséquent, ce site plus stable a été étudiée pour sa structure électronique. Calculés images STM avec le code jBardeen ont été comparés avec une experimentation de CoTPP Cu sur une surface (111) avec une couverture sous monocouche. Dans le chapitre 4, un adatome Fe a été présenté à la CoTPP sur Ag système (111). Trois sites de liaison symétrique différentes pour l'atome Fe ont été identifiés sur le macrocycle, marqué les , bi-, brd- et bru-positions. Un moment magnétique pouvait être attestée qui a été principalement situé sur l'atome Fe. Voies possibles entre les quatre, symétriquement équivalentes, sites bi- ont été étudiées avec des méthodes différentes. Simples calculs dans le vacuum et calculs de la “Nudged Elastic Band” (NEB) de l'ensemble du système a révélé une hauteur de barrière légèrement au-dessus de 0,2 eV allant de position bi à la posititon brd. Une analyse de vibration a montré que la commutation de l'atome Fe est susceptible, lorsqu'il est perturbé hors d'équilibre dans les positions brd et bru
This thesis is a theoretical study on the cobalt porphyrin - coinage metal surface interface with the DFT code VASP. The necessary DFT framework has been introduced in chapter 1. The structure of the Java program jBardeen for STM simulation is explained in chapter 2 and the source code is attached as Appendix. A study of the adsorption of CoTPP on coinage metal surfaces has been undertaken in chapter 3. Different parameters of the calculation have been evaluated: the adsorption site and the geometry of both the molecule and surface have been investigated with respect to the xc-functional and dispersion correction used. A most stable adsorption site -bridge down- is identified. Consequently, this most stable site was investigated for its electronic structure. Calculated STM images with the jBardeen code were compared with an experiment of CoTPP on a Cu(111) surface with sub monolayer coverage. In chapter 4 an Fe adatom was introduced to the CoTPP on Ag(111) system. Three symmetrically different binding sites for the Fe atom were identified on the macrocycle, labelled the bi-, brd- and bru-positions for bisector, bridge down and bridge up respectively. A magnetic moment could be evidenced which was mainly located on the Fe atom. Possible pathways between the four symmetrically equivalent bisector sites were investigated with different methods. Single point calculations in vacuum and Nudged Elastic Band (NEB) of the whole system revealed a barrier height of slightly above 0.2 eV going from bi- to the brd-position. A vibrational analysis showed that switching of the Fe atom is likely, when perturbed out of equilibrium in the brd- and bru- positions
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography