Books on the topic 'Geometric Measure of Entanglement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Geometric Measure of Entanglement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Federer, Herbert. Geometric Measure Theory. Edited by B. Eckmann and B. L. van der Waerden. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2.
Full textFederer, Herbert. Geometric measure theory. Berlin: Springer, 1996.
Find full textAmbrosio, Luigi, ed. Geometric Measure Theory and Real Analysis. Pisa: Scuola Normale Superiore, 2014. http://dx.doi.org/10.1007/978-88-7642-523-3.
Full textBombieri, E., ed. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10970-6.
Full textservice), SpringerLink (Online, ed. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textMorgan, Frank. Geometric measure theory: A beginner's guide. Boston: Academic Press, 1988.
Find full textDe Philippis, Guido, Xavier Ros-Oton, and Georg S. Weiss. Geometric Measure Theory and Free Boundary Problems. Edited by Matteo Focardi and Emanuele Spadaro. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65799-4.
Full textFigalli, Alessio, Ireneo Peral, and Enrico Valdinoci. Partial Differential Equations and Geometric Measure Theory. Edited by Alberto Farina and Enrico Valdinoci. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74042-3.
Full text1949-, Parks Harold R., ed. Geometric integration theory. Boston, Mass: Birkhäuser, 2008.
Find full textAllard, William, and Frederick Almgren, eds. Geometric Measure Theory and the Calculus of Variations. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/pspum/044.
Full text1953-, Kenig Carlos E., and Lanzani Loredana 1965-, eds. Harmonic measure: Geometric and analytic points of view. Providence, R.I: American Mathematical Society, 2005.
Find full textK, Allard William, Almgren Frederick J, and American Mathematical Society, eds. Geometric measure theory and the calculus of variations. Providence, R.I: American Mathematical Society, 1986.
Find full text1941-, Allard William K., and Almgren Frederick J, eds. Geometric measure theory and the calculus of variations. Providence, R.I: American Mathematical Society, 1986.
Find full textLawlor, Gary R. A sufficient criterion for a cone to be area-minimizing. Providence, R.I: American Mathematical Society, 1991.
Find full text1963-, Giannopoulos Apostolos, and Milman Vitali D. 1939-, eds. Asymptotic geometric analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textIlmanen, Tom. Elliptic regularization and partial regularity for motion by mean curvature. Providence, R.I: American Mathematical Society, 1994.
Find full textPincus, Joel D. Principal currents for a pair of unitary operators. Providence, R.I: American Mathematical Society, 1994.
Find full text1956-, Williams Kim, ed. Infinite measure: Learning to design in geometric harmony with art, architecture, and nature. Staunton, VA: George F. Thompson Publishing, 2013.
Find full textGiuseppe, Buttazzo, and Visintin A, eds. Motion by mean curvature and related topics: Proceedings of the international conference held at Trento, July 20-24, 1992. Berlin: W. de Gruyter, 1994.
Find full textPonce, Augusto C. Elliptic PDEs, measures and capacities: From the Poisson equation to nonlinear Thomas-Fermi problems. Zürich: European Mathematical Society, 2016.
Find full text1957-, David Guy, ed. Cracktip is a global Mumford-Shah minimizer. [Paris]: Société Mathémaatique de France, 2001.
Find full textDavid, Guy. Analysis of and on uniformly rectifiable sets. Providence, R.I: American Mathematical Society, 1993.
Find full textMathai, A. M. An introduction to geometrical probability: Distributional aspects with applications. Amsterdam, USA: Gordon & Breach, 1999.
Find full textFalconer, K. J. The geometry of fractal sets. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textFalconer, K. J. The geometry of fractal sets. Cambridge: Cambridge University Press, 1986.
Find full textDavid, Guy. Singular integrals and rectifiable sets in Rn: Au-delà graphes lipschitziens. [Paris]: Société mathématique de France, 1991.
Find full textDavid, Guy. Singular integrals and rectifiable sets in Rn̳: Au-delà des graphes lipschitziens. Montrouge: Société mathématique de France, 1991.
