Dissertations / Theses on the topic 'Geometric PDEs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Geometric PDEs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ndiaye, Cheikh Birahim. "Geometric PDEs on compact Riemannian manifolds." Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4088.
Full textBurovskiy, Pavel Andreevich. "Second order quasilinear PDEs in 3D : integrability, classification and geometric aspects." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/26691.
Full textCHERMISI, MILENA. "Crystalline flow of planar partitions and a geometric approach for systems of PDEs." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202647.
Full textThe present thesis deals with two different subjects. Chapter 1 and Chapter 2 concern interfaces evolution problems in the plane. In Chapter 1 I consider the evolution of a polycrystalline material with three (or more) phases, in presence of for an even crystalline anisotropy ϕo whose one-sublevel set Fϕ := {ϕo ≤ 1} (the Frank diagram) is a regular polygon of n sides. The dual function ϕ : R2 → R defined by ϕ(ξ) := sup{ξ ·η : ϕo(η) ≤ 1} is crystalline too and Wϕ := {ϕ ≤ 1} is called the Wulff shape. I am particularly interested in the motion by crystalline curvature of special planar networks called elementary triods, namely a regular three-phase boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing two consecutive sides of Wϕ. I analyze local and global existence and stability of the flow. I prove that there exists, locally in time, a unique stable regular flow starting from a stable regular initial datum. I show that if n, the number of sides of Wϕ, is a multiple of 6 then the flow is global and converge to a homothetic flow as t → +∞. The analysis of the long time behavior requires the study of the stability. Stability is the ingredient that ensures that no additional segments develop at the triple junction during the flow. In general, the flow may become unstable at a finite time: if this occurs and none of the segments desappears, it is possible to construct a regular flow at subsequent times by adding an infinitesimal segment (or even an arc with zero crystalline curvature) at the triple junction. I also show that a segment may desappear. In such a case, the Cahn-Hoffman vector field Nmin has a jump discontinuity and the triple junction translates along the remaining adjacent half-line at subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded (even if a segment appears or disappears). I want to stress that Taylor already predicted the appearance of new edges from a triple junction. I also consider the crystalline curvature flow starting from a stable ϕ-regular partition formed by two adjacent elementary triods. I discuss some examples of collapsing situations that lead to changes of topology, such as for instance the collision of two triple junctions. These examples (as well as the local in time existence result) show one of the advantages of crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations can be performed to some extent, and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in the euclidean case) can be made. In Chapter 2 we introduce, using the theory of S1-valued functions of bounded variations, a class of energy functionals defined on partitions and we produce, through the first variation, a new model for the evolution of interfaces which partially extends the one in Chapter 1 and which consists of a free boundary problem defined on S1-valued functions of bounded variation. This model is related to the evolution of polycrystals where the Wulff shape is allowed to rotate. Assuming the local existence of the flow, we show convexity preserving and embeddedness preserving properties. The second subject of the thesis is considered in Chapter 3 where we aim to extend the level set method to systems of PDEs. The method we propose is consistent with the previous research pursued by Evans for the heat equation and by Giga and Sato for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method for a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations. Finally, we provide a level set equation associated with the parametric curvature flow of planar curves.
Benatti, Luca. "Monotonicity Formulas in Nonlinear Potential Theory and their geometric applications." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/346959.
Full textMascellani, Giovanni. "Fourth-order geometric flows on manifolds with boundary." Doctoral thesis, Scuola Normale Superiore, 2017. http://hdl.handle.net/11384/85715.
Full textNakauchi, Gene. "Analytical and numerical results for a curvature-driven geometric flow rule." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127335/1/Gene_Nakauchi_Thesis.pdf.
Full textJunca, Stéphane. "Oscillating waves for nonlinear conservation laws." Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00845827.
Full textJevnikar, Aleks. "Variational aspects of Liouville equations and systems." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4847.
Full textCekić, Mihajlo. "The Calderón problem for connections." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267829.
Full textUgail, Hassan, M. I. G. Bloor, and M. J. Wilson. "Manipulation of PDE surfaces using an interactively defined parameterisation." Elsevier, 1999. http://hdl.handle.net/10454/2669.
Full textManipulation of PDE surfaces using a set of interactively defined parameters is considered. The PDE method treats surface design as a boundary-value problem and ensures that surfaces can be defined using an appropriately chosen set of boundary conditions and design parameters. Here we show how the data input to the system, from a user interface such as the mouse of a computer terminal, can be efficiently used to define a set of parameters with which to manipulate the surface interactively in real time.
Ugail, Hassan. "Time-dependent shape parameterisation of complex geometry using PDE surfaces." Nashboro Press, 2004. http://hdl.handle.net/10454/2686.
Full textYang, Weiye. "Stochastic analysis and stochastic PDEs on fractals." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.
Full textMarini, Michele. "Some problems in convex analysis across geometry and PDEs." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86213.
Full textRucci, Marco. "Geometric Surface Processing and Virtual Modeling." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3426305.
Full textIn questa tesi sono trattati due argomenti principali "Geometric Surface Processing" e "Virtual Modeling". L'ispirazione e la coordinazione di gran parte del lavoro di ricerca contenuto nella tesi e' dovuta al progetto New Interactive and Innovative Technologies for CAD (NIIT4CAD), finanziato dall'European Eurostars Programme. NIIT4CAD ha l'ambizioso obiettivo di superare le limitazioni degli approcci tradizionali alla modellazione di superfici dei moderni sistemi di progettazione assistita al calcolatore, introducendo nuove metodologie e tecnologie basate su superfici di suddivisione in un nuovo framework virtuale di modellazione. Tali innovazioni permetteranno progettisti ed ingegneri a trasformare velocemente ed intuitivamente l'idea di una forma in un modello geometrico ad alta qualita' adatto per scopi ingegneristici e di produzione. Uno degli obiettivi della tesi e' proprio la ricostruzione e modellazione di superfici, rappresentanti oggetti a topologia arbitraria, partendo da curve 3D irregolari acquisite tramite un dispositivo smart-pen sviluppato ad-hoc. La tesi e' organizzata in due parti: "Geometric Surface Processing" e "Virtual Modeling". Durante lo sviluppo della pipeline geometrica del nostro sistema di modellazione virtuale, abbiamo affrontato diverse problematiche che hanno attratto il nostro interesse ed aperto nuove aree di ricerca e sperimentazione. Nella prima parte, presentiamo tali teorie ed alcune applicazioni nell'ambito di Geometric Surface Processing. Questo ci permette di formalizzare meglio e dare una visione piu' ampia ad alcune delle tecniche usate nelle ultime versioni del nostro sistema ricostruzione di superfici e modellazione virtuale. Il lavoro di ricerca per entrambi gli argomenti ha portato al raggiungimento di importanti risultati che sono stati pubblicati e presentati in articoli e conferenze di rilevanza internazionale.
Sabra, Ahmad. "Nonlinear PDE and Optical Surfaces Design." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/345398.
Full textPh.D.
We introduce two models to design near field reflectors in R^3 that solve an inverse problem in radiometry, taking into account the inverse square law of irradiance. The problem leads to a Monge-Ampere type inequality. The surfaces in the first model are strictly convex and require to be far from the source to avoid obstruction. In the second model, the reflectors are neither convex nor concave and do not block the rays even if they are close to the source.
Temple University--Theses
Ahmat, Norhayati. "Geometric modelling and shape optimisation of pharmaceutical tablets. Geometric modelling and shape optimisation of pharmaceutical tablets using partial differential equations." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5702.
Full textAhmat, Norhayati Binti. "Geometric modelling and shape optimisation of pharmaceutical tablets : geometric modelling and shape optimisation of pharmaceutical tablets using partial differential equations." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5702.
Full textGonzalez, Castro Gabriela, and Hassan Ugail. "Shape morphing of complex geometries using partial differential equations." Academy Publisher, 2007. http://hdl.handle.net/10454/2643.
Full textMazzieri, Lorenzo. "Somme connesse generalizzate per problemi della geometria." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85700.
Full textLi, Siran. "Analysis of several non-linear PDEs in fluid mechanics and differential geometry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:20866cbb-e5ab-4a6b-b9dc-88a247d15572.
Full textGuo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.
Full textLieb, Michael [Verfasser]. "Efficient Simulation of Flows Through Complex Geometries in the PDE Framework Peano / Michael Lieb." München : Verlag Dr. Hut, 2014. http://d-nb.info/1060588102/34.
Full textALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.
Full textWe consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
von, Nessi Gregory Thomas, and greg vonnessi@maths anu edu au. "Regularity Results for Potential Functions of the Optimal Transportation Problem on Spheres and Related Hessian Equations." The Australian National University. Mathematical Sciences Institute, 2008. http://thesis.anu.edu.au./public/adt-ANU20081215.120059.
Full textElyan, Eyad, and Hassan Ugail. "Reconstruction of 3D human facial images using partial differential equations." Academy Publisher, 2007. http://hdl.handle.net/10454/2644.
Full textWestmoreland, Shawn Michael. "Optical black holes and solitons." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/6910.
Full textDepartment of Mathematics
Louis Crane
We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.
DE, LEO ROBERTO. "On some geometrical and analytical problems arising from the theory of Isometric Immersion." Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/266285.
Full textPennec, Xavier. "Statistical Computing on Manifolds for Computational Anatomy." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2006. http://tel.archives-ouvertes.fr/tel-00633163.
Full textStrazzullo, Francesco. "Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/449.
Full textBustillo, Jaime. "Rigidité symplectique et EDPs hamiltoniennes." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE050/document.
Full textWe study symplectic rigidity properties in both finite and infinite dimension. In finite dimension, the main tools that we use are generating functions and symplectic capacities. In infinite dimension we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.In the first part of this thesis we study the action selectors defined from generating functions and we build Hamiltonian invariants for subsets of $R^{2m}times T^*T^k$. This allows us to prove a coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of $R^{2n}$. We then extend this result to some non-compact settings. Finally we explain how this result can give information about the middle dimensional symplectic rigidity problem. Still in finite dimensions, we show that it is possible to use the symplectic camel theorem to create energy surfaces with compact invariant subsets.In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms. We first give a new construction of an infinite dimensional capacity using Viterbo's capacities. The main result of this part is the proof of the analogue of the middle dimensional rigidity for certain types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold's conjecture for the periodic Schrödinger equations with a convolution nonlinearity
Calatroni, Luca. "New PDE models for imaging problems and applications." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/256139.
Full textUgail, Hassan, M. Robinson, M. I. G. Bloor, and M. J. Wilson. "Interactive design of complex mechanical parts using a parametric representation." Springer, 2000. http://hdl.handle.net/10454/2713.
Full textIsmail, Nur Baini Binti. "Modelling facial action units using partial differential equations." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14425.
Full textIsmail, Nur B. B. "Modelling facial action units using partial differential equations." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14425.
Full textMinistry of Higher Education, Malaysia and Universiti Malaysia Terengganu
Patty, Spencer R. "3D Image Reconstruction and Level Set Methods." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2812.
Full textCortier, Julien. "Etude mathématique de trous noirs et de leurs données initiales en relativité générale." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20068/document.
Full textThe aim of this thesis is the mathematical study of families of spacetimes satisfying the Einstein's equations of General Relativity. Two methodsare used in this context.The first part, consisting of the first three chapters of this work,investigates the geometric properties of the Emparan-Reall andPomeransky-Senkov families of 5-dimensional spacetimes. We show that they contain a black-hole region, whose event horizon has non-spherical compact cross sections. We construct an analytic extension, and show its maximality and its uniqueness within a natural class in the Emparan-Reallcase. We further establish the Carter-Penrose diagram for these extensions, and analyse the structure of the ergosurface of the Pomeransky-Senkovspacetimes.The second part focuses on the study of initial data, solutions of theconstraint equations induced by the Einstein's equations. We perform agluing construction between a given family of inital data sets andinitial data of Kerr-Kottler-de Sitter spacetimes, using Corvino'smethod.On the other hand, we construct 3-dimensional asymptotically hyperbolicmetrics which satisfy all the assumptions of the positive mass theorem but the completeness, and which display an energy-momentum vector of arbitry causal type
Ugail, Hassan, M. I. G. Bloor, and M. J. Wilson. "Implementing automatic design optimisation in an interactive environment." American Institute of Aeronautics and Astronautics, 2000. http://hdl.handle.net/10454/2942.
Full textZelasco, José Francisco. "Gestion des données : contrôle de qualité des modèles numériques des bases de données géographiques." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20232.
Full textA Digital Surface Model (DSM) is a numerical surface model which is formed by a set of points, arranged as a grid, to study some physical surface, Digital Elevation Models (DEM), or other possible applications, such as a face, or some anatomical organ, etc. The study of the precision of these models, which is of particular interest for DEMs, has been the object of several studies in the last decades. The measurement of the precision of a DSM model, in relation to another model of the same physical surface, consists in estimating the expectancy of the squares of differences between pairs of points, called homologous points, one in each model which corresponds to the same feature of the physical surface. But these pairs are not easily discernable, the grids may not be coincident, and the differences between the homologous points, corresponding to benchmarks in the physical surface, might be subject to special conditions such as more careful measurements than on ordinary points, which imply a different precision. The generally used procedure to avoid these inconveniences has been to use the squares of vertical distances between the models, which only address the vertical component of the error, thus giving a biased estimate when the surface is not horizontal. The Perpendicular Distance Evaluation Method (PDEM) which avoids this bias, provides estimates for vertical and horizontal components of errors, and is thus a useful tool for detection of discrepancies in Digital Surface Models (DSM) like DEMs. The solution includes a special reference to the simplification which arises when the error does not vary in all horizontal directions. The PDEM is also assessed with DEM's obtained by means of the Interferometry SAR Technique
Diarra, Karamoko. "Construction de déformations isomonodromiques par revêtements." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00746795.
Full textMokdad, Mokdad. "Champs de Maxwell en espace-temps de Reissner - Nordstr∫m- De Sitter : décroissance et scattering conforme." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0060/document.
Full textWe study Maxwell fields on the exterior of Reissner-Nordstrom-de Sitter black holes. We start by studying the geometry of these spacetimes: we give the condition under which the metric admits three horizons and in this case we construct the maximal analytic extension of the Reissner-Nordstrom-de Sitter black hole. We then give a general description of Maxwell fields on curves spacetimes, their decomposition into spin components, and their energies. The first result establishes the pointwise decay of the Maxwell field in the exterior of a Reissner-Nordstrom-de Sitter black hole, as well as the uniform decay of the energy flux across a hyperboloid that recedes in the future. This chapter uses the vector fields methods (geometric energy estimates) in the spirit of the work of Pieter Blue. Finally, we construct a conformal scattering theory for Maxwell fields in the exterior of the black hole. This amounts to solving the Goursat problem for Maxwell fields on the null boundary of the exterior region, consisting of the future and past black hole and cosmological horizons. The uniform decay estimates of the energy are crucial to the construction of the conformal scattering theory
Klein, Guillaume. "Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD050/document.
Full textIn this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term
Lutz, Mathieu. "Étude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00875703.
Full textJézéquel, Tiphaine. "Formes normales de champs de vecteurs : restes exponentiellement petits dans le cas non autonome périodique et orbites homoclines à plusieurs boucles au voisinage de la résonance 0²iw hamiltonienne." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00649382.
Full textGoldman, Michael. "Quelques applications des fonctions a variation bornée en dimension finie et infinie." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00650401.
Full textSvensson, Pamela H. W. "Everything you wanted to know about the TPA molecule adsorbed on Au(111)." Thesis, Uppsala universitet, Materialteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417648.
Full textCaubet, Fabien. "Détection d’un objet immergé dans un fluide." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3006/document.
Full textThis dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm
Stöcker, Christina. "Level set methods for higher order evolution laws." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1205350171405-81971.
Full textIn der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben
Stöcker, Christina. "Level set methods for higher order evolution laws." Doctoral thesis, Forschungszentrum caesar, 2007. https://tud.qucosa.de/id/qucosa%3A24054.
Full textIn der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
Jbilou, Asma. "Equations hessiennes complexes sur des variétés kählériennes compactes." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00463111.
Full textHouwaart, Torsten. "Cobalt porphyrins on coinage metal surfaces - adsorption and template properties." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0927.
Full textThis thesis is a theoretical study on the cobalt porphyrin - coinage metal surface interface with the DFT code VASP. The necessary DFT framework has been introduced in chapter 1. The structure of the Java program jBardeen for STM simulation is explained in chapter 2 and the source code is attached as Appendix. A study of the adsorption of CoTPP on coinage metal surfaces has been undertaken in chapter 3. Different parameters of the calculation have been evaluated: the adsorption site and the geometry of both the molecule and surface have been investigated with respect to the xc-functional and dispersion correction used. A most stable adsorption site -bridge down- is identified. Consequently, this most stable site was investigated for its electronic structure. Calculated STM images with the jBardeen code were compared with an experiment of CoTPP on a Cu(111) surface with sub monolayer coverage. In chapter 4 an Fe adatom was introduced to the CoTPP on Ag(111) system. Three symmetrically different binding sites for the Fe atom were identified on the macrocycle, labelled the bi-, brd- and bru-positions for bisector, bridge down and bridge up respectively. A magnetic moment could be evidenced which was mainly located on the Fe atom. Possible pathways between the four symmetrically equivalent bisector sites were investigated with different methods. Single point calculations in vacuum and Nudged Elastic Band (NEB) of the whole system revealed a barrier height of slightly above 0.2 eV going from bi- to the brd-position. A vibrational analysis showed that switching of the Fe atom is likely, when perturbed out of equilibrium in the brd- and bru- positions