Find full textPincus, Joel D. Principal currents for a pair of unitary operators. Providence, R.I: American Mathematical Society, 1994.
Find full textBobkov, Serguei G. Some connections between isoperimetric and Sobolev-type inequalities. Providence, R.I: American Mathematical Society, 1997.
Find full text1966-, Capogna Luca, and Lanzani Loredana 1965-, eds. Harmonic analysis and boundary value problems: Selected papers from the 25th University of Arkansas spring lecture series, Recent progress in the study of harmonic measure from a geometric and analytic point of view, March 2-4, 2000, Fayetteville, Arkansas. Providence, R.I: American Mathematical Society, 2001.
Find full textCannarsa, Piermarco. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Boston, MA: Birkhauser, 2004.
Find full textPISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Edited by Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967-, and Mandelbrot Benoit B. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textauthor, Rosen Daniel 1980, ed. Function theory on symplectic manifolds. Providence, Rhode Island, USA: American Mathematical Society, 2014.
Find full textLi, Weiping, and Shihshu Walter Wei. Geometry and topology of submanifolds and currents: 2013 Midwest Geometry Conference, October 19, 2013, Oklahoma State University, Stillwater, Oklahoma : 2012 Midwest Geometry Conference, May 12-13, 2012, University of Oklahoma, Norman, Oklahoma. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textSpain) UIMP-RSME Lluis Santaló Summer (2012 Santander. Recent advances in real complexity and computation: UIMP-RSME Lluis A. Santaló Summer School, Recent advances in real complexity and computation, July 16-20, 2012, Universidad Internacional Menéndez Pelayo, Santander, Spain. Edited by Montaña, Jose Luis, 1961- editor of compilation and Pardo, L. M. (Luis M.), editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textKoli︠a︡da, S. F. Dynamics and numbers: A special program, June 1-July 31, 2014, Max Planck Institute for Mathematics, Bonn, Germany : international conference, July 21-25, 2014, Max Planck Institute for Mathematics, Bonn, Germany. Edited by Max-Planck-Institut für Mathematik. Providence, Rhode Island: American Mathematical Society, 2016.
Find full text1943-, Gossez J. P., and Bonheure Denis, eds. Nonlinear elliptic partial differential equations: Workshop in celebration of Jean-Pierre Gossez's 65th birthday, September 2-4, 2009, Université libre de Bruxelles, Belgium. Providence, R.I: American Mathematical Society, 2011.
Find full textGeometric Measure Theory. Elsevier, 1995. http://dx.doi.org/10.1016/c2009-0-21297-9.
Full textGeometric Measure Theory. Elsevier, 1988. http://dx.doi.org/10.1016/c2013-0-11200-7.
Full textGeometric Measure Theory. Elsevier, 2000. http://dx.doi.org/10.1016/b978-0-12-506851-2.x5000-6.
Full textGeometric Measure Theory. Elsevier, 2016. http://dx.doi.org/10.1016/c2015-0-01918-9.
Full textFederer, Herbert. Geometric Measure Theory. Springer London, Limited, 2014.
Find full textGeometric Measure Theory-An Introduction. Science Press, 2002.
Find full textAmbrosio, Luigi. Geometric Measure Theory and Real Analysis. Scuola Normale Superiore, 2015.
Find full textGeometric Measure Theory: A Beginner's Guide. Elsevier Science & Technology, 2000.
Find full textGeometric measure theory: A beginner's guide. 3rd ed. San Diego: Academic Press, 2000.
Find full textGeometric measure theory: A beginner's guide. 2nd ed. San Diego: Academic Press, 1995.
Find full textGeometric measure theory: A beginner's guide. 4th ed. Amsterdam: Academic Press/Elsevier, 2009.
Find full textAmbrosio, Luigi. Geometric Measure Theory and Real Analysis. Edizioni della Normale, 2015.
Find full textMorgan, Frank. Geometric Measure Theory: A Beginner's Guide. Elsevier Science & Technology Books, 2014.
Find full